1
|
Acute Myeloid Leukemia Stem Cell Heterogeneity and Its Clinical Relevance. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1139:153-169. [DOI: 10.1007/978-3-030-14366-4_9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
2
|
Update of ALDH as a Potential Biomarker and Therapeutic Target for AML. BIOMED RESEARCH INTERNATIONAL 2018. [PMID: 29516013 PMCID: PMC5817321 DOI: 10.1155/2018/9192104] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Studies employing mouse transplantation have illustrated the role of aldehyde dehydrogenase (ALDH) defining hematopoietic stem cells (HSCs) and leukemia stem cells (LSCs). Besides being a molecular marker, ALDH mediates drug resistance in AML, which induces poor prognosis of the patients. In AML patients, either CD34+ALDHbr population or CD34+CD38-ALDHint population was found to denote LSCs and minimal residual disease (MRD). A bunch of reagents targeting ALDH directly or indirectly have been evaluated. ATRA, disulfiram, and dimethyl ampal thiolester (DIMATE) are all shown to be potential candidates to open new perspective for AML treatment. However, inconsistent results have been shown for markers of LSCs, which makes it even more difficult to differentiate LSCs and HSCs. In this review, we elevated the role of ALDH to be a potential marker to define and distinguish HSCs and LSCs and its importance in prognosis and target therapy in AML patients. In addition to immunophenotypical markers, ALDH is also functionally active in defining and distinguishing HSCs and LSCs and offers intracellular protections against cytotoxic drugs. Targeting ALDH may be a potential strategy to improve AML treatment. Additional studies concerning specific targeting ALDH and mechanisms of its roles in LSCs are warranted.
Collapse
|
3
|
ALDHs in normal and malignant hematopoietic cells: Potential new avenues for treatment of AML and other blood cancers. Chem Biol Interact 2017. [PMID: 28645468 DOI: 10.1016/j.cbi.2017.06.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Multiple studies have demonstrated that ALDH1A1 is elevated in hematopoietic stem cells (HSCs). As a means to better characterize such cells, we previously developed the fluorescent ALDH1A1 substrate Aldefluor to facilitate HSC identification and isolation. This has proven useful for counting and isolating HSCs from human bone marrow, peripheral blood and cord blood as well as stem cells in other tissues and organisms. Given the high level expression of ALDH1A1, we explored its biology and that of other ALDHs in HSCs and found that ALDH1A1 and ALDH3A1 were important in metabolizing reactive aldehydes (RAlds) and reactive oxygen species (ROS). In murine models, loss of these two isoforms resulted in a variety of effects on HSC biology, increased DNA damage and predisposition to leukemia formation when combined with a genetic driver of HSC proliferation and self-renewal. Loss of ALDH activity may also predispose to marrow failure and AML in Fanconi's anemia (FA). ALDHs also have importance in mediating drug resistance in AML, may be useful in the identification of leukemia stem cells (LSCs) and ALDH activity levels may have prognostic significance. Together these findings suggest that further studying ALDH biology in AML and other blood cancers may provide important insights into malignant transformation and may point the way to the development of novel diagnostics and therapies.
Collapse
|
4
|
Taylor LA, Abraham RM, Tahirovic E, van Belle P, Li B, Huang L, Elder DE, Gimotty P, Xu X. High ALDH1 expression correlates with better prognosis in tumorigenic malignant melanoma. Mod Pathol 2017; 30:634-639. [PMID: 28106104 PMCID: PMC5584688 DOI: 10.1038/modpathol.2016.226] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 11/21/2016] [Accepted: 11/23/2016] [Indexed: 01/16/2023]
Abstract
Aldehyde dehydrogenase 1 (ALDH1) has been proposed as biomarker of stem cells for certain human cancers. ALDH1 expression has been correlated with poor patient outcomes in a variety of malignancies but better patient outcomes in others, and its prognostic significance in malignant melanoma is unclear. Thus, 68 melanoma patients with comprehensive clinical and pathologic follow-up data were used to construct a tissue microarray. A modified histological score (H-score) with a maximum score of 300 was used to quantify immunohistochemical staining for ALDH1. Survival time was defined as the time between diagnosis and melanoma-specific death. Using univariate logistic regression, a low (<80 H-score) ALDH1 score showed 3.7-fold increase in risk for melanoma-specific death within 10 years when compared with high (>80) ALDH1 levels (P=0.017). Odds of MSD were lower by a factor of ~0.9 for each 10-point increase in H-Score. Median survival time was 44.1 months and 180.9 months for patients with low and high ALDH1 expression, respectively. Using multivariate analysis, ALDH1 H-score was found to be an independent prognostic factor. These findings suggest that ALDH1 expression in malignant melanoma has a favorable effect on patient survival. Further study is needed elucidate the function of this enzymatic protein in melanoma progression.
Collapse
Affiliation(s)
- Laura A. Taylor
- Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Ronnie M. Abraham
- Departments of Pathology and Dermatology, University of Illinois College of Medicine at Peoria, Peoria, IL
| | - Emin Tahirovic
- Department of Biostatistics and Epidemiology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Patricia van Belle
- Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Bin Li
- Department of Dermatology, Yueyang Hospital, Shanghai, China
| | - Linfang Huang
- Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - David E. Elder
- Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Phyllis Gimotty
- Department of Biostatistics and Epidemiology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Xiaowei Xu
- Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania, 3400 Spruce St., 6 Founders Building, Philadelphia, PA 19104, USA
| |
Collapse
|
5
|
Gasparetto M, Pei S, Minhajuddin M, Khan N, Pollyea DA, Myers JR, Ashton JM, Becker MW, Vasiliou V, Humphries KR, Jordan CT, Smith CA. Targeted therapy for a subset of acute myeloid leukemias that lack expression of aldehyde dehydrogenase 1A1. Haematologica 2017; 102:1054-1065. [PMID: 28280079 PMCID: PMC5451337 DOI: 10.3324/haematol.2016.159053] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 03/08/2017] [Indexed: 12/20/2022] Open
Abstract
Aldehyde dehydrogenase 1A1 (ALDH1A1) activity is high in hematopoietic stem cells and functions in part to protect stem cells from reactive aldehydes and other toxic compounds. In contrast, we found that approximately 25% of all acute myeloid leukemias expressed low or undetectable levels of ALDH1A1 and that this ALDH1A1− subset of leukemias correlates with good prognosis cytogenetics. ALDH1A1− cell lines as well as primary leukemia cells were found to be sensitive to treatment with compounds that directly and indirectly generate toxic ALDH substrates including 4-hydroxynonenal and the clinically relevant compounds arsenic trioxide and 4-hydroperoxycyclophosphamide. In contrast, normal hematopoietic stem cells were relatively resistant to these compounds. Using a murine xenotransplant model to emulate a clinical treatment strategy, established ALDH1A1− leukemias were also sensitive to in vivo treatment with cyclophosphamide combined with arsenic trioxide. These results demonstrate that targeting ALDH1A1− leukemic cells with toxic ALDH1A1 substrates such as arsenic and cyclophosphamide may be a novel targeted therapeutic strategy for this subset of acute myeloid leukemias.
Collapse
Affiliation(s)
| | - Shanshan Pei
- Division of Hematology, University of Colorado, Aurora, CO, USA
| | | | - Nabilah Khan
- Division of Hematology, University of Colorado, Aurora, CO, USA
| | | | - Jason R Myers
- Genomics Research Center, University of Rochester, NY, USA
| | - John M Ashton
- Genomics Research Center, University of Rochester, NY, USA
| | - Michael W Becker
- Department of Medicine, University of Rochester Medical Center, NY, USA
| | - Vasilis Vasiliou
- Department of Environmental Health Sciences, Yale University, New Haven, CT, USA
| | - Keith R Humphries
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - Craig T Jordan
- Division of Hematology, University of Colorado, Aurora, CO, USA
| | - Clayton A Smith
- Division of Hematology, University of Colorado, Aurora, CO, USA
| |
Collapse
|
6
|
Figueiredo LM, Costa EBO, Orellana MD, Picanço-Castro V, Covas DT. OP9 Stromal Cells Proteins Involved in Hematoendothelial Differentiation from Human Embryonic Stem Cells. Cell Reprogram 2015; 17:338-46. [PMID: 26295456 DOI: 10.1089/cell.2015.0014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Hematopoietic cells (HCs) and endothelial cells (ECs) can be produced in vitro from human embryonic stem cells (hESCs), but the differentiation systems used are still inefficient. To overcome this obstacle, it is necessary to understand the differentiation process. One of the methods used to obtain HCs and ECs from hESCs is their co-culture with stromal cells. The soluble factors secreted by these cells and cell-cell contact have a great impact on the differentiation process. Here, we performed comparative proteomic analyses of proteins obtained from the total extract of OP9 stromal cells and secreted by these cells before and during in vitro generation of HCs and ECs (hematoendothelial) from hESCs. We identified a total of 83 secreted and 759 intracellular proteins during differentiation. Twenty-five secreted and 181 proteins from the total extract were more abundant. Some secreted proteins are involved in cell-matrix interactions and HC and/or EC development. Moreover, 13 proteins of the total extract from OP9 cells that were exclusive/or more abundant during differentiation are involved in the Nrf2/Nfe2l2 gene pathway, that is, they are described to have a key role in oxidative stress and in hematopoietic development and maturation. Our proteomic profiles provide valuable insight about the proteins involved in in vitro hematoendothelial cell generation and in the future they might be used to optimize the differentiation process and produce both cell types in vitro.
Collapse
Affiliation(s)
- Lilian M Figueiredo
- 1 Department of Clinical Medicine/Ribeirão Preto Medical School, University of São Paulo , Brazil , 14040-900.,2 Center for Cell-based Therapy and Regional Blood Center , Ribeirão Preto, Brazil , 14051-140
| | - Everton B O Costa
- 1 Department of Clinical Medicine/Ribeirão Preto Medical School, University of São Paulo , Brazil , 14040-900.,2 Center for Cell-based Therapy and Regional Blood Center , Ribeirão Preto, Brazil , 14051-140
| | - Maristela D Orellana
- 1 Department of Clinical Medicine/Ribeirão Preto Medical School, University of São Paulo , Brazil , 14040-900.,2 Center for Cell-based Therapy and Regional Blood Center , Ribeirão Preto, Brazil , 14051-140
| | - Virginia Picanço-Castro
- 1 Department of Clinical Medicine/Ribeirão Preto Medical School, University of São Paulo , Brazil , 14040-900.,2 Center for Cell-based Therapy and Regional Blood Center , Ribeirão Preto, Brazil , 14051-140
| | - Dimas T Covas
- 1 Department of Clinical Medicine/Ribeirão Preto Medical School, University of São Paulo , Brazil , 14040-900.,2 Center for Cell-based Therapy and Regional Blood Center , Ribeirão Preto, Brazil , 14051-140
| |
Collapse
|
7
|
The Effects of Alcohol and Aldehyde Dehydrogenases on Disorders of Hematopoiesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 815:349-59. [DOI: 10.1007/978-3-319-09614-8_20] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
8
|
Yalçintepe L, Altinel P, Albeniz I, Yilmaz A, Nurten R. Characterization of Lin−ALDHbright population using Ehrlich ascites tumor cells in mice. Tumour Biol 2014; 35:10363-73. [DOI: 10.1007/s13277-014-2352-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 07/13/2014] [Indexed: 12/16/2022] Open
|
9
|
Smith C, Gasparetto M, Humphries K, Pollyea DA, Vasiliou V, Jordan CT. Aldehyde dehydrogenases in acute myeloid leukemia. Ann N Y Acad Sci 2014; 1310:58-68. [PMID: 24641679 DOI: 10.1111/nyas.12414] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Acute myeloid leukemia (AML) affects approximately 15,000 persons per year in the United States and is the sixth leading cause of cancer-related deaths. The treatment of AML has advanced little in the past thirty years, in part because of the biologic heterogeneity of the disease and the difficulty in targeting AML cells while sparing normal hematopoietic cells. Advances in preventing and treating AML are likely to occur once the cellular and molecular differences between leukemia and normal hematopoietic cells are better understood. Aldehyde dehydrogenase (ALDH) activity is highly expressed in hematopoietic stem cells (HSCs), while, in contrast, a subset of AMLs are lacking this activity. This difference may be relevant to the development of AML and may also provide a better avenue for treating this disease. In this review, we summarize what is known about the ALDHs in normal HSCs and AML and propose strategies for capitalizing on these differences in the treatment of acute leukemia, and possibly other cancers as well.
Collapse
Affiliation(s)
- Clay Smith
- Division of Hematology, University of Colorado, Aurora, Colorado
| | | | | | | | | | | |
Collapse
|
10
|
Greim H, Kaden DA, Larson RA, Palermo CM, Rice JM, Ross D, Snyder R. The bone marrow niche, stem cells, and leukemia: impact of drugs, chemicals, and the environment. Ann N Y Acad Sci 2014; 1310:7-31. [PMID: 24495159 PMCID: PMC4002179 DOI: 10.1111/nyas.12362] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Hematopoietic stem cells (HSCs) are a unique population of somatic stem cells that can both self-renew for long-term reconstitution of HSCs and differentiate into hematopoietic progenitor cells (HPCs), which in turn give rise, in a hierarchical manner, to the entire myeloid and lymphoid lineages. The differentiation and maturation of these lineages occurs in the bone marrow (BM) niche, a microenvironment that regulates self-renewal, survival, differentiation, and proliferation, with interactions among signaling pathways in the HSCs and the niche required to establish and maintain homeostasis. The accumulation of genetic mutations and cytogenetic abnormalities within cells of the partially differentiated myeloid lineage, particularly as a result of exposure to benzene or cytotoxic anticancer drugs, can give rise to malignancies like acute myeloid leukemia and myelodysplastic syndrome. Better understanding of the mechanisms driving these malignancies and susceptibility factors, both within HPCs and cells within the BM niche, may lead to the development of strategies for prevention of occupational and cancer therapy-induced disease.
Collapse
|
11
|
Vasiliou V, Thompson DC, Smith C, Fujita M, Chen Y. Aldehyde dehydrogenases: from eye crystallins to metabolic disease and cancer stem cells. Chem Biol Interact 2013; 202:2-10. [PMID: 23159885 PMCID: PMC4128326 DOI: 10.1016/j.cbi.2012.10.026] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Revised: 10/12/2012] [Accepted: 10/29/2012] [Indexed: 12/20/2022]
Abstract
The aldehyde dehydrogenase (ALDH) superfamily is composed of nicotinamide adenine dinucleotide (phosphate) (NAD(P)(+))-dependent enzymes that catalyze the oxidation of aldehydes to their corresponding carboxylic acids. To date, 24 ALDH gene families have been identified in the eukaryotic genome. In addition to aldehyde metabolizing capacity, ALDHs have additional catalytic (e.g. esterase and reductase) and non-catalytic activities. The latter include functioning as structural elements in the eye (crystallins) and as binding molecules to endobiotics and xenobiotics. Mutations in human ALDH genes and subsequent inborn errors in aldehyde metabolism are the molecular basis of several diseases. Most recently ALDH polymorphisms have been associated with gout and osteoporosis. Aldehyde dehydrogenase enzymes also play important roles in embryogenesis and development, neurotransmission, oxidative stress and cancer. This article serves as a comprehensive review of the current state of knowledge regarding the ALDH superfamily and the contribution of ALDHs to various physiological and pathophysiological processes.
Collapse
Affiliation(s)
- Vasilis Vasiliou
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80445, USA.
| | | | | | | | | |
Collapse
|
12
|
Ioannou M, Serafimidis I, Arnes L, Sussel L, Singh S, Vasiliou V, Gavalas A. ALDH1B1 is a potential stem/progenitor marker for multiple pancreas progenitor pools. Dev Biol 2012; 374:153-63. [PMID: 23142317 DOI: 10.1016/j.ydbio.2012.10.030] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Revised: 10/26/2012] [Accepted: 10/31/2012] [Indexed: 01/09/2023]
Abstract
Aldehyde dehydrogenase (ALDH) genes are increasingly associated with stem/progenitor cell status but their role in the maintenance of pluripotency remains uncertain. In a screen conducted for downstream Ngn3 target genes using ES derived pancreas progenitors we identified Aldh1b1, encoding a mitochondrial enzyme, as one of the genes strongly up regulated in response to Ngn3 expression. We found both by in situ hybridization and immunofluorescence using a specific antibody that ALDH1B1 is exclusively expressed in the emerging pancreatic buds of the early embryo (9.5 dpc) in a Pdx1 dependent manner. Around the time of secondary transition, ALDH1B1 expression was restricted in the tip tripotent progenitors of the branching epithelium and in a subset of the trunk epithelium. Expression in the latter was Ngn3 dependent. Subsequently, ALDH1B1 expression persisted only in the tip cells that become restricted to the exocrine lineage and declined rapidly as these cells mature. In the adult pancreas we identified rare ALDH1B1(+) cells that become abundant following pancreas injury in either the caerulein or streptozotocin paradigms. Blocking ALDH catalytic activity in pancreas embryonic explants resulted in reduced size of the explants and accelerated differentiation suggesting for the first time that ALDH activity may be necessary in the developing pancreas for the maintenance and expansion of progenitor pools.
Collapse
Affiliation(s)
- Marilia Ioannou
- Developmental Biology Laboratory, Biomedical Research Foundation of the Academy of Athens, Athens 11527, Greece
| | | | | | | | | | | | | |
Collapse
|