1
|
Raimondi V, Vescovini R, Dessena M, Donofrio G, Storti P, Giuliani N. Oncolytic viruses: a potential breakthrough immunotherapy for multiple myeloma patients. Front Immunol 2024; 15:1483806. [PMID: 39539548 PMCID: PMC11557349 DOI: 10.3389/fimmu.2024.1483806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/07/2024] [Indexed: 11/16/2024] Open
Abstract
Oncolytic virotherapy represents an innovative and promising approach for the treatment of cancer, including multiple myeloma (MM), a currently incurable plasma cell (PC) neoplasm. Despite the advances that new therapies, particularly immunotherapy, have been made, relapses still occur in MM patients, highlighting the medical need for new treatment options. Oncolytic viruses (OVs) preferentially infect and destroy cancer cells, exerting a direct and/or indirect cytopathic effect, combined with a modulation of the tumor microenvironment leading to an activation of the immune system. Both naturally occurring and genetically modified viruses have demonstrated significant preclinical effects against MM cells. Currently, the OVs genetically modified measles virus strains, reovirus, and vesicular stomatitis virus are employed in clinical trials for MM. Nevertheless, significant challenges remain, including the efficiency of the virus delivery to the tumor, overcoming antiviral immune responses, and the specificity of the virus for MM cells. Different strategies are being explored to optimize OV therapy, including combining it with standard treatments and targeted therapies to enhance efficacy. This review will provide a comprehensive analysis of the mechanism of action of the different OVs, and preclinical and clinical evidence, focusing on the role of oncolytic virotherapy as a new possible immunotherapeutic approach also in combination with the current therapeutic armamentarium and underlying the future directions in the context of MM treatments.
Collapse
Affiliation(s)
- Vincenzo Raimondi
- Laboratory of Hematology, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Rosanna Vescovini
- Laboratory of Hematology, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Mattia Dessena
- Laboratory of Hematology, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Gaetano Donofrio
- Department of Medical-Veterinary Science, University of Parma, Parma, Italy
| | - Paola Storti
- Laboratory of Hematology, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Nicola Giuliani
- Laboratory of Hematology, Department of Medicine and Surgery, University of Parma, Parma, Italy
- Multiple Myeloma and Monoclonal Gammopathy Program, Department of Onco-Hematology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
- Hematology Unit, Department of Onco-Hematology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| |
Collapse
|
2
|
Yeşilaltay A, Muz D, Erdal B, Bilgen T, Batar B, Turgut B, Topçu B, Yılmaz B, Avcı BA. Myxoma Virus Combination Therapy Enhances Lenalidomide and Bortezomib Treatments for Multiple Myeloma. Pathogens 2024; 13:72. [PMID: 38251379 PMCID: PMC10820570 DOI: 10.3390/pathogens13010072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/09/2023] [Accepted: 01/09/2024] [Indexed: 01/23/2024] Open
Abstract
This study aimed to explore the effectiveness and safety of Myxoma virus (MYXV) in MM cell lines and primary myeloma cells obtained from patients with multiple myeloma. Myeloma cells were isolated from MM patients and cultured. MYXV, lenalidomide, and bortezomib were used in MM cells. The cytotoxicity assay was investigated using WST-1. Apoptosis was assessed through flow cytometry with Annexin V/PI staining and caspase-9 concentrations using ELISA. To explore MYXV entry into MM cells, monoclonal antibodies were used. Moreover, to explore the mechanisms of MYXV entry into MM cells, we examined the level of GFP-labeled MYXV within the cells after blocking with monoclonal antibodies targeting BCMA, CD20, CD28, CD33, CD38, CD56, CD86, CD117, CD138, CD200, and CD307 in MM cells. The study demonstrated the effects of treating Myxoma virus with lenalidomide and bortezomib. The treatment resulted in reduced cell viability and increased caspase-9 expression. Only low-dose CD86 blockade showed a significant difference in MYXV entry into MM cells. The virus caused an increase in the rate of apoptosis in the cells, regardless of whether it was administered alone or in combination with drugs. The groups with the presence of the virus showed higher rates of early apoptosis. The Virus, Virus + Bortezomib, and Virus + Lenalidomide groups had significantly higher rates of early apoptosis (p < 0.001). However, the measurements of late apoptosis and necrosis showed variability. The addition of MYXV resulted in a statistically significant increase in early apoptosis in both newly diagnosed and refractory MM patients. Our results highlight that patient-based therapy should also be considered for the effective management of MM.
Collapse
Affiliation(s)
- Alpay Yeşilaltay
- Department of Hematology, Faculty of Medicine, Başkent University Istanbul, Istanbul 34662, Türkiye
| | - Dilek Muz
- Department of Virology, Faculty of Veterinary, Tekirdağ Namık Kemal University, Tekirdag 59030, Türkiye;
| | - Berna Erdal
- Department of Medical Microbiology, Faculty of Medicine, Tekirdağ Namık Kemal University, Tekirdag 59030, Türkiye;
| | - Türker Bilgen
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Tekirdağ Namık Kemal University, Tekirdag 59030, Türkiye;
| | - Bahadır Batar
- Department of Medical Biology, Faculty of Medicine, Tekirdağ Namık Kemal University, Tekirdag 59030, Türkiye;
| | - Burhan Turgut
- Department of Hematology, Faculty of Medicine, Tekirdağ Namık Kemal University, Tekirdag 59030, Türkiye; (B.T.); (B.A.A.)
| | - Birol Topçu
- Department of Biostatistics, Faculty of Medicine, Tekirdağ Namık Kemal University, Tekirdag 59030, Türkiye;
| | - Bahar Yılmaz
- Department of Tumor Biology and Immunology, Institute of Health Sciences, Tekirdağ Namık Kemal University, Tekirdag 59030, Türkiye;
| | - Burcu Altındağ Avcı
- Department of Hematology, Faculty of Medicine, Tekirdağ Namık Kemal University, Tekirdag 59030, Türkiye; (B.T.); (B.A.A.)
| |
Collapse
|
3
|
Wong B, Bergeron A, Maznyi G, Ng K, Jirovec A, Birdi HK, Serrano D, Spinelli M, Thomson M, Taha Z, Alwithenani A, Chen A, Lorimer I, Vanderhyden B, Arulanandam R, Diallo JS. Pevonedistat, a first-in-class NEDD8-activating enzyme inhibitor, sensitizes cancer cells to VSVΔ51 oncolytic virotherapy. Mol Ther 2023; 31:3176-3192. [PMID: 37766429 PMCID: PMC10638453 DOI: 10.1016/j.ymthe.2023.09.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/23/2023] [Accepted: 09/23/2023] [Indexed: 09/29/2023] Open
Abstract
The clinical efficacy of VSVΔ51 oncolytic virotherapy has been limited by tumor resistance to viral infection, so strategies to transiently repress antiviral defenses are warranted. Pevonedistat is a first-in-class NEDD8-activating enzyme (NAE) inhibitor currently being tested in clinical trials for its antitumor potential. In this study, we demonstrate that pevonedistat sensitizes human and murine cancer cells to increase oncolytic VSVΔ51 infection, increase tumor cell death, and improve therapeutic outcomes in resistant syngeneic murine cancer models. Increased VSVΔ51 infectivity was also observed in clinical human tumor samples. We further identify the mechanism of this effect to operate via blockade of the type 1 interferon (IFN-1) response through neddylation-dependent interferon-stimulated growth factor 3 (ISGF3) repression and neddylation-independent inhibition of NF-κB nuclear translocation. Together, our results identify a role for neddylation in regulating the innate immune response and demonstrate that pevonedistat can improve the therapeutic outcomes of strategies using oncolytic virotherapy.
Collapse
Affiliation(s)
- Boaz Wong
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Anabel Bergeron
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Glib Maznyi
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Kristy Ng
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Anna Jirovec
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Harsimrat K Birdi
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Daniel Serrano
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Marcus Spinelli
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Max Thomson
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Zaid Taha
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Akram Alwithenani
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Andrew Chen
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Ian Lorimer
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Barbara Vanderhyden
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Rozanne Arulanandam
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada.
| | - Jean-Simon Diallo
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada.
| |
Collapse
|
4
|
Thomas RJ, Bartee MY, Valenzuela-Cardenas M, Bartee E. Oncolytic myxoma virus is effective in murine models of triple negative breast cancer despite poor rates of infection. Mol Ther Oncolytics 2023; 30:316-319. [PMID: 37732297 PMCID: PMC10507476 DOI: 10.1016/j.omto.2023.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023] Open
Abstract
Oncolytic viruses are being heavily investigated as novel methods to treat cancers; however, predicting their therapeutic efficacy remains challenging. The most commonly used predictive tests involve determining the in vitro susceptibility of a tumor's malignant cells to infection with an oncolytic agent. Whether these tests are truly predictive of in vivo efficacy, however, remains unclear. Here we demonstrate that a recombinant, oncolytic myxoma virus shows efficacy in two murine models of triple negative breast cancer despite extremely low permissivity of these models to viral infection. These data demonstrate that in vitro infectivity studies are not an accurate surrogate for therapeutic efficacy and suggest that other tests need to be developed.
Collapse
Affiliation(s)
- Raquela J. Thomas
- Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Mee Y. Bartee
- Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | | | - Eric Bartee
- Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| |
Collapse
|
5
|
Palanivelu L, Liu CH, Lin LT. Immunogenic cell death: The cornerstone of oncolytic viro-immunotherapy. Front Immunol 2023; 13:1038226. [PMID: 36755812 PMCID: PMC9899992 DOI: 10.3389/fimmu.2022.1038226] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/28/2022] [Indexed: 01/24/2023] Open
Abstract
According to the World Health Organization, cancer is one of the leading global health concerns, causing nearly 10 million deaths in 2020. While classical chemotherapeutics produce strong cytotoxicity on cancer cells, they carry limitations of drug resistance and off-target effects and sometimes fail to elicit adequate antitumor protection against tumor relapse. Additionally, most cancer cells have developed various ways to escape immune surveillance. Nevertheless, novel anticancer strategies such as oncolytic viro-immunotherapy can trigger immunogenic cell death (ICD), which can quickly grasp the attention of the host defense machinery, resulting in an ensuing antitumor immune response. Specifically, oncolytic viruses (OVs) can infect and destroy targeted cancer cells and stimulate the immune system by exposing pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs) to promote inflammatory reactions, and concomitantly prime and induce antitumor immunity by the release of neoantigens from the damaged cancer cells. Thus, OVs can serve as a novel system to sensitize tumor cells for promising immunotherapies. This review discusses the concept of ICD in cancer, centralizing ICD-associated danger signals and their consequence in antitumor responses and ICD induced by OVs. We also shed light on the potential strategies to enhance the immunogenicity of OVs, including the use of genetically modified OVs and their combination with ICD-enhancing agents, which are helpful as forthcoming anticancer regimens.
Collapse
Affiliation(s)
- Lalitha Palanivelu
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ching-Hsuan Liu
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan,Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan,Department of Microbiology & Immunology, Dalhousie University, Halifax, NS, Canada
| | - Liang-Tzung Lin
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan,Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan,*Correspondence: Liang-Tzung Lin,
| |
Collapse
|
6
|
Sarwar A, Hashim L, Faisal MS, Haider MZ, Ahmed Z, Ahmed TF, Shahzad M, Ansar I, Ali S, Aslam MM, Anwer F. Advances in viral oncolytics for treatment of multiple myeloma - a focused review. Expert Rev Hematol 2021; 14:1071-1083. [PMID: 34428997 DOI: 10.1080/17474086.2021.1972802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Oncolytic viruses are genetically engineered viruses that target myeloma-affected cells by detecting specific cell surface receptors (CD46, CD138), causing cell death by activating the signaling pathway to induce apoptosis or by immune-mediated cellular destruction. AREAS COVERED This article summarizes oncolytic virotherapy advancements such as the therapeutic use of viruses by targeting cell surface proteins of myeloma cells as well as the carriers to deliver viruses to the target tissues safely. The major classes of viruses that have been studied for this include measles, myxoma, adenovirus, reovirus, vaccinia, vesicular-stomatitis virus, coxsackie, and others. The measles virus acts as oncolytic viral therapy by binding to the CD46 receptors on the myeloma cells to utilize its surface H protein. These H-protein and CD46 interactions lead to cellular syncytia formation resulting in cellular apoptosis. Vesicular-stomatitis virus acts by downregulation of anti-apoptotic factors (Mcl-2, BCL-2). Based upon the published literature searches till December 2020, we have summarized the data supporting the advances in viral oncolytic for the treatment of MM. EXPERT OPINION Oncolytic virotherapy is an experimental approach in multiple myeloma (MM); many issues need to be addressed for safe viral delivery to the target tissue.
Collapse
Affiliation(s)
- Ayesha Sarwar
- Department of Internal Medicine, King Edward Medical University, Lahore, Pakistan
| | | | - Muhammad Salman Faisal
- Department of Internal Medicine, Division of Hematology, The Ohio State University Columbus Oh, USA
| | | | - Zahoor Ahmed
- Department of Internal Medicine, King Edward Medical University, Lahore, Pakistan
| | - Tehniat Faraz Ahmed
- Department of Biochemistry, Dow University of Health Sciences, Karachi, Pakistan
| | - Moazzam Shahzad
- Department of Internal Medicine, St Mary's Medical Center, Huntington, WV, USA
| | - Iqraa Ansar
- Department of Internal medicine, Riverside Methodist hospital, Columbus OH
| | - Sundas Ali
- Department of Internal medicine, Rawalpindi Medical University, Rawalpindi, Pakistan
| | | | - Faiz Anwer
- Department of Hematology and Oncology, Taussig Cancer Center, Cleveland Clinic, Ohio, USA
| |
Collapse
|
7
|
Spiesschaert B, Angerer K, Park J, Wollmann G. Combining Oncolytic Viruses and Small Molecule Therapeutics: Mutual Benefits. Cancers (Basel) 2021; 13:3386. [PMID: 34298601 PMCID: PMC8306439 DOI: 10.3390/cancers13143386] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 06/28/2021] [Accepted: 07/01/2021] [Indexed: 02/07/2023] Open
Abstract
The focus of treating cancer with oncolytic viruses (OVs) has increasingly shifted towards achieving efficacy through the induction and augmentation of an antitumor immune response. However, innate antiviral responses can limit the activity of many OVs within the tumor and several immunosuppressive factors can hamper any subsequent antitumor immune responses. In recent decades, numerous small molecule compounds that either inhibit the immunosuppressive features of tumor cells or antagonize antiviral immunity have been developed and tested for. Here we comprehensively review small molecule compounds that can achieve therapeutic synergy with OVs. We also elaborate on the mechanisms by which these treatments elicit anti-tumor effects as monotherapies and how these complement OV treatment.
Collapse
Affiliation(s)
- Bart Spiesschaert
- Christian Doppler Laboratory for Viral Immunotherapy of Cancer, Medical University Innsbruck, 6020 Innsbruck, Austria; (B.S.); (K.A.)
- Institute of Virology, Medical University Innsbruck, 6020 Innsbruck, Austria
- ViraTherapeutics GmbH, 6063 Rum, Austria
- Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach a.d. Riss, Germany;
| | - Katharina Angerer
- Christian Doppler Laboratory for Viral Immunotherapy of Cancer, Medical University Innsbruck, 6020 Innsbruck, Austria; (B.S.); (K.A.)
- Institute of Virology, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - John Park
- Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach a.d. Riss, Germany;
| | - Guido Wollmann
- Christian Doppler Laboratory for Viral Immunotherapy of Cancer, Medical University Innsbruck, 6020 Innsbruck, Austria; (B.S.); (K.A.)
- Institute of Virology, Medical University Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
8
|
Yang C, Hua N, Xie S, Wu Y, Zhu L, Wang S, Tong X. Oncolytic viruses as a promising therapeutic strategy for hematological malignancies. Biomed Pharmacother 2021; 139:111573. [PMID: 33894623 DOI: 10.1016/j.biopha.2021.111573] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/23/2021] [Accepted: 03/31/2021] [Indexed: 12/16/2022] Open
Abstract
The incidence of hematological malignancies such as multiple myeloma, leukemia, and lymphoma has increased over time. Although bone marrow transplantation, immunotherapy and chemotherapy have led to significant improvements in efficacy, poor prognosis in elderly patients, recurrence and high mortality among hematological malignancies remain major challenges, and innovative therapeutic strategies should be explored. Besides directly lyse tumor cells, oncolytic viruses can activate immune responses or be engineered to express therapeutic factors to increase antitumor efficacy, and have gradually been recognized as an appealing approach for fighting cancers. An increasing number of studies have applied oncolytic viruses in hematological malignancies and made progress. In particular, strategies combining immunotherapy and oncolytic virotherapy are emerging. Various phase I clinical trials of oncolytic reovirus with lenalidomide or programmed death 1(PD-1) immune checkpoint inhibitors in multiple myeloma are ongoing. Moreover, preclinical studies of combinations with chimeric antigen receptor T (CAR-T) cells are underway. Thus, oncolytic virotherapy is expected to be a promising approach to cure hematological malignancies. This review summarizes progress in oncolytic virus research in hematological malignancies. After briefly reviewing the development and oncolytic mechanism of oncolytic viruses, we focus on delivery methods of oncolytic viruses, especially systemic delivery that is suitable for hematological tumors. We then discuss the main types of oncolytic viruses applied for hematological malignancies and related clinical trials. In addition, we present several ways to improve the antitumor efficacy of oncolytic viruses. Finally, we discuss current challenges and provide suggestions for future studies.
Collapse
Affiliation(s)
- Chen Yang
- Molecular diagnosis laboratory, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, PR China; Department of Clinical Medicine, Qingdao University, Qingdao, PR China
| | - Nanni Hua
- Molecular diagnosis laboratory, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, PR China; The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310000, PR China
| | - Shufang Xie
- Molecular diagnosis laboratory, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, PR China; The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310000, PR China
| | - Yi Wu
- Phase I clinical research center, Zhejiang Provincial People's Hospital,Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, PR China
| | - Lifeng Zhu
- Molecular diagnosis laboratory, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, PR China
| | - Shibing Wang
- Molecular diagnosis laboratory, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, PR China; The Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital ,Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, PR China.
| | - Xiangmin Tong
- Molecular diagnosis laboratory, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, PR China; The Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital ,Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, PR China.
| |
Collapse
|
9
|
Oncolytic Viruses and Hematological Malignancies: A New Class of Immunotherapy Drugs. ACTA ACUST UNITED AC 2020; 28:159-183. [PMID: 33704184 PMCID: PMC7816176 DOI: 10.3390/curroncol28010019] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 12/18/2020] [Accepted: 12/21/2020] [Indexed: 02/06/2023]
Abstract
The use of viruses for tumour treatment has been imagined more than one hundred years ago, when it was reported that viral diseases were occasionally leading to a decrease in neoplastic lesions. Oncolytic viruses (OVs) seem to have a specific tropism for tumour cells. Previously, it was hypothesised that OVs’ antineoplastic actions were mainly due to their ability to contaminate, proliferate and destroy tumour cells and the immediate destructive effect on cells was believed to be the single mechanism of action of OVs’ action. Instead, it has been established that oncolytic viruses operate via a multiplicity of systems, including mutation of tumour milieu and a composite change of the activity of immune effectors. Oncolytic viruses redesign the tumour environment towards an antitumour milieu. The aim of our work is to evaluate the findings present in the literature about the use of OVs in the cure of haematological neoplastic pathologies such as multiple myeloma, acute and chronic myeloid leukaemia, and lymphoproliferative diseases. Further experimentations are essential to recognize the most efficient virus or treatment combinations for specific haematological diseases, and the combinations able to induce the strongest immune response.
Collapse
|
10
|
|
11
|
Marchica V, Franceschi V, Vescovini R, Storti P, Vicario E, Toscani D, Zorzoli A, Airoldi I, Dalla Palma B, Campanini N, Martella E, Mancini C, Costa F, Donofrio G, Giuliani N. Bovine pestivirus is a new alternative virus for multiple myeloma oncolytic virotherapy. J Hematol Oncol 2020; 13:89. [PMID: 32653014 PMCID: PMC7353805 DOI: 10.1186/s13045-020-00919-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 06/16/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The oncolytic viruses have shown promising results for the treatment of multiple myeloma. However, the use of human viruses is limited by the patients' antiviral immune response. In this study, we investigated an alternative oncolytic strategy using non-human pathogen viruses as the bovine viral diarrhea virus (BVDV) that were able to interact with CD46. METHODS We treated several human myeloma cell lines and non-myeloma cell lines with BVDV to evaluate the expression of CD46 and to study the effect on cell viability by flow cytometry. The possible synergistic effect of bortezomib in combination with BVDV was also tested. Moreover, we infected the bone marrow mononuclear cells obtained from myeloma patients and we checked the BVDV effect on different cell populations, defined by CD138, CD14, CD3, CD19, and CD56 expression evaluated by flow cytometry. Finally, the in vivo BVDV effect was tested in NOD-SCID mice injected subcutaneously with myeloma cell lines. RESULTS Human myeloma cells were selectively sensitive to BVDV treatment with an increase of cell death and, consequently, of apoptotic markers. Consistently, bone marrow mononuclear cells isolated from myeloma patients treated with BVDV, showed a significant selective decrease of the percentage of viable CD138+ cells. Interestingly, bortezomib pre-treatment significantly increased the cytotoxic effect of BVDV in myeloma cell lines with a synergistic effect. Finally, the in vitro data were confirmed in an in vivo myeloma mouse model showing that BVDV treatment significantly reduced the tumoral burden compared to the vehicle. CONCLUSIONS Overall, our data indicate, for the first time, a direct oncolytic effect of the BVDV in human myeloma cells suggesting its possible use as novel alternative anti-myeloma virotherapy strategy.
Collapse
Affiliation(s)
| | | | - Rosanna Vescovini
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Paola Storti
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Emanuela Vicario
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Denise Toscani
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Alessia Zorzoli
- Stem Cell Laboratory and Cell Therapy Center, IRCCS "Istituto Giannina Gaslini", Genoa, Italy
| | - Irma Airoldi
- Stem Cell Laboratory and Cell Therapy Center, IRCCS "Istituto Giannina Gaslini", Genoa, Italy
| | - Benedetta Dalla Palma
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Hematology, "Azienda Ospedaliero-Universitaria di Parma", Parma, Italy
| | | | - Eugenia Martella
- Pathology, "Azienda Ospedaliero-Universitaria di Parma", Parma, Italy
| | - Cristina Mancini
- Pathology, "Azienda Ospedaliero-Universitaria di Parma", Parma, Italy
| | - Federica Costa
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Gaetano Donofrio
- Department of Medical-Veterinary Science, University of Parma, Parma, Italy.
| | - Nicola Giuliani
- Department of Medicine and Surgery, University of Parma, Parma, Italy.
- Hematology, "Azienda Ospedaliero-Universitaria di Parma", Parma, Italy.
| |
Collapse
|
12
|
Malfitano AM, Di Somma S, Iannuzzi CA, Pentimalli F, Portella G. Virotherapy: From single agents to combinatorial treatments. Biochem Pharmacol 2020; 177:113986. [PMID: 32330494 DOI: 10.1016/j.bcp.2020.113986] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 04/16/2020] [Indexed: 12/12/2022]
Abstract
Virotherpay is emerging as a promising strategy against cancer, and three oncolytic viruses (OVs) have gained approval in different countries for the treatment of several cancer types. Beyond the capability to selectively infect, replicate and lyse cancer cells, OVs act through a multitude of events, including modification of the tumour micro/macro-environment as well as a complex modulation of the anti-tumour immune response by activation of danger signals and immunogenic cell death pathways. Most OVs show limited effects, depending on the viral platform and the interactions with the host. OVs used as monotherapy only in a minority of patients elicited a full response. Better outcomes were obtained using OVs in combination with other treatments, such as immune therapy or chemotherapy, suggesting that the full potential of OVs can be unleashed in combination with other treatment modalities. Here, we report the main described combination of OVs with conventional chemotherapeutic agents: platinum salts, mitotic inhibitors, anthracyclines and other antibiotics, anti-metabolites, alkylating agents and topoisomerase inhibitors. Additionally, our work provides an overview of OV combination with targeted therapies: histone deacetylase inhibitors, kinase inhibitors, monoclonal antibodies, inhibitors of DNA repair, inhibitors of the proteasome complex and statins that demonstrated enhanced OV anti-neoplastic activity. Although further studies are required to assess the best combinations to translate the results in the clinic, it is clear that combined therapies, acting with complementary mechanisms of action might be useful to target cancer lesions resistant to currently available treatments.
Collapse
Affiliation(s)
- Anna Maria Malfitano
- Dipartimento di Scienze Mediche Traslazionali, Università Federico II Napoli, Italy
| | - Sarah Di Somma
- Dipartimento di Scienze Mediche Traslazionali, Università Federico II Napoli, Italy
| | | | - Francesca Pentimalli
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori IRCCS, Fondazione G. Pascale, Naples, Italy
| | - Giuseppe Portella
- Dipartimento di Scienze Mediche Traslazionali, Università Federico II Napoli, Italy.
| |
Collapse
|
13
|
Soekojo CY, Ooi M, de Mel S, Chng WJ. Immunotherapy in Multiple Myeloma. Cells 2020; 9:E601. [PMID: 32138182 PMCID: PMC7140529 DOI: 10.3390/cells9030601] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 02/27/2020] [Accepted: 02/27/2020] [Indexed: 12/15/2022] Open
Abstract
Multiple myeloma is a complex disease and immune dysfunction has been known to play an important role in the disease pathogenesis, progression, and drug resistance. Recent efforts in drug development have been focused on immunotherapies to modify the MM disease process. Here, we summarize the emerging immunotherapies in the MM treatment landscape.
Collapse
Affiliation(s)
| | | | | | - Wee Joo Chng
- Department of Hematology-Oncology, National University Cancer Institute, Singapore, National University Health System, 1E Kent Ridge Road, Singapore 119228, Singapore; (C.Y.S.); (M.O.); (S.d.M.)
| |
Collapse
|
14
|
Kim Y, Lee J, Lee D, Othmer HG. Synergistic Effects of Bortezomib-OV Therapy and Anti-Invasive Strategies in Glioblastoma: A Mathematical Model. Cancers (Basel) 2019; 11:E215. [PMID: 30781871 PMCID: PMC6406513 DOI: 10.3390/cancers11020215] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 02/05/2019] [Accepted: 02/06/2019] [Indexed: 12/18/2022] Open
Abstract
It is well-known that the tumor microenvironment (TME) plays an important role in the regulation of tumor growth and the efficacy of anti-tumor therapies. Recent studies have demonstrated the potential of combination therapies, using oncolytic viruses (OVs) in conjunction with proteosome inhibitors for the treatment of glioblastoma, but the role of the TME in such therapies has not been studied. In this paper, we develop a mathematical model for combination therapies based on the proteosome inhibitor bortezomib and the oncolytic herpes simplex virus (oHSV), with the goal of understanding their roles in bortezomib-induced endoplasmic reticulum (ER) stress, and how the balance between apoptosis and necroptosis is affected by the treatment protocol. We show that the TME plays a significant role in anti-tumor efficacy in OV combination therapy, and illustrate the effect of different spatial patterns of OV injection. The results illustrate a possible phenotypic switch within tumor populations in a given microenvironment, and suggest new anti-invasion therapies.
Collapse
Affiliation(s)
- Yangjin Kim
- Department of Mathematics, Konkuk University, Seoul 05029, Korea.
| | - Junho Lee
- Department of Mathematics, Konkuk University, Seoul 05029, Korea.
| | - Donggu Lee
- Department of Mathematics, Konkuk University, Seoul 05029, Korea.
| | - Hans G Othmer
- School of Mathematics, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
15
|
NF-κB Signaling in Targeting Tumor Cells by Oncolytic Viruses-Therapeutic Perspectives. Cancers (Basel) 2018; 10:cancers10110426. [PMID: 30413032 PMCID: PMC6265863 DOI: 10.3390/cancers10110426] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 11/04/2018] [Accepted: 11/06/2018] [Indexed: 12/14/2022] Open
Abstract
In recent years, oncolytic virotherapy became a promising therapeutic approach, leading to the introduction of a novel generation of anticancer drugs. However, despite evoking an antitumor response, introducing an oncolytic virus (OV) to the patient is still inefficient to overcome both tumor protective mechanisms and the limitation of viral replication by the host. In cancer treatment, nuclear factor (NF)-κB has been extensively studied among important therapeutic targets. The pleiotropic nature of NF-κB transcription factor includes its involvement in immunity and tumorigenesis. Therefore, in many types of cancer, aberrant activation of NF-κB can be observed. At the same time, the activity of NF-κB can be modified by OVs, which trigger an immune response and modulate NF-κB signaling. Due to the limitation of a monotherapy exploiting OVs only, the antitumor effect can be enhanced by combining OV with NF-κB-modulating drugs. This review describes the influence of OVs on NF-κB activation in tumor cells showing NF-κB signaling as an important aspect, which should be taken into consideration when targeting tumor cells by OVs.
Collapse
|
16
|
Phan M, Watson MF, Alain T, Diallo JS. Oncolytic Viruses on Drugs: Achieving Higher Therapeutic Efficacy. ACS Infect Dis 2018; 4:1448-1467. [PMID: 30152676 DOI: 10.1021/acsinfecdis.8b00144] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Over the past 20 years there has been a dramatic expansion in the testing of oncolytic viruses (OVs) for the treatment of cancer. OVs are unique biotherapeutics that induce multimodal responses toward tumors, from direct cytopathic effects on cancer cells, to tumor associated blood vessel disruption, and ultimately potent stimulation of anti-tumor immune activation. These agents are highly targeted and can be efficacious as cancer treatments resulting in some patients experiencing complete tumor regression and even cures from OV monotherapy. However, most patients have limited responses with viral replication in tumors often found to be modest and transient. To augment OV replication, increase bystander killing of cancer cells, and/or stimulate stronger targeted anti-cancer immune responses, drug combination approaches have taken center stage for translation to the clinic. Here we comprehensively review drugs that have been combined with OVs to increase therapeutic efficacy, examining the proposed mechanisms of action, and we discuss trends in pharmaco-viral immunotherapeutic approaches currently being investigated.
Collapse
Affiliation(s)
- Michael Phan
- Center for Innovative Cancer Research, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, Ontario K1H 8L6, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Canada
| | - Margaret F. Watson
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Canada
- Children’s Hospital of Eastern Ontario Research Institute, 401 Smyth Road Research Building 2, Second Floor, Room 2119, Ottawa, Ontario K1H 8L1, Canada
| | - Tommy Alain
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Canada
- Children’s Hospital of Eastern Ontario Research Institute, 401 Smyth Road Research Building 2, Second Floor, Room 2119, Ottawa, Ontario K1H 8L1, Canada
| | - Jean-Simon Diallo
- Center for Innovative Cancer Research, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, Ontario K1H 8L6, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Canada
| |
Collapse
|
17
|
Urbiola C, Santer FR, Petersson M, van der Pluijm G, Horninger W, Erlmann P, Wollmann G, Kimpel J, Culig Z, von Laer D. Oncolytic activity of the rhabdovirus VSV-GP against prostate cancer. Int J Cancer 2018; 143:1786-1796. [PMID: 29696636 PMCID: PMC6712949 DOI: 10.1002/ijc.31556] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 03/08/2018] [Accepted: 04/10/2018] [Indexed: 12/28/2022]
Abstract
Oncolytic viruses, including the oncolytic rhabdovirus VSV-GP tested here, selectively infect and kill cancer cells and are a promising new therapeutic modality. Our aim was to study the efficacy of VSV-GP, a vesicular stomatitis virus carrying the glycoprotein of lymphocytic choriomeningitis virus, against prostate cancer, for which current treatment options still fail to cure metastatic disease. VSV-GP was found to infect 6 of 7 prostate cancer cell lines with great efficacy. However, susceptibility was reduced in one cell line with low virus receptor expression and in 3 cell lines after interferon alpha treatment. Four cell lines had developed resistance to interferon type I at different levels of the interferon signaling pathway, resulting in a deficient antiviral response. In prostate cancer mouse models, long-term remission was achieved upon intratumoral and, remarkably, also upon intravenous treatment of subcutaneous tumors and bone metastases. These promising efficacy data demonstrate that treatment of prostate cancer with VSV-GP is feasible and safe in preclinical models and encourage further preclinical and clinical development of VSV-GP for systemic treatment of metastatic prostate cancer.
Collapse
Affiliation(s)
- Carles Urbiola
- Division of VirologyMedical University of InnsbruckInnsbruckAustria
- Christian Doppler Laboratory for Viral Immunotherapy of CancerMedical University of InnsbruckInnsbruckAustria
| | - Frédéric R. Santer
- Division of Experimental UrologyMedical University of InnsbruckInnsbruckAustria
| | - Monika Petersson
- Division of VirologyMedical University of InnsbruckInnsbruckAustria
- ViraTherapeutics GmbHInnsbruckAustria
| | | | - Wolfgang Horninger
- Division of Experimental UrologyMedical University of InnsbruckInnsbruckAustria
| | | | - Guido Wollmann
- Division of VirologyMedical University of InnsbruckInnsbruckAustria
- Christian Doppler Laboratory for Viral Immunotherapy of CancerMedical University of InnsbruckInnsbruckAustria
| | - Janine Kimpel
- Division of VirologyMedical University of InnsbruckInnsbruckAustria
| | - Zoran Culig
- Division of Experimental UrologyMedical University of InnsbruckInnsbruckAustria
| | | |
Collapse
|
18
|
Calton CM, Kelly KR, Anwer F, Carew JS, Nawrocki ST. Oncolytic Viruses for Multiple Myeloma Therapy. Cancers (Basel) 2018; 10:E198. [PMID: 29903988 PMCID: PMC6025383 DOI: 10.3390/cancers10060198] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 05/31/2018] [Accepted: 06/12/2018] [Indexed: 12/17/2022] Open
Abstract
Although recent treatment advances have improved outcomes for patients with multiple myeloma (MM), the disease frequently becomes refractory to current therapies. MM thus remains incurable for most patients and new therapies are urgently needed. Oncolytic viruses are a promising new class of therapeutics that provide tumor-targeted therapy by specifically infecting and replicating within cancerous cells. Oncolytic therapy yields results from both direct killing of malignant cells and induction of an anti-tumor immune response. In this review, we will describe oncolytic viruses that are being tested for MM therapy with a focus on those agents that have advanced into clinical trials.
Collapse
Affiliation(s)
- Christine M Calton
- Division of Translational and Regenerative Medicine, Department of Medicine and The University of Arizona Cancer Center, Tucson, AZ 85724, USA.
| | - Kevin R Kelly
- Jane Anne Nohl Division of Hematology and Center for the Study of Blood Diseases, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, CA 90033, USA.
| | - Faiz Anwer
- Division of Hematology and Oncology, University of Arizona Cancer Center, Tucson, AZ 85724, USA.
| | - Jennifer S Carew
- Division of Translational and Regenerative Medicine, Department of Medicine and The University of Arizona Cancer Center, Tucson, AZ 85724, USA.
| | - Steffan T Nawrocki
- Division of Translational and Regenerative Medicine, Department of Medicine and The University of Arizona Cancer Center, Tucson, AZ 85724, USA.
| |
Collapse
|
19
|
Abstract
Multiple myeloma (MM) is a clonal malignancy of plasma cells that is newly diagnosed in ~30,000 patients in the US each year. While recently developed therapies have improved the prognosis for MM patients, relapse rates remain unacceptably high. To overcome this challenge, researchers have begun to investigate the therapeutic potential of oncolytic viruses as a novel treatment option for MM. Preclinical work with these viruses has demonstrated that their infection can be highly specific for MM cells and results in impressive therapeutic efficacy in a variety of preclinical models. This has led to the recent initiation of several human trials. This review summarizes the current state of oncolytic therapy as a therapeutic option for MM and highlights a variety of areas that need to be addressed as the field moves forward.
Collapse
Affiliation(s)
- Eric Bartee
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
20
|
Felt SA, Grdzelishvili VZ. Recent advances in vesicular stomatitis virus-based oncolytic virotherapy: a 5-year update. J Gen Virol 2017; 98:2895-2911. [PMID: 29143726 DOI: 10.1099/jgv.0.000980] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Oncolytic virus (OV) therapy is an anti-cancer approach that uses viruses that preferentially infect, replicate in and kill cancer cells. Vesicular stomatitis virus (VSV, a rhabdovirus) is an OV that is currently being tested in the USA in several phase I clinical trials against different malignancies. Several factors make VSV a promising OV: lack of pre-existing human immunity against VSV, a small and easy to manipulate genome, cytoplasmic replication without risk of host cell transformation, independence of cell cycle and rapid growth to high titres in a broad range of cell lines facilitating large-scale virus production. While significant advances have been made in VSV-based OV therapy, room for improvement remains. Here we review recent studies (published in the last 5 years) that address 'old' and 'new' challenges of VSV-based OV therapy. These studies focused on improving VSV safety, oncoselectivity and oncotoxicity; breaking resistance of some cancers to VSV; preventing premature clearance of VSV; and stimulating tumour-specific immunity. Many of these approaches were based on combining VSV with other therapeutics. This review also discusses another rhabdovirus closely related to VSV, Maraba virus, which is currently being tested in Canada in phase I/II clinical trials.
Collapse
Affiliation(s)
- Sébastien A Felt
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Valery Z Grdzelishvili
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, USA
| |
Collapse
|
21
|
Zhang H, Li K, Lin Y, Xing F, Xiao X, Cai J, Zhu W, Liang J, Tan Y, Fu L, Wang F, Yin W, Lu B, Qiu P, Su X, Gong S, Bai X, Hu J, Yan G. Targeting VCP enhances anticancer activity of oncolytic virus M1 in hepatocellular carcinoma. Sci Transl Med 2017; 9:9/404/eaam7996. [DOI: 10.1126/scitranslmed.aam7996] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 01/23/2017] [Accepted: 07/12/2017] [Indexed: 01/22/2023]
|
22
|
Falls T, Roy DG, Bell JC, Bourgeois-Daigneault MC. Murine Tumor Models for Oncolytic Rhabdo-Virotherapy. ILAR J 2017; 57:73-85. [PMID: 27034397 DOI: 10.1093/ilar/ilv048] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The preclinical optimization and validation of novel treatments for cancer therapy requires the use of laboratory animals. Although in vitro experiments using tumor cell lines and ex vivo treatment of patient tumor samples provide a remarkable first-line tool for the initial study of tumoricidal potential, tumor-bearing animals remain the primary option to study delivery, efficacy, and safety of therapies in the context of a complete tumor microenvironment and functional immune system. In this review, we will describe the use of murine tumor models for oncolytic virotherapy using vesicular stomatitis virus. We will discuss studies using immunocompetent and immunodeficient models with respect to toxicity and therapeutic treatments, as well as the various techniques and tools available to study cancer therapy with Rhabdoviruses.
Collapse
Affiliation(s)
- Theresa Falls
- Theresa Falls is a research technician at the Centre for Innovative Cancer Research at Ottawa Hospital Research Institute in Ottawa, Canada. Dominic Guy Roy is a Ph.D candidate at the Centre for Innovative Cancer Research at Ottawa Hospital Research Institute in Ottawa, Canada, and a Ph.D candidate in the Biochemistry, Microbiology, and Immunology Department at the University of Ottawa in Ottawa, Canada. John Cameron Bell is a senior researcher at the Centre for Innovative Cancer Research at Ottawa Hospital Research Institute in Ottawa, Canada, and professor in the Biochemistry, Microbiology, and Immunology Department at the University of Ottawa in Ottawa, Canada. Marie-Claude Bourgeois-Daigneault is a postdoctoral fellow at the Centre for Innovative Cancer Research at Ottawa Hospital Research Institute in Ottawa, Canada, and a postdoctoral fellow in the Biochemistry, Microbiology, and Immunology Department at the University of Ottawa in Ottawa, Canada
| | - Dominic Guy Roy
- Theresa Falls is a research technician at the Centre for Innovative Cancer Research at Ottawa Hospital Research Institute in Ottawa, Canada. Dominic Guy Roy is a Ph.D candidate at the Centre for Innovative Cancer Research at Ottawa Hospital Research Institute in Ottawa, Canada, and a Ph.D candidate in the Biochemistry, Microbiology, and Immunology Department at the University of Ottawa in Ottawa, Canada. John Cameron Bell is a senior researcher at the Centre for Innovative Cancer Research at Ottawa Hospital Research Institute in Ottawa, Canada, and professor in the Biochemistry, Microbiology, and Immunology Department at the University of Ottawa in Ottawa, Canada. Marie-Claude Bourgeois-Daigneault is a postdoctoral fellow at the Centre for Innovative Cancer Research at Ottawa Hospital Research Institute in Ottawa, Canada, and a postdoctoral fellow in the Biochemistry, Microbiology, and Immunology Department at the University of Ottawa in Ottawa, Canada
| | - John Cameron Bell
- Theresa Falls is a research technician at the Centre for Innovative Cancer Research at Ottawa Hospital Research Institute in Ottawa, Canada. Dominic Guy Roy is a Ph.D candidate at the Centre for Innovative Cancer Research at Ottawa Hospital Research Institute in Ottawa, Canada, and a Ph.D candidate in the Biochemistry, Microbiology, and Immunology Department at the University of Ottawa in Ottawa, Canada. John Cameron Bell is a senior researcher at the Centre for Innovative Cancer Research at Ottawa Hospital Research Institute in Ottawa, Canada, and professor in the Biochemistry, Microbiology, and Immunology Department at the University of Ottawa in Ottawa, Canada. Marie-Claude Bourgeois-Daigneault is a postdoctoral fellow at the Centre for Innovative Cancer Research at Ottawa Hospital Research Institute in Ottawa, Canada, and a postdoctoral fellow in the Biochemistry, Microbiology, and Immunology Department at the University of Ottawa in Ottawa, Canada
| | - Marie-Claude Bourgeois-Daigneault
- Theresa Falls is a research technician at the Centre for Innovative Cancer Research at Ottawa Hospital Research Institute in Ottawa, Canada. Dominic Guy Roy is a Ph.D candidate at the Centre for Innovative Cancer Research at Ottawa Hospital Research Institute in Ottawa, Canada, and a Ph.D candidate in the Biochemistry, Microbiology, and Immunology Department at the University of Ottawa in Ottawa, Canada. John Cameron Bell is a senior researcher at the Centre for Innovative Cancer Research at Ottawa Hospital Research Institute in Ottawa, Canada, and professor in the Biochemistry, Microbiology, and Immunology Department at the University of Ottawa in Ottawa, Canada. Marie-Claude Bourgeois-Daigneault is a postdoctoral fellow at the Centre for Innovative Cancer Research at Ottawa Hospital Research Institute in Ottawa, Canada, and a postdoctoral fellow in the Biochemistry, Microbiology, and Immunology Department at the University of Ottawa in Ottawa, Canada
| |
Collapse
|
23
|
Simpson GR, Relph K, Harrington K, Melcher A, Pandha H. Cancer immunotherapy via combining oncolytic virotherapy with chemotherapy: recent advances. Oncolytic Virother 2016; 5:1-13. [PMID: 27579292 PMCID: PMC4996257 DOI: 10.2147/ov.s66083] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Oncolytic viruses are multifunctional anticancer agents with huge clinical potential, and have recently passed the randomized Phase III clinical trial hurdle. Both wild-type and engineered viruses have been selected for targeting of specific cancers, to elicit cytotoxicity, and also to generate antitumor immunity. Single-agent oncolytic virotherapy treatments have resulted in modest effects in the clinic. There is increasing interest in their combination with cytotoxic agents, radiotherapy and immune-checkpoint inhibitors. Similarly to oncolytic viruses, the benefits of chemotherapeutic agents may be that they induce systemic antitumor immunity through the induction of immunogenic cell death of cancer cells. Combining these two treatment modalities has to date resulted in significant potential in vitro and in vivo synergies through various mechanisms without any apparent additional toxicities. Chemotherapy has been and will continue to be integral to the management of advanced cancers. This review therefore focuses on the potential for a number of common cytotoxic agents to be combined with clinically relevant oncolytic viruses. In many cases, this combined approach has already advanced to the clinical trial arena.
Collapse
Affiliation(s)
- Guy R Simpson
- Department of Clinical and Experimental Medicine, Targeted Cancer Therapy, Faculty of Health and Medical Sciences, University of Surrey, Guildford
| | - Kate Relph
- Department of Clinical and Experimental Medicine, Targeted Cancer Therapy, Faculty of Health and Medical Sciences, University of Surrey, Guildford
| | - Kevin Harrington
- Targeted Therapy, The Institute of Cancer Research/The Royal Marsden NIHR Biomedical Research Centre, London
| | - Alan Melcher
- Targeted and Biological Therapies, Oncology and Clinical Research, Leeds Institute of Cancer and Pathology, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - Hardev Pandha
- Department of Clinical and Experimental Medicine, Targeted Cancer Therapy, Faculty of Health and Medical Sciences, University of Surrey, Guildford
| |
Collapse
|
24
|
Bartee MY, Dunlap KM, Bartee E. Myxoma Virus Induces Ligand Independent Extrinsic Apoptosis in Human Myeloma Cells. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2015; 16:203-12. [PMID: 26803534 DOI: 10.1016/j.clml.2015.12.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 12/14/2015] [Accepted: 12/15/2015] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Multiple myeloma is a clonal malignancy of plasma B cells. Although recent advances have improved overall prognosis, virtually all myeloma patients still succumb to relapsing disease. Therefore, novel therapies to treat this disease remain urgently needed. We have recently shown that treatment of human multiple myeloma cells with an oncolytic virus known as myxoma results in rapid cell death even in the absence of viral replication; however, the specific mechanisms and pathways involved remain unknown. MATERIALS AND METHODS To determine how myxoma virus eliminates human multiple myeloma cells, we queried the apoptotic pathways that were activated after viral infection using immunoblot analysis and other cell biology approaches. RESULTS Our results indicate that myxoma virus infection initiates apoptosis in multiple myeloma cells through activation of the extrinsic initiator caspase-8. Caspase-8 activation subsequently results in cleavage of BH3 interacting-domain death agonist and loss of mitochondrial membrane potential causing secondary activation of caspase-9. Activation of caspase-8 appears to be independent of extrinsic death ligands and instead correlates with depletion of cellular inhibitors of apoptosis. We hypothesize that this depletion results from virally mediated host-protein shutoff because a myxoma construct that overexpresses the viral decapping enzymes displays improved oncolytic potential. CONCLUSION Taken together, these results suggest that myxoma virus eliminates human multiple myeloma cells through a pathway unique to oncolytic poxviruses, making it an excellent therapeutic option for the treatment of relapsed or refractory patients.
Collapse
Affiliation(s)
- Mee Y Bartee
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC
| | - Katherine M Dunlap
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC
| | - Eric Bartee
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC.
| |
Collapse
|
25
|
Dunlap KM, Bartee MY, Bartee E. Myxoma virus attenuates expression of activating transcription factor 4 (ATF4) which has implications for the treatment of proteasome inhibitor-resistant multiple myeloma. Oncolytic Virother 2015; 4:1-11. [PMID: 27512665 PMCID: PMC4918372 DOI: 10.2147/ov.s72372] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The recent development of chemotherapeutic proteasome inhibitors, such as bortezomib, has improved the outcomes of patients suffering from the plasma cell malignancy multiple myeloma. Unfortunately, many patients treated with these drugs still suffer relapsing disease due to treatment-induced upregulation of the antiapoptotic protein Mcl1. We have recently demonstrated that an oncolytic poxvirus, known as myxoma, can rapidly eliminate primary myeloma cells by inducing cellular apoptosis. The efficacy of myxoma treatment on proteasome inhibitor–relapsed or –refractory myeloma, however, remains unknown. We now demonstrate that myxoma-based elimination of myeloma is not affected by cellular resistance to proteasome inhibitors. Additionally, myxoma virus infection specifically prevents expression of Mcl1 following induction of the unfolded protein response, by blocking translation of the unfolded protein response activating transcription factor (ATF)4. These results suggest that myxoma-based oncolytic therapy represents an attractive option for myeloma patients whose disease is refractory to chemotherapeutic proteasome inhibitors due to upregulation of Mcl1.
Collapse
Affiliation(s)
- Katherine M Dunlap
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA
| | - Mee Y Bartee
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA
| | - Eric Bartee
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
26
|
Forbes NE, Krishnan R, Diallo JS. Pharmacological modulation of anti-tumor immunity induced by oncolytic viruses. Front Oncol 2014; 4:191. [PMID: 25101247 PMCID: PMC4108035 DOI: 10.3389/fonc.2014.00191] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 07/07/2014] [Indexed: 01/05/2023] Open
Abstract
Oncolytic viruses (OVs) not only kill cancer cells by direct lysis but also generate a significant anti-tumor immune response that allows for prolonged cancer control and in some cases cures. How to best stimulate this effect is a subject of intense investigation in the OV field. While pharmacological manipulation of the cellular innate anti-viral immune response has been shown by several groups to improve viral oncolysis and spread, it is increasingly clear that pharmacological agents can also impact the anti-tumor immune response generated by OVs and related tumor vaccination strategies. This review covers recent progress in using pharmacological agents to improve the activity of OVs and their ability to generate robust anti-tumor immune responses.
Collapse
Affiliation(s)
- Nicole E Forbes
- Center for Innovative Cancer Research, Ottawa Hospital Research Institute , Ottawa, ON , Canada ; Faculty of Medicine, University of Ottawa , Ottawa, ON , Canada
| | - Ramya Krishnan
- Center for Innovative Cancer Research, Ottawa Hospital Research Institute , Ottawa, ON , Canada ; Faculty of Medicine, University of Ottawa , Ottawa, ON , Canada
| | - Jean-Simon Diallo
- Center for Innovative Cancer Research, Ottawa Hospital Research Institute , Ottawa, ON , Canada ; Faculty of Medicine, University of Ottawa , Ottawa, ON , Canada
| |
Collapse
|
27
|
Yoo JY, Hurwitz BS, Bolyard C, Yu JG, Zhang J, Selvendiran K, Rath KS, He S, Bailey Z, Eaves D, Cripe TP, Parris DS, Caligiuri MA, Yu J, Old M, Kaur B. Bortezomib-induced unfolded protein response increases oncolytic HSV-1 replication resulting in synergistic antitumor effects. Clin Cancer Res 2014; 20:3787-98. [PMID: 24815720 DOI: 10.1158/1078-0432.ccr-14-0553] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND Bortezomib is an FDA-approved proteasome inhibitor, and oncolytic herpes simplex virus-1 (oHSV) is a promising therapeutic approach for cancer. We tested the impact of combining bortezomib with oHSV for antitumor efficacy. EXPERIMENTAL DESIGN The synergistic interaction between oHSV and bortezomib was calculated using Chou-Talalay analysis. Viral replication was evaluated using plaque assay and immune fluorescence. Western blot assays were used to evaluate induction of estrogen receptor (ER) stress and unfolded protein response (UPR). Inhibitors targeting Hsp90 were utilized to investigate the mechanism of cell killing. Antitumor efficacy in vivo was evaluated using subcutaneous and intracranial tumor xenografts of glioma and head and neck cancer. Survival was analyzed by Kaplan-Meier curves and two-sided log-rank test. RESULTS Combination treatment with bortezomib and oHSV (34.5ENVE), displayed strong synergistic interaction in ovarian cancer, head and neck cancer, glioma, and malignant peripheral nerve sheath tumor (MPNST) cells. Bortezomib treatment induced ER stress, evident by strong induction of Grp78, CHOP, PERK, and IRE1α (Western blot analysis) and the UPR (induction of hsp40, 70, and 90). Bortezomib treatment of cells at both sublethal and lethal doses increased viral replication (P < 0.001), but inhibition of Hsp90 ablated this response, reducing viral replication and synergistic cell killing. The combination of bortezomib and 34.5ENVE significantly enhanced antitumor efficacy in multiple different tumor models in vivo. CONCLUSIONS The dramatic synergy of bortezomib and 34.5ENVE is mediated by bortezomib-induced UPR and warrants future clinical testing in patients.
Collapse
Affiliation(s)
- Ji Young Yoo
- Authors' Affiliations: Department of Neurological Surgery, Dardinger Laboratory for Neuro-oncology and Neurosciences
| | - Brian S Hurwitz
- Authors' Affiliations: Department of Neurological Surgery, Dardinger Laboratory for Neuro-oncology and Neurosciences; Biomedical Science Major
| | | | - Jun-Ge Yu
- Department of Otolaryngology, Head & Neck Surgery
| | | | | | - Kellie S Rath
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology
| | - Shun He
- Division of Hematology, Department of Internal Medicine, The Ohio State University Wexner Medical Center
| | - Zachary Bailey
- Division of Oncology, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio
| | - David Eaves
- Division of Oncology, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio
| | - Timothy P Cripe
- Department of Pediatrics, Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital and the Division of Hematology/Oncology/BMT, Nationwide Children's Hospital
| | - Deborah S Parris
- Department of Molecular Virology Immunology Medical Genetics, The Ohio State University, Columbus; and
| | - Michael A Caligiuri
- Division of Hematology, Department of Internal Medicine, The Ohio State University Wexner Medical Center
| | - Jianhua Yu
- Division of Hematology, Department of Internal Medicine, The Ohio State University Wexner Medical Center
| | - Matthew Old
- Department of Otolaryngology, Head & Neck Surgery;
| | - Balveen Kaur
- Authors' Affiliations: Department of Neurological Surgery, Dardinger Laboratory for Neuro-oncology and Neurosciences;
| |
Collapse
|