1
|
Martyn GE, Doerfler PA, Yao Y, Quinlan KGR, Weiss MJ, Crossley M. Hydroxyurea reduces the levels of the fetal globin gene repressors ZBTB7A/LRF and BCL11A in erythroid cells in vitro. JOURNAL OF SICKLE CELL DISEASE 2024; 1:yoae008. [PMID: 40304012 PMCID: PMC12039817 DOI: 10.1093/jscdis/yoae008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/06/2024] [Accepted: 09/03/2024] [Indexed: 05/02/2025]
Abstract
Objectives Hydroxyurea (HU) is the most widely used therapy for adults and children with sickle cell disease (SCD). It is believed to act largely by inducing the transcription of fetal γ-globin genes to generate fetal hemoglobin (HbF), which inhibits the pathological polymerization of sickle hemoglobin (HbS). The mechanisms by which hydroxyurea elevates HbF are unclear. We explored the hypothesis that hydroxyurea induces HbF expression by inhibiting the expression of 2 γ-globin gene repressors, BCL11A and ZBTB7A (also known as LRF), which normally bind the γ-globin gene promoters to inhibit their expression after birth. Methods We treated immortalized murine erythroleukemia cells and normal human donor CD34+ hematopoietic stem and progenitor cell-derived erythroblasts with hydroxyurea and measured the effects on globin, BCL11A and ZBTB7A protein and mRNA expression. Results Treating murine erythroleukemia cells or human CD34+ hematopoietic stem and progenitor cell-derived erythroblasts with hydroxyurea reduced the protein levels of BCL11A and ZBTB7A compared to the vehicle-treated control. BCL11A mRNA levels were reduced in both cell types upon hydroxyurea treatment. However, ZBTB7A mRNA levels were only reduced in human CD34+ hematopoietic stem and progenitor cell-derived erythroblasts. Conclusions Hydroxyurea can act in erythroid cells to reduce the levels and activity of two direct fetal γ-globin transcriptional repressors with accompanying de-repression of the γ-globin genes and induction of HbF, which may explain the mechanism of action leading to amelioration of symptoms in SCD patients treated with this drug.
Collapse
Affiliation(s)
- Gabriella E Martyn
- School of Biotechnology and Biomolecular Sciences, University of New South Wales (UNSW) Sydney, Sydney, NSW 2052, Australia
| | - Phillip A Doerfler
- Department of Hematology, St Jude Children’s Research Hospital, Memphis, TN 38105-3678, United States
| | - Yu Yao
- Department of Hematology, St Jude Children’s Research Hospital, Memphis, TN 38105-3678, United States
| | - Kate G R Quinlan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales (UNSW) Sydney, Sydney, NSW 2052, Australia
| | - Mitchell J Weiss
- Department of Hematology, St Jude Children’s Research Hospital, Memphis, TN 38105-3678, United States
| | - Merlin Crossley
- School of Biotechnology and Biomolecular Sciences, University of New South Wales (UNSW) Sydney, Sydney, NSW 2052, Australia
| |
Collapse
|
2
|
RoŽanc J, Finšgar M, Maver U. Progressive use of multispectral imaging flow cytometry in various research areas. Analyst 2021; 146:4985-5007. [PMID: 34337638 DOI: 10.1039/d1an00788b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Multi-spectral imaging flow cytometry (MIFC) has become one of the most powerful technologies for investigating general analytics, molecular and cell biology, biotechnology, medicine, and related fields. It combines the capabilities of the morphometric and photometric analysis of single cells and micrometer-sized particles in flux with regard to thousands of events. It has become the tool of choice for a wide range of research and clinical applications. By combining the features of flow cytometry and fluorescence microscopy, it offers researchers the ability to couple the spatial resolution of multicolour images of cells and organelles with the simultaneous analysis of a large number of events in a single system. This provides the opportunity to visually confirm findings and collect novel data that would otherwise be more difficult to obtain. This has led many researchers to design innovative assays to gain new insight into important research questions. To date, it has been successfully used to study cell morphology, surface and nuclear protein co-localization, protein-protein interactions, cell signaling, cell cycle, cell death, and cytotoxicity, intracellular calcium, drug uptake, pathogen internalization, and other applications. Herein we describe some of the recent advances in the field of multiparametric imaging flow cytometry methods in various research areas.
Collapse
Affiliation(s)
- Jan RoŽanc
- University of Maribor, Faculty of Medicine, Institute of Biomedical Sciences, Taborska ulica 8, SI-2000 Maribor, Slovenia.
| | | | | |
Collapse
|
3
|
Wang C, Gong Y, Wei A, Huang T, Hou S, Du J, Li Z, Wang J, Liu B, Lan Y. Adult-repopulating lymphoid potential of yolk sac blood vessels is not confined to arterial endothelial cells. SCIENCE CHINA-LIFE SCIENCES 2021; 64:2073-2087. [PMID: 34181164 DOI: 10.1007/s11427-021-1935-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 02/22/2021] [Indexed: 10/21/2022]
Abstract
During embryogenesis, hematopoietic stem progenitor cells (HSPCs) are believed to be derived from hemogenic endothelial cells (HECs). Moreover, arterial feature is proposed to be a prerequisite for HECs to generate HSPCs with lymphoid potential. Although the molecular basis of hematopoietic stem cell-competent HECs has been delicately elucidated within the embryo proper, the functional and molecular characteristics of HECs in the extraembryonic yolk sac (YS) remain largely unresolved. In this study, we initially identified six molecularly different endothelial populations in the midgestational YS through integrated analysis of several single-cell RNA sequencing (scRNA-seq) datasets and validated the arterial vasculature distribution of Gja5+ ECs using a Gja5-EGFP reporter mouse model. Further, we explored the hemogenic potential of different EC populations based on their Gja5-EGFP and CD44 expression levels. The hemogenic potential was ubiquitously detected in spatiotemporally different vascular beds on embryonic days (E)8.5-E9.5 and gradually concentrated in CD44-positive ECs from E10.0. Unexpectedly, B-lymphoid potential was detected in the YS ECs as early as E8.5 regardless of their arterial features. Furthermore, the capacity for generating hematopoietic progenitors with in vivo lymphoid potential was found in nonarterial as well as arterial YS ECs on E10.0-E10.5. Importantly, the distinct identities of E10.0-E10.5 HECs between YS and intraembryonic caudal region were revealed by further scRNA-seq analysis. Cumulatively, these findings extend our knowledge regarding the hemogenic potential of ECs from anatomically and molecularly different vascular beds, providing a theoretical basis for better understanding the sources of HSPCs during mammalian development.
Collapse
Affiliation(s)
- Chaojie Wang
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Yandong Gong
- State Key Laboratory of Experimental Hematology, Institute of Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100071, China
| | - Anbang Wei
- State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, 100850, China
| | - Tao Huang
- State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, 100850, China
| | - Siyuan Hou
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, 510632, China.,Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Junjie Du
- State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, 100850, China
| | - Zongcheng Li
- State Key Laboratory of Experimental Hematology, Institute of Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100071, China
| | - Junliang Wang
- Department of radiotherapy, Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100071, China
| | - Bing Liu
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, 510632, China. .,State Key Laboratory of Experimental Hematology, Institute of Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100071, China.
| | - Yu Lan
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
4
|
Kawamura S, Otani M, Miyamoto T, Abe J, Ihara R, Inawaka K, Fantel AG. Different effects of an N-phenylimide herbicide on heme biosynthesis between human and rat erythroid cells. Reprod Toxicol 2021; 99:27-38. [PMID: 33249232 DOI: 10.1016/j.reprotox.2020.11.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/28/2020] [Accepted: 11/22/2020] [Indexed: 01/10/2023]
Abstract
Rat developmental toxicity including embryolethality and teratogenicity (mainly ventricular septal defects and wavy ribs) were produced by S-53482, an N-phenylimide herbicide that inhibits protoporphyrinogen oxidase (PPO) common to chlorophyll and heme biosynthesis. The sequence of key biological events in the mode of action has been elucidated as follows: inhibition of PPO interferes with normal heme synthesis, which causes loss of blood cells leading to fetal anemia, embryolethality and the development of malformations. In this study we investigated whether the rat is a relevant model for the assessment of the human hazard of the herbicide. To study effects on heme biosynthesis, human erythroleukemia, human cord blood, and rat erythroleukemia cells were treated with the herbicide during red cell differentiation. Protoporphyrin IX, a marker of PPO inhibition, and heme were determined. We investigated whether synchronous maturation of primitive erythropoiesis, which can contribute to massive losses of embryonic blood, occurs in rats. The population of primitive erythroblasts was observed on gestational days 11 through 14. Heme production was suppressed in rat erythroid cells. In contrast, heme reduction was not seen in both human erythroid cells when PPO was inhibited. Rats underwent synchronous maturation in primitive erythropoiesis. Our results combined with epidemiological findings that patients with deficient PPO are not anemic led us to conclude that human erythroblasts are resistant to the herbicide. It is suggested that the rat would be an inappropriate model for assessing the developmental toxicity of S-53482 in humans as rats are specifically sensitive to PPO inhibition by the herbicide.
Collapse
Affiliation(s)
- Satoshi Kawamura
- Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd., 1-98, Kasugade-naka 3-chome, Konohana-ku, Osaka, 554-8558, Japan.
| | - Mitsuhiro Otani
- Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd., 1-98, Kasugade-naka 3-chome, Konohana-ku, Osaka, 554-8558, Japan
| | - Taiki Miyamoto
- Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd., 1-98, Kasugade-naka 3-chome, Konohana-ku, Osaka, 554-8558, Japan
| | - Jun Abe
- Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd., 1-98, Kasugade-naka 3-chome, Konohana-ku, Osaka, 554-8558, Japan
| | - Ryo Ihara
- Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd., 1-98, Kasugade-naka 3-chome, Konohana-ku, Osaka, 554-8558, Japan
| | - Kunifumi Inawaka
- Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd., 1-98, Kasugade-naka 3-chome, Konohana-ku, Osaka, 554-8558, Japan
| | - Alan G Fantel
- Department of Pediatrics, University of Washington, 1959 NE Pacific St. Box 366320, Seattle, WA 98195-6320, USA
| |
Collapse
|
5
|
Diepstraten ST, Hart AH. Modelling human haemoglobin switching. Blood Rev 2018; 33:11-23. [PMID: 30616747 DOI: 10.1016/j.blre.2018.06.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 04/11/2018] [Accepted: 06/14/2018] [Indexed: 12/22/2022]
Abstract
Genetic lesions of the β-globin gene result in haemoglobinopathies such as β-thalassemia and sickle cell disease. To discover and test new molecular medicines for β-haemoglobinopathies, cell-based and animal models are now being widely utilised. However, multiple in vitro and in vivo models are required due to the complex structure and regulatory mechanisms of the human globin gene locus, subtle species-specific differences in blood cell development, and the influence of epigenetic factors. Advances in genome sequencing, gene editing, and precision medicine have enabled the first generation of molecular therapies aimed at reactivating, repairing, or replacing silenced or damaged globin genes. Here we compare and contrast current animal and cell-based models, highlighting their complementary strengths, reflecting on how they have informed the scope and direction of the field, and describing some of the novel molecular and precision medicines currently under development or in clinical trial.
Collapse
Affiliation(s)
- Sarah T Diepstraten
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC 3086, Australia.
| | - Adam H Hart
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC 3086, Australia.
| |
Collapse
|
6
|
Mao B, Huang S, Lu X, Sun W, Zhou Y, Pan X, Yu J, Lai M, Chen B, Zhou Q, Mao S, Bian G, Zhou J, Nakahata T, Ma F. Early Development of Definitive Erythroblasts from Human Pluripotent Stem Cells Defined by Expression of Glycophorin A/CD235a, CD34, and CD36. Stem Cell Reports 2016; 7:869-883. [PMID: 27720903 PMCID: PMC5106477 DOI: 10.1016/j.stemcr.2016.09.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 09/02/2016] [Accepted: 09/05/2016] [Indexed: 12/22/2022] Open
Abstract
The development of human erythroid cells has been mostly examined in models of adult hematopoiesis, while their early derivation during embryonic and fetal stages is largely unknown. We observed the development and maturation of erythroblasts derived from human pluripotent stem cells (hPSCs) by an efficient co-culture system. These hPSC-derived early erythroblasts initially showed definitive characteristics with a glycophorin A+ (GPA+) CD34lowCD36− phenotype and were distinct from adult CD34+ cell-derived ones. After losing CD34 expression, early GPA+CD36− erythroblasts matured into GPA+CD36low/+ stage as the latter expressed higher levels of β-globin along with a gradual loss of mesodermal and endothelial properties, and terminally suppressed CD36. We establish a unique in vitro model to trace the early development of hPSC-derived erythroblasts by serial expression of CD34, GPA, and CD36. Our findings may provide insight into the understanding of human early erythropoiesis and, ultimately, therapeutic potential. The hPSC/AGM-S3 co-culture system generates considerable definitive erythroblasts hPSC-derived erythroblasts initiate from a unique GPA+CD34lowCD36− fraction Human early erythropoiesis can be traced by serial expression of CD34, GPA, and CD36
Collapse
Affiliation(s)
- Bin Mao
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu 610052, China
| | - Shu Huang
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu 610052, China
| | - Xulin Lu
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu 610052, China
| | - Wencui Sun
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu 610052, China
| | - Ya Zhou
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu 610052, China
| | - Xu Pan
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu 610052, China
| | - Jinfeng Yu
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu 610052, China
| | - Mowen Lai
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu 610052, China
| | - Bo Chen
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu 610052, China
| | - Qiongxiu Zhou
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu 610052, China
| | - Song Mao
- Research Center for Stem Cell and Regenerative Medicine, Sichuan Neo-life Stem Cell Biotech Inc., Chengdu 610036, China
| | - Guohui Bian
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu 610052, China
| | - Jiaxi Zhou
- State Key Lab of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, CAMS & PUMC, Tianjin 300020, China
| | - Tatsutoshi Nakahata
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
| | - Feng Ma
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu 610052, China; State Key Lab of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, CAMS & PUMC, Tianjin 300020, China; State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
7
|
Samsel L, McCoy JP. Imaging flow cytometry for the study of erythroid cell biology and pathology. J Immunol Methods 2015; 423:52-9. [PMID: 25858229 DOI: 10.1016/j.jim.2015.03.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 03/25/2015] [Accepted: 03/30/2015] [Indexed: 12/23/2022]
Abstract
Erythroid cell maturation and diseases affecting erythrocytes are frequently accompanied by morphologic and immunophenotypic changes to these cells. In the past, these changes have been assessed primarily through the use of manual microscopy, which substantially limits the statistical rigor, throughput, and objectivity of these studies. Imaging flow cytometry provides a technology to examine both the morphology of cells as well as to quantify the staining intensity and signal distribution of numerous fluorescent markers on a cell-by-cell basis with high throughput in a statistically robust manner, and thus is ideally suited to studying erythroid cell biology. To date imaging flow cytometry has been used to study erythrocytes in three areas: 1) erythroid cell maturation, 2) sickle cell disease, and 3) infectious diseases such as malaria. In the maturation studies, imaging flow cytometry can closely recapitulate known stages of maturation and has led to the identification of a new population of erythroid cell precursors. In sickle cell disease, imaging flow cytometry provides a robust method to quantify sickled erythrocytes and to identify cellular aggregates linked to morbidities, and in malaria, imaging flow cytometry has been used to screen for new chemotherapeutic agents. These studies have demonstrated the value of imaging flow cytometry for investigations of erythrocyte biology and pathology.
Collapse
Affiliation(s)
- Leigh Samsel
- National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20892, United States
| | - J Philip McCoy
- National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20892, United States
| |
Collapse
|
8
|
Histone methyltransferase Setd8 represses Gata2 expression and regulates erythroid maturation. Mol Cell Biol 2015; 35:2059-72. [PMID: 25848090 DOI: 10.1128/mcb.01413-14] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 03/27/2015] [Indexed: 11/20/2022] Open
Abstract
Setd8 is the sole histone methyltransferase in mammals capable of monomethylating histone H4 lysine 20 (H4K20me1). Setd8 is expressed at significantly higher levels in erythroid cells than any other cell or tissue type, suggesting that Setd8 has an erythroid-cell-specific function. To test this hypothesis, stable Setd8 knockdown was established in extensively self-renewing erythroblasts (ESREs), a well-characterized, nontransformed model of erythroid maturation. Knockdown of Setd8 resulted in impaired erythroid maturation characterized by a delay in hemoglobin accumulation, larger mean cell area, persistent ckit expression, incomplete nuclear condensation, and lower rates of enucleation. Setd8 knockdown did not alter ESRE proliferation or viability or result in accumulation of DNA damage. Global gene expression analyses following Setd8 knockdown demonstrated that in erythroid cells, Setd8 functions primarily as a repressor. Most notably, Gata2 expression was significantly higher in knockdown cells than in control cells and Gata2 knockdown rescued some of the maturation impairments associated with Setd8 disruption. Setd8 occupies critical regulatory elements in the Gata2 locus, and knockdown of Setd8 resulted in loss of H4K20me1 and gain of H4 acetylation at the Gata2 1S promoter. These results suggest that Setd8 is an important regulator of erythroid maturation that works in part through repression of Gata2 expression.
Collapse
|
9
|
Finotti A, Breda L, Lederer CW, Bianchi N, Zuccato C, Kleanthous M, Rivella S, Gambari R. Recent trends in the gene therapy of β-thalassemia. J Blood Med 2015; 6:69-85. [PMID: 25737641 PMCID: PMC4342371 DOI: 10.2147/jbm.s46256] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The β-thalassemias are a group of hereditary hematological diseases caused by over 300 mutations of the adult β-globin gene. Together with sickle cell anemia, thalassemia syndromes are among the most impactful diseases in developing countries, in which the lack of genetic counseling and prenatal diagnosis have contributed to the maintenance of a very high frequency of these genetic diseases in the population. Gene therapy for β-thalassemia has recently seen steadily accelerating progress and has reached a crossroads in its development. Presently, data from past and ongoing clinical trials guide the design of further clinical and preclinical studies based on gene augmentation, while fundamental insights into globin switching and new technology developments have inspired the investigation of novel gene-therapy approaches. Moreover, human erythropoietic stem cells from β-thalassemia patients have been the cellular targets of choice to date whereas future gene-therapy studies might increasingly draw on induced pluripotent stem cells. Herein, we summarize the most significant developments in β-thalassemia gene therapy over the last decade, with a strong emphasis on the most recent findings, for β-thalassemia model systems; for β-, γ-, and anti-sickling β-globin gene addition and combinatorial approaches including the latest results of clinical trials; and for novel approaches, such as transgene-mediated activation of γ-globin and genome editing using designer nucleases.
Collapse
Affiliation(s)
- Alessia Finotti
- Laboratory for the Development of Gene and Pharmacogenomic Therapy of Thalassaemia, Biotechnology Centre of Ferrara University, Ferrara, Italy ; Associazione Veneta per la Lotta alla Talassemia, Rovigo, Italy ; Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular Biology, Ferrara University, Ferrara, Italy
| | - Laura Breda
- Department of Pediatrics, Division of Haematology/Oncology, Weill Cornell Medical College, New York, NY, USA
| | - Carsten W Lederer
- Department of Molecular Genetics Thalassaemia, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus ; Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - Nicoletta Bianchi
- Laboratory for the Development of Gene and Pharmacogenomic Therapy of Thalassaemia, Biotechnology Centre of Ferrara University, Ferrara, Italy ; Associazione Veneta per la Lotta alla Talassemia, Rovigo, Italy ; Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular Biology, Ferrara University, Ferrara, Italy
| | - Cristina Zuccato
- Laboratory for the Development of Gene and Pharmacogenomic Therapy of Thalassaemia, Biotechnology Centre of Ferrara University, Ferrara, Italy ; Associazione Veneta per la Lotta alla Talassemia, Rovigo, Italy ; Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular Biology, Ferrara University, Ferrara, Italy
| | - Marina Kleanthous
- Department of Molecular Genetics Thalassaemia, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus ; Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - Stefano Rivella
- Department of Pediatrics, Division of Haematology/Oncology, Weill Cornell Medical College, New York, NY, USA ; Department of Cell and Development Biology, Weill Cornell Medical College, New York, NY, USA
| | - Roberto Gambari
- Laboratory for the Development of Gene and Pharmacogenomic Therapy of Thalassaemia, Biotechnology Centre of Ferrara University, Ferrara, Italy ; Associazione Veneta per la Lotta alla Talassemia, Rovigo, Italy ; Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular Biology, Ferrara University, Ferrara, Italy
| |
Collapse
|