1
|
Sikorová M, Klener P, Tonarová P, Kalbáčová MH. Interactions between leukemia and feeders in co-cultivation under hypoxia. BMC Cancer 2025; 25:678. [PMID: 40229651 PMCID: PMC11995666 DOI: 10.1186/s12885-025-13988-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 03/20/2025] [Indexed: 04/16/2025] Open
Abstract
BACKGROUND Leukemia is driven by complex interactions within the inherently hypoxic bone marrow microenvironment, impacting both disease progression and therapeutic resistance. Co-cultivation of leukemic cells with feeder cells has emerged as a valuable tool to mimic the bone marrow niche. This study explores the interplay between human commercial SD-1 and patient-derived UPF26K leukemic cell lines with feeders - human fibroblasts (NHDF) and mesenchymal stem cells (hMSCs) under normoxic and hypoxic conditions. RESULTS Co-cultivation with feeders significantly enhances proliferation and glycolytic activity in the SD-1 cells, improving their viability, while this interaction inhibits the growth and glucose metabolism of the feeders, particularly NHDF. In contrast, UPF26K cells show reduced proliferation when co-cultivated with the feeders while this interaction stimulates NHDF and hMSCs proliferation and glycolysis but reduce their mitochondrial metabolism with hypoxia amplifying these effects. CONCLUSIONS Cells that switch to glycolysis during co-cultivation, particularly under hypoxia, benefit most from these low oxygen conditions. Due to this leukemic cells' response heterogeneity, targeting microenvironmental interactions and oxygen levels is crucial for personalized leukemia therapy. Advancing co-cultivation models, particularly through innovations like spheroids, can further enhance in vitro studies of primary leukemic cells and support the testing of novel therapies.
Collapse
Affiliation(s)
- Miriama Sikorová
- Institute of Pathological Physiology, 1st Faculty of Faculty of Medicine, Charles University, U nemocnice 5, Prague, 128 53, Czech Republic
| | - Pavel Klener
- Institute of Pathological Physiology, 1st Faculty of Faculty of Medicine, Charles University, U nemocnice 5, Prague, 128 53, Czech Republic
| | - Pavla Tonarová
- Institute of Pathological Physiology, 1st Faculty of Faculty of Medicine, Charles University, U nemocnice 5, Prague, 128 53, Czech Republic
| | - Marie Hubálek Kalbáčová
- Institute of Pathological Physiology, 1st Faculty of Faculty of Medicine, Charles University, U nemocnice 5, Prague, 128 53, Czech Republic.
| |
Collapse
|
2
|
Stajer M, Horacek JM, Kupsa T, Zak P. The role of chemokines and interleukins in acute lymphoblastic leukemia: a systematic review. J Appl Biomed 2024; 22:165-184. [PMID: 40033805 DOI: 10.32725/jab.2024.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 11/15/2024] [Indexed: 03/05/2025] Open
Abstract
Acute lymphoblastic leukemia (ALL) is the most common childhood hematological malignancy, but it also affects adult patients with worse prognosis and outcomes. Leukemic cells benefit from protective mechanisms, which are mediated by intercellular signaling molecules - cytokines. Through these signals, cytokines modulate the biology of leukemic cells and their surroundings, enhancing the proliferation, survival, and chemoresistance of the disease. This ultimately leads to disease progression, refractoriness, and relapse, decreasing the chances of curability and overall survival of the patients. Targeting and modulating these pathological processes without affecting the healthy physiology is desirable, offering more possibilities for the treatment of ALL patients, which still remains unsatisfactory in certain cases. In this review, we comprehensively analyze the existing literature and ongoing trials regarding the role of chemokines and interleukins in the biology of ALL. Focusing on the functional pathways, genetic background, and critical checkpoints, we constructed a summary of molecules that are promising for prognostic stratification and mainly therapeutic use. Targeted therapy, including chemokine and interleukin pathways, is a new and promising approach to the treatment of cancer. With the expansion of our knowledge, we are able to uncover a spectrum of new potential checkpoints in order to modulate the disease biology. Several cytokine-related targets are advancing toward clinical application, offering the hope of higher disease response rates to treatment.
Collapse
Affiliation(s)
- Martin Stajer
- University of Defence, Military Faculty of Medicine, Department of Military Internal Medicine and Military Hygiene, Hradec Kralove, Czech Republic
- University Hospital Hradec Kralove and Charles University, Faculty of Medicine in Hradec Kralove, Department of Internal Medicine IV - Hematology, Hradec Kralove, Czech Republic
| | - Jan M Horacek
- University of Defence, Military Faculty of Medicine, Department of Military Internal Medicine and Military Hygiene, Hradec Kralove, Czech Republic
- University Hospital Hradec Kralove and Charles University, Faculty of Medicine in Hradec Kralove, Department of Internal Medicine IV - Hematology, Hradec Kralove, Czech Republic
| | - Tomas Kupsa
- University of Defence, Military Faculty of Medicine, Department of Military Internal Medicine and Military Hygiene, Hradec Kralove, Czech Republic
- University Hospital Hradec Kralove and Charles University, Faculty of Medicine in Hradec Kralove, Department of Internal Medicine IV - Hematology, Hradec Kralove, Czech Republic
| | - Pavel Zak
- University Hospital Hradec Kralove and Charles University, Faculty of Medicine in Hradec Kralove, Department of Internal Medicine IV - Hematology, Hradec Kralove, Czech Republic
| |
Collapse
|
3
|
Panting RG, Kotecha RS, Cheung LC. The critical role of the bone marrow stromal microenvironment for the development of drug screening platforms in leukemia. Exp Hematol 2024; 133:104212. [PMID: 38552942 DOI: 10.1016/j.exphem.2024.104212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/21/2024] [Accepted: 03/22/2024] [Indexed: 04/13/2024]
Abstract
Extensive research over the past 50 years has resulted in significant improvements in survival for patients diagnosed with leukemia. Despite this, a subgroup of patients harboring high-risk genetic alterations still suffer from poor outcomes. There is a desperate need for new treatments to improve survival, yet consistent failure exists in the translation of in vitro drug development to clinical application. Preclinical screening conventionally utilizes tumor cell monocultures to assess drug activity; however, emerging research has acknowledged the vital role of the tumor microenvironment in treatment resistance and disease relapse. Current co-culture drug screening methods frequently employ fibroblasts as the designated stromal cell component. Alternative stromal cell types that are known to contribute to chemoresistance are often absent in preclinical evaluations of drug efficacy. This review highlights mechanisms of chemoresistance by a range of different stromal constituents present in the bone marrow microenvironment. Utilizing an array of stromal cell types at the early stages of drug screening may enhance the translation of in vitro drug development to clinical use. Ultimately, we highlight the need to consider the bone marrow microenvironment in drug screening platforms for leukemia to develop superior therapies for the treatment of high-risk patients with poor prognostic outcomes.
Collapse
Affiliation(s)
- Rhiannon G Panting
- Leukaemia Translational Research Laboratory, Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, Western Australia, Australia; Curtin Medical School, Curtin University, Perth, Western Australia, Australia
| | - Rishi S Kotecha
- Leukaemia Translational Research Laboratory, Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, Western Australia, Australia; Curtin Medical School, Curtin University, Perth, Western Australia, Australia; School of Medicine, University of Western Australia, Perth, Western Australia, Australia; Department of Clinical Haematology, Oncology, Blood and Marrow Transplantation, Perth Children's Hospital, Perth, Western Australia, Australia
| | - Laurence C Cheung
- Leukaemia Translational Research Laboratory, Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, Western Australia, Australia; Curtin Medical School, Curtin University, Perth, Western Australia, Australia; Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia, Australia.
| |
Collapse
|
4
|
Poveda-Garavito N, Combita AL. Contribution of the TIME in BCP-ALL: the basis for novel approaches therapeutics. Front Immunol 2024; 14:1325255. [PMID: 38299154 PMCID: PMC10827891 DOI: 10.3389/fimmu.2023.1325255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/28/2023] [Indexed: 02/02/2024] Open
Abstract
The bone marrow (BM) niche is a microenvironment where both immune and non-immune cells functionally interact with hematopoietic stem cells (HSC) and more differentiated progenitors, contributing to the regulation of hematopoiesis. It is regulated by various signaling molecules such as cytokines, chemokines, and adhesion molecules in its microenvironment. However, despite the strict regulation of BM signals to maintain their steady state, accumulating evidence in B-cell precursor acute lymphoblastic leukemia (BCP-ALL) indicates that leukemic cells can disrupt the physiological hematopoietic niche in the BM, creating a new leukemia-supportive microenvironment. This environment favors immunological evasion mechanisms and the interaction of these cells with the development and progression of BCP-ALL. With a growing understanding of the tumor immune microenvironment (TIME) in the development and progression of BCP-ALL, current strategies focused on "re-editing" TIME to promote antitumor immunity have been developed. In this review, we summarize how TIME cells are disrupted by the presence of leukemic cells, evading immunosurveillance mechanisms in the BCP-ALL model. We also explore the crosstalk between TIME and leukemic cells that leads to treatment resistance, along with the most promising immuno-therapy strategies. Understanding and further research into the role of the BM microenvironment in leukemia progression and relapse are crucial for developing more effective treatments and reducing patient mortality.
Collapse
Affiliation(s)
- Nathaly Poveda-Garavito
- Grupo de Investigación en Biología del Cáncer, Instituto Nacional de Cancerología (INC), Bogotá, Colombia
- Grupo de Investigación Traslacional en Oncología, Instituto Nacional de Cancerología (INC), Bogotá, Colombia
- Departamento de Microbiología, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Alba Lucía Combita
- Grupo de Investigación en Biología del Cáncer, Instituto Nacional de Cancerología (INC), Bogotá, Colombia
- Grupo de Investigación Traslacional en Oncología, Instituto Nacional de Cancerología (INC), Bogotá, Colombia
- Departamento de Microbiología, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, Colombia
| |
Collapse
|
5
|
Park CS, Yoshihara H, Gao Q, Qu C, Iacobucci I, Ghate PS, Connelly JP, Pruett-Miller SM, Wagner B, Robinson CG, Mishra A, Peng J, Yang L, Rankovic Z, Finkelstein D, Luger S, Litzow M, Paietta EM, Hebbar N, Velasquez MP, Mullighan CG. Stromal-induced epithelial-mesenchymal transition induces targetable drug resistance in acute lymphoblastic leukemia. Cell Rep 2023; 42:112804. [PMID: 37453060 PMCID: PMC10529385 DOI: 10.1016/j.celrep.2023.112804] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 04/05/2023] [Accepted: 06/28/2023] [Indexed: 07/18/2023] Open
Abstract
The bone marrow microenvironment (BME) drives drug resistance in acute lymphoblastic leukemia (ALL) through leukemic cell interactions with bone marrow (BM) niches, but the underlying mechanisms remain unclear. Here, we show that the interaction between ALL and mesenchymal stem cells (MSCs) through integrin β1 induces an epithelial-mesenchymal transition (EMT)-like program in MSC-adherent ALL cells, resulting in drug resistance and enhanced survival. Moreover, single-cell RNA sequencing analysis of ALL-MSC co-culture identifies a hybrid cluster of MSC-adherent ALL cells expressing both B-ALL and MSC signature genes, orchestrated by a WNT/β-catenin-mediated EMT-like program. Blockade of interaction between β-catenin and CREB binding protein impairs the survival and drug resistance of MSC-adherent ALL cells in vitro and results in a reduction in leukemic burden in vivo. Targeting of this WNT/β-catenin-mediated EMT-like program is a potential therapeutic approach to overcome cell extrinsically acquired drug resistance in ALL.
Collapse
Affiliation(s)
- Chun Shik Park
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Hiroki Yoshihara
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Qingsong Gao
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Chunxu Qu
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Ilaria Iacobucci
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Pankaj S Ghate
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jon P Connelly
- Center for Advanced Genome Engineering, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Shondra M Pruett-Miller
- Center for Advanced Genome Engineering, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Ben Wagner
- Cell and Tissue Imaging Center, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Camenzind G Robinson
- Cell and Tissue Imaging Center, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Ashutosh Mishra
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Junmin Peng
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Lei Yang
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Zoran Rankovic
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - David Finkelstein
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Selina Luger
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19106, USA
| | - Mark Litzow
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Nikhil Hebbar
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - M Paulina Velasquez
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Charles G Mullighan
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
6
|
Piktel D, Moore JC, Nesbit S, Sprowls SA, Craig MD, Rellick SL, Nair RR, Meadows E, Hollander JM, Geldenhuys WJ, Martin KH, Gibson LF. Chemotherapeutic Activity of Pitavastatin in Vincristine Resistant B-Cell Acute Lymphoblastic Leukemia. Cancers (Basel) 2023; 15:707. [PMID: 36765664 PMCID: PMC9913300 DOI: 10.3390/cancers15030707] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/17/2023] [Accepted: 01/20/2023] [Indexed: 01/27/2023] Open
Abstract
B-cell acute lymphoblastic leukemia (ALL) is derived from an accumulation of malignant, immature B cells in the bone marrow and blood. Relapse due, in part, to the emergence of tumor cells that are resistant to front line standard chemotherapy is associated with poor patient outcomes. This challenge highlights the need for new treatment strategies to eliminate residual chemoresistant tumor cells. Based on the use of pitavastatin in acute myeloid leukemia (AML), we evaluated its efficacy in an REH ALL cell line derived to be resistant to vincristine. We found that pitavastatin inhibited the proliferation of both parental and vincristine-resistant REH tumor cells at an IC50 of 449 nM and 217 nM, respectively. Mitochondrial bioenergetic assays demonstrated that neither vincristine resistance nor pitavastatin treatment affected cellular oxidative phosphorylation, beta-oxidation, or glycolytic metabolism in ALL cells. In a co-culture model of ALL cells with bone marrow stromal cells, pitavastatin significantly decreased cell viability more robustly in the vincristine-resistant ALL cells compared with their parental controls. Subsequently, NSG mice were used to develop an in vivo model of B-cell ALL using both parental and vincristine-resistant ALL cells. Pitavastatin (10 mg/kg i.p.) significantly reduced the number of human CD45+ REH ALL cells in the bone marrow of mice after 4 weeks of treatment. Mechanistic studies showed that pitavastatin treatment in the vincristine-resistant cells led to apoptosis, with increased levels of cleaved PARP and protein-signaling changes for AMP-activated protein kinase/FoxO3a/Puma. Our data suggest the possible repurposing of pitavastatin as a chemotherapeutic agent in a model of vincristine-resistant B-cell ALL.
Collapse
Affiliation(s)
- Debbie Piktel
- West Virginia University Cancer Institute, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26506, USA
- Department of Microbiology, Immunology and Cell Biology, West Virginia University School of Medicine, Morgantown, WV 26506, USA
| | - Javohn C. Moore
- West Virginia University Cancer Institute, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26506, USA
| | - Sloan Nesbit
- West Virginia University Cancer Institute, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26506, USA
| | - Samuel A. Sprowls
- Department of Pharmaceutical Sciences, West Virginia University School of Pharmacy, Morgantown, WV 26506, USA
- Departments of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Case Comprehensive Cancer Center, Cleveland, OH 44195, USA
| | - Michael D. Craig
- West Virginia University Cancer Institute, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26506, USA
- Queen’s Health System, Honolulu, HI 96813, USA
| | - Stephanie L. Rellick
- West Virginia University Cancer Institute, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26506, USA
- Department of Microbiology, Immunology and Cell Biology, West Virginia University School of Medicine, Morgantown, WV 26506, USA
| | - Rajesh R. Nair
- West Virginia University Cancer Institute, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26506, USA
| | - Ethan Meadows
- Department of Physiology and Pharmacology, School of Medicine, West Virginia University, Morgantown, WV 26506, USA
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University, Morgantown, WV 26506, USA
| | - John M. Hollander
- Department of Physiology and Pharmacology, School of Medicine, West Virginia University, Morgantown, WV 26506, USA
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University, Morgantown, WV 26506, USA
| | - Werner J. Geldenhuys
- Department of Pharmaceutical Sciences, West Virginia University School of Pharmacy, Morgantown, WV 26506, USA
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University, Morgantown, WV 26506, USA
- Department of Neuroscience, School of Medicine, West Virginia University, Morgantown, WV 26506, USA
| | - Karen H. Martin
- West Virginia University Cancer Institute, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26506, USA
- Department of Microbiology, Immunology and Cell Biology, West Virginia University School of Medicine, Morgantown, WV 26506, USA
| | - Laura F. Gibson
- West Virginia University Cancer Institute, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26506, USA
- Department of Microbiology, Immunology and Cell Biology, West Virginia University School of Medicine, Morgantown, WV 26506, USA
| |
Collapse
|
7
|
Chen YF, Li J, Xu LL, Găman MA, Zou ZY. Allogeneic stem cell transplantation in the treatment of acute myeloid leukemia: An overview of obstacles and opportunities. World J Clin Cases 2023; 11:268-291. [PMID: 36686358 PMCID: PMC9850970 DOI: 10.12998/wjcc.v11.i2.268] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/02/2022] [Accepted: 01/05/2023] [Indexed: 01/12/2023] Open
Abstract
As an important treatment for acute myeloid leukemia, allogeneic hematopoietic stem cell transplantation (allo-HSCT) plays an important role in reducing relapse and improving long-term survival. With rapid advancements in basic research in molecular biology and immunology and with deepening understanding of the biological characteristics of hematopoietic stem cells, allo-HSCT has been widely applied in clinical practice. During allo-HSCT, preconditioning, the donor, and the source of stem cells can be tailored to the patient’s conditions, greatly broadening the indications for HSCT, with clear survival benefits. However, the risks associated with allo-HSCT remain high, i.e. hematopoietic reconstitution failure, delayed immune reconstitution, graft-versus-host disease, and post-transplant relapse, which are bottlenecks for further improvements in allo-HSCT efficacy and have become hot topics in the field of HSCT. Other bottlenecks recognized in the current treatment of individuals diagnosed with acute myeloid leukemia and subjected to allo-HSCT include the selection of the most appropriate conditioning regimen and post-transplantation management. In this paper, we reviewed the progress of relevant research regarding these aspects.
Collapse
Affiliation(s)
- Yong-Feng Chen
- Department of Basic Medical Sciences, School of Medicine of Taizhou University, Taizhou University, Taizhou 318000, Zhejiang Province, China
| | - Jing Li
- Department of Histology and Embryology, North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
| | - Ling-Long Xu
- Department of Hematology, Taizhou Central Hospital, Taizhou 318000, Zhejiang Province, China
| | - Mihnea-Alexandru Găman
- Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, Bucharest 050474, Romania
| | - Zhen-You Zou
- Department of Scientific Research,Brain Hospital of Guangxi Zhuang Autonomous Region, Liuzhou 545005, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
8
|
Piktel D, Nair RR, Rellick SL, Geldenhuys WJ, Martin KH, Craig MD, Gibson LF. Pitavastatin Is Anti-Leukemic in a Bone Marrow Microenvironment Model of B-Lineage Acute Lymphoblastic Leukemia. Cancers (Basel) 2022; 14:cancers14112681. [PMID: 35681662 PMCID: PMC9179467 DOI: 10.3390/cancers14112681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 05/26/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Chemoresistance after chemotherapy is a negative prognostic indicator for B-cell acute lymphoblastic leukemia (ALL), necessitating the search for novel therapies. By growing ALL cells together with bone marrow stromal cells, we developed a chemoresistant ALL model. Using this model, we found that the lipid lowering drug pitavastatin had antileukemic activity in this chemoresistant co-culture model. Our data suggests that pitavastatin may be a novel treatment option for repurposing in chemoresistant, relapse ALL. Abstract The lack of complete therapeutic success in the treatment of B-cell acute lymphoblastic leukemia (ALL) has been attributed, in part, to a subset of cells within the bone marrow microenvironment that are drug resistant. Recently, the cholesterol synthesis inhibitor, pitavastatin (PIT), was shown to be active in acute myeloid leukemia, prompting us to evaluate it in our in vitro co-culture model, which supports a chemo-resistant ALL population. We used phospho-protein profiling to evaluate the use of lipid metabolic active compounds in these chemo-resistant cells, due to the up-regulation of multiple active survival signals. In a co-culture with stromal cells, a shift towards anabolic processes occurred, which was further confirmed by assays showing increased lipid content. The treatment of REH leukemia cells with pitavastatin in the co-culture model resulted in significantly higher leukemic cell death than exposure to the standard-of-care chemotherapeutic agent, cytarabine (Ara-C). Our data demonstrates the use of pitavastatin as a possible alternative treatment strategy to improve patient outcomes in chemo-resistant, relapsed ALL.
Collapse
Affiliation(s)
- Debbie Piktel
- Robert C. Byrd Health Sciences Center, West Virginia University Cancer Institute, West Virginia University, Morgantown, WV 26506, USA; (D.P.); (R.R.N.); (S.L.R.); (K.H.M.)
| | - Rajesh R. Nair
- Robert C. Byrd Health Sciences Center, West Virginia University Cancer Institute, West Virginia University, Morgantown, WV 26506, USA; (D.P.); (R.R.N.); (S.L.R.); (K.H.M.)
| | - Stephanie L. Rellick
- Robert C. Byrd Health Sciences Center, West Virginia University Cancer Institute, West Virginia University, Morgantown, WV 26506, USA; (D.P.); (R.R.N.); (S.L.R.); (K.H.M.)
| | - Werner J. Geldenhuys
- Department of Pharmaceutical Sciences, West Virginia University School of Pharmacy, Morgantown, WV 26506, USA;
| | - Karen H. Martin
- Robert C. Byrd Health Sciences Center, West Virginia University Cancer Institute, West Virginia University, Morgantown, WV 26506, USA; (D.P.); (R.R.N.); (S.L.R.); (K.H.M.)
- Department of Microbiology, Immunology and Cell Biology, West Virginia University School of Medicine, Morgantown, WV 26506, USA
| | | | - Laura F. Gibson
- Robert C. Byrd Health Sciences Center, West Virginia University Cancer Institute, West Virginia University, Morgantown, WV 26506, USA; (D.P.); (R.R.N.); (S.L.R.); (K.H.M.)
- Department of Microbiology, Immunology and Cell Biology, West Virginia University School of Medicine, Morgantown, WV 26506, USA
- Correspondence: ; Tel.: +1-304-293-7206
| |
Collapse
|
9
|
Ruiz-Aparicio PF, Vernot JP. Bone Marrow Aging and the Leukaemia-Induced Senescence of Mesenchymal Stem/Stromal Cells: Exploring Similarities. J Pers Med 2022; 12:jpm12050716. [PMID: 35629139 PMCID: PMC9147878 DOI: 10.3390/jpm12050716] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/20/2022] [Accepted: 04/27/2022] [Indexed: 12/17/2022] Open
Abstract
Bone marrow aging is associated with multiple cellular dysfunctions, including perturbed haematopoiesis, the propensity to haematological transformation, and the maintenance of leukaemia. It has been shown that instructive signals from different leukemic cells are delivered to stromal cells to remodel the bone marrow into a supportive leukemic niche. In particular, cellular senescence, a physiological program with both beneficial and deleterious effects on the health of the organisms, may be responsible for the increased incidence of haematological malignancies in the elderly and for the survival of diverse leukemic cells. Here, we will review the connection between BM aging and cellular senescence and the role that these processes play in leukaemia progression. Specifically, we discuss the role of mesenchymal stem cells as a central component of the supportive niche. Due to the specificity of the genetic defects present in leukaemia, one would think that bone marrow alterations would also have particular changes, making it difficult to envisage a shared therapeutic use. We have tried to summarize the coincident features present in BM stromal cells during aging and senescence and in two different leukaemias, acute myeloid leukaemia, with high frequency in the elderly, and B-acute lymphoblastic leukaemia, mainly a childhood disease. We propose that mesenchymal stem cells are similarly affected in these different leukaemias, and that the changes that we observed in terms of cellular function, redox balance, genetics and epigenetics, soluble factor repertoire and stemness are equivalent to those occurring during BM aging and cellular senescence. These coincident features may be used to explore strategies useful to treat various haematological malignancies.
Collapse
Affiliation(s)
- Paola Fernanda Ruiz-Aparicio
- Grupo de Investigación Fisiología Celular y Molecular, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá 111321, Colombia;
| | - Jean-Paul Vernot
- Grupo de Investigación Fisiología Celular y Molecular, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá 111321, Colombia;
- Instituto de Investigaciones Biomédicas, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá 111321, Colombia
- Correspondence:
| |
Collapse
|
10
|
Hughes AM, Kuek V, Kotecha RS, Cheung LC. The Bone Marrow Microenvironment in B-Cell Development and Malignancy. Cancers (Basel) 2022; 14:2089. [PMID: 35565219 PMCID: PMC9102980 DOI: 10.3390/cancers14092089] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/11/2022] [Accepted: 04/20/2022] [Indexed: 11/16/2022] Open
Abstract
B lymphopoiesis is characterized by progressive loss of multipotent potential in hematopoietic stem cells, followed by commitment to differentiate into B cells, which mediate the humoral response of the adaptive immune system. This process is tightly regulated by spatially distinct bone marrow niches where cells, including mesenchymal stem and progenitor cells, endothelial cells, osteoblasts, osteoclasts, and adipocytes, interact with B-cell progenitors to direct their proliferation and differentiation. Recently, the B-cell niche has been implicated in initiating and facilitating B-cell precursor acute lymphoblastic leukemia. Leukemic cells are also capable of remodeling the B-cell niche to promote their growth and survival and evade treatment. Here, we discuss the major cellular components of bone marrow niches for B lymphopoiesis and the role of the malignant B-cell niche in disease development, treatment resistance and relapse. Further understanding of the crosstalk between leukemic cells and bone marrow niche cells will enable development of additional therapeutic strategies that target the niches in order to hinder leukemia progression.
Collapse
Affiliation(s)
- Anastasia M. Hughes
- Leukaemia Translational Research Laboratory, Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, WA 6009, Australia; (A.M.H.); (V.K.); (R.S.K.)
- Curtin Medical School, Curtin University, Perth, WA 6102, Australia
| | - Vincent Kuek
- Leukaemia Translational Research Laboratory, Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, WA 6009, Australia; (A.M.H.); (V.K.); (R.S.K.)
- Curtin Medical School, Curtin University, Perth, WA 6102, Australia
- School of Biomedical Sciences, University of Western Australia, Perth, WA 6009, Australia
| | - Rishi S. Kotecha
- Leukaemia Translational Research Laboratory, Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, WA 6009, Australia; (A.M.H.); (V.K.); (R.S.K.)
- Curtin Medical School, Curtin University, Perth, WA 6102, Australia
- School of Medicine, University of Western Australia, Perth, WA 6009, Australia
- Department of Clinical Haematology, Oncology, Blood and Marrow Transplantation, Perth Children’s Hospital, Perth, WA 6009, Australia
| | - Laurence C. Cheung
- Leukaemia Translational Research Laboratory, Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, WA 6009, Australia; (A.M.H.); (V.K.); (R.S.K.)
- Curtin Medical School, Curtin University, Perth, WA 6102, Australia
- Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia
| |
Collapse
|
11
|
Luong A, Cerignoli F, Abassi Y, Heisterkamp N, Abdel-Azim H. Analysis of acute lymphoblastic leukemia drug sensitivity by changes in impedance via stromal cell adherence. PLoS One 2021; 16:e0258140. [PMID: 34591931 PMCID: PMC8483355 DOI: 10.1371/journal.pone.0258140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 09/19/2021] [Indexed: 11/18/2022] Open
Abstract
The bone marrow is a frequent location of primary relapse after conventional cytotoxic drug treatment of human B-cell precursor acute lymphoblastic leukemia (BCP-ALL). Because stromal cells have a major role in promoting chemotherapy resistance, they should be included to more realistically model in vitro drug treatment. Here we validated a novel application of the xCELLigence system as a continuous co-culture to assess long-term effects of drug treatment on BCP-ALL cells. We found that bone marrow OP9 stromal cells adhere to the electrodes but are progressively displaced by dividing patient-derived BCP-ALL cells, resulting in reduction of impedance over time. Death of BCP-ALL cells due to drug treatment results in re-adherence of the stromal cells to the electrodes, increasing impedance. Importantly, vincristine inhibited proliferation of sensitive BCP-ALL cells in a dose-dependent manner, correlating with increased impedance. This system was able to discriminate sensitivity of two relapsed Philadelphia chromosome (Ph) positive ALLs to four different targeted kinase inhibitors. Moreover, differences in sensitivity of two CRLF2-drivenBCP-ALL cell lines to ruxolitinib were also seen. These results show that impedance can be used as a novel approach to monitor drug treatment and sensitivity of primary BCP-ALL cells in the presence of protective microenvironmental cells.
Collapse
Affiliation(s)
- Annie Luong
- Division of Hematology, Oncology and Bone Marrow Transplantation, Children’s Hospital Los Angeles, Los Angeles, CA, United States of America
| | - Fabio Cerignoli
- Agilent Technologies, Inc., Santa Clara, CA, United States of America
| | - Yama Abassi
- Agilent Technologies, Inc., Santa Clara, CA, United States of America
| | - Nora Heisterkamp
- Department of Systems Biology, Beckman Research Institute City of Hope, Monrovia, CA, United States of America
| | - Hisham Abdel-Azim
- Division of Hematology, Oncology and Bone Marrow Transplantation, Children’s Hospital Los Angeles, Los Angeles, CA, United States of America
- Keck School of Medicine, University of Southern California, Los Angeles, CA, United States of America
| |
Collapse
|
12
|
Zanetti SR, Romecin PA, Vinyoles M, Juan M, Fuster JL, Cámos M, Querol S, Delgado M, Menendez P. Bone marrow MSC from pediatric patients with B-ALL highly immunosuppress T-cell responses but do not compromise CD19-CAR T-cell activity. J Immunother Cancer 2021; 8:jitc-2020-001419. [PMID: 32868394 PMCID: PMC7462245 DOI: 10.1136/jitc-2020-001419] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2020] [Indexed: 01/12/2023] Open
Abstract
Background Although adoptive transfer of CD19-directed chimeric antigen receptor (CAR) T-cells (CD19-CAR T-cells) achieves high rates of complete response in patients with B-cell acute lymphoblastic leukemia (B-ALL), relapse is common. Bone marrow (BM) mesenchymal stem/stromal cells (BM-MSC) are key components of the hematopoietic niche and are implicated in B-ALL pathogenesis and therapy resistance. MSC exert an immunosuppressive effect on T-cells; however, their impact on CD19-CAR T-cell activity is understudied. Methods We performed a detailed characterization of BM-MSC from pediatric patients with B-ALL (B-ALL BM-MSC), evaluated their immunomodulatory properties and their impact on CD19-CAR T-cell activity in vitro using microscopy, qRT-PCR, ELISA, flow cytometry analysis and in vivo using a preclinical model of severe colitis and a B-ALL xenograft model. Results While B-ALL BM-MSC were less proliferative than those from age-matched healthy donors (HD), the morphology, immunophenotype, differentiation potential and chemoprotection was very similar. Likewise, both BM-MSC populations were equally immunosuppressive in vitro and anti-inflammatory in an in vivo model of severe colitis. Interestingly, BM-MSC failed to impair CD19-CAR T-cell cytotoxicity or cytokine production in vitro using B-ALL cell lines and primary B-ALL cells. Finally, the growth of NALM6 cells was controlled in vivo by CD19-CAR T-cells irrespective of the absence/presence of BM-MSC. Conclusions Collectively, our data demonstrate that pediatric B-ALL and HD BM-MSC equally immunosuppress T-cell responses but do not compromise CD19-CAR T-cell activity.
Collapse
Affiliation(s)
| | | | | | - Manel Juan
- Servicio de Inmunología, Hospital Clínico de Barcelona, Hospital Clínico de Barcelona, Barcelona, Spain
| | - José Luis Fuster
- Sección de Oncohematología Pediátrica, Hospital Clínico Universitario Virgen de la Arrixaca, El Palmar, Murcia, Spain.,Instituto Murciano de Investigación biosanitaria, Murcia, Spain
| | - Mireia Cámos
- Hematology Laboratory, Hospital Sant Joan de Déu, University of Barcelona, Barcelona, Spain.,Institut de Recerca Hospital Sant Joan de Déu Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Barcelona, Spain
| | | | - Mario Delgado
- Instituto de Parasitología y Biomedicina López-Neyra-CSIC, Barcelona, Spain
| | - Pablo Menendez
- Josep Carreras Leukemia Research Institute, Barcelona, Spain .,Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), ISCIII, Barcelona, Spain
| |
Collapse
|
13
|
Rellick SL, Hu G, Piktel D, Martin KH, Geldenhuys WJ, Nair RR, Gibson LF. Co-culture model of B-cell acute lymphoblastic leukemia recapitulates a transcription signature of chemotherapy-refractory minimal residual disease. Sci Rep 2021; 11:15840. [PMID: 34349149 PMCID: PMC8339057 DOI: 10.1038/s41598-021-95039-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 07/20/2021] [Indexed: 12/26/2022] Open
Abstract
B-cell acute lymphoblastic leukemia (ALL) is characterized by accumulation of immature hematopoietic cells in the bone marrow, a well-established sanctuary site for leukemic cell survival during treatment. While standard of care treatment results in remission in most patients, a small population of patients will relapse, due to the presence of minimal residual disease (MRD) consisting of dormant, chemotherapy-resistant tumor cells. To interrogate this clinically relevant population of treatment refractory cells, we developed an in vitro cell model in which human ALL cells are grown in co-culture with human derived bone marrow stromal cells or osteoblasts. Within this co-culture, tumor cells are found in suspension, lightly attached to the top of the adherent cells, or buried under the adherent cells in a population that is phase dim (PD) by light microscopy. PD cells are dormant and chemotherapy-resistant, consistent with the population of cells that underlies MRD. In the current study, we characterized the transcriptional signature of PD cells by RNA-Seq, and these data were compared to a published expression data set derived from human MRD B-cell ALL patients. Our comparative analyses revealed that the PD cell population is markedly similar to the MRD expression patterns from the primary cells isolated from patients. We further identified genes and key signaling pathways that are common between the PD tumor cells from co-culture and patient derived MRD cells as potential therapeutic targets for future studies.
Collapse
Affiliation(s)
- Stephanie L Rellick
- Department of Microbiology, Immunology and Cell Biology, West Virginia University School of Medicine, 1 Medical Center Drive, Morgantown, WV, 26506, USA
- West Virginia University Cancer Institute, Morgantown, WV, 26506, USA
| | - Gangqing Hu
- Department of Microbiology, Immunology and Cell Biology, West Virginia University School of Medicine, 1 Medical Center Drive, Morgantown, WV, 26506, USA
- Bioinformatics Core, West Virginia University, Morgantown, WV, 26506, USA
- West Virginia Clinical and Translational Science Institute, Morgantown, WV, 26506, USA
| | - Debra Piktel
- Department of Microbiology, Immunology and Cell Biology, West Virginia University School of Medicine, 1 Medical Center Drive, Morgantown, WV, 26506, USA
- West Virginia University Cancer Institute, Morgantown, WV, 26506, USA
| | - Karen H Martin
- Department of Microbiology, Immunology and Cell Biology, West Virginia University School of Medicine, 1 Medical Center Drive, Morgantown, WV, 26506, USA
- West Virginia University Cancer Institute, Morgantown, WV, 26506, USA
| | - Werner J Geldenhuys
- Department of Pharmaceutical Sciences, West Virginia University School of Pharmacy, Morgantown, WV, 26506, USA
| | - Rajesh R Nair
- Department of Microbiology, Immunology and Cell Biology, West Virginia University School of Medicine, 1 Medical Center Drive, Morgantown, WV, 26506, USA
- West Virginia University Cancer Institute, Morgantown, WV, 26506, USA
| | - Laura F Gibson
- Department of Microbiology, Immunology and Cell Biology, West Virginia University School of Medicine, 1 Medical Center Drive, Morgantown, WV, 26506, USA.
- West Virginia University Cancer Institute, Morgantown, WV, 26506, USA.
| |
Collapse
|
14
|
Redox Control in Acute Lymphoblastic Leukemia: From Physiology to Pathology and Therapeutic Opportunities. Cells 2021; 10:cells10051218. [PMID: 34067520 PMCID: PMC8155968 DOI: 10.3390/cells10051218] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/04/2021] [Accepted: 05/13/2021] [Indexed: 02/07/2023] Open
Abstract
Acute lymphoblastic leukemia (ALL) is a hematological malignancy originating from B- or T-lymphoid progenitor cells. Recent studies have shown that redox dysregulation caused by overproduction of reactive oxygen species (ROS) has an important role in the development and progression of leukemia. The application of pro-oxidant therapy, which targets redox dysregulation, has achieved satisfactory results in alleviating the conditions of and improving the survival rate for patients with ALL. However, drug resistance and side effects are two major challenges that must be addressed in pro-oxidant therapy. Oxidative stress can activate a variety of antioxidant mechanisms to help leukemia cells escape the damage caused by pro-oxidant drugs and develop drug resistance. Hematopoietic stem cells (HSCs) are extremely sensitive to oxidative stress due to their low levels of differentiation, and the use of pro-oxidant drugs inevitably causes damage to HSCs and may even cause severe bone marrow suppression. In this article, we reviewed research progress regarding the generation and regulation of ROS in normal HSCs and ALL cells as well as the impact of ROS on the biological behavior and fate of cells. An in-depth understanding of the regulatory mechanisms of redox homeostasis in normal and malignant HSCs is conducive to the formulation of rational targeted treatment plans to effectively reduce oxidative damage to normal HSCs while eradicating ALL cells.
Collapse
|
15
|
Studies on the changes of uPA system in a co-culture model of bone marrow stromal cells-leukemia cells. Biosci Rep 2021; 40:226901. [PMID: 33146708 PMCID: PMC7677749 DOI: 10.1042/bsr20194044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 10/29/2020] [Accepted: 11/03/2020] [Indexed: 11/24/2022] Open
Abstract
The core of the tumor microenvironment in the hematological system is formed by bone marrow stromal cells (BMSCs). In the present study, we explored the interaction between the urokinase plasminogen activator (uPA) system and the leukemia bone marrow microenvironment (BMM). We established BMSCs–HL60 and HS-5–K562 co-culture models in direct contact mode to simulate the BMM in leukemia. In BMSCs-HL60 co-culture model, the expression levels of uPA, uPA receptor (uPAR), plasminogen activator inhibitor 1 (PAI-1) and vascular endothelial growth factor (VEGF) in BMSCs were higher than those in mono-cultured BMSCs. Matrix metalloproteinase (MMP)-9 (MMP-9) was up-regulated in co-cultured HL60 cells. In HS-5–K562 co-culture model, only uPA, PAI-1, and VEGF-A were up-regulated in HS-5 cells. The levels of the uPA protein in the co-culture supernatant were significantly higher than that of mono-cultured BMSCs or HS-5 cells. Our findings demonstrate that the co-culture stimulates the production of uPA, uPAR, PAI-1, MMP-9, and VEGF-A by BMSCs. It could further explain how the uPA system in leukemia cells is involved in the growth, development, and prognosis of leukemia.
Collapse
|
16
|
Kim HN, Ruan Y, Ogana H, Kim YM. Cadherins, Selectins, and Integrins in CAM-DR in Leukemia. Front Oncol 2020; 10:592733. [PMID: 33425742 PMCID: PMC7793796 DOI: 10.3389/fonc.2020.592733] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 10/22/2020] [Indexed: 12/12/2022] Open
Abstract
The interaction between leukemia cells and the bone microenvironment is known to provide drug resistance in leukemia cells. This phenomenon, called cell adhesion-mediated drug resistance (CAM-DR), has been demonstrated in many subsets of leukemia including B- and T-acute lymphoblastic leukemia (B- and T-ALL) and acute myeloid leukemia (AML). Cell adhesion molecules (CAMs) are surface molecules that allow cell-cell or cell-extracellular matrix (ECM) adhesion. CAMs not only recognize ligands for binding but also initiate the intracellular signaling pathways that are associated with cell proliferation, survival, and drug resistance upon binding to their ligands. Cadherins, selectins, and integrins are well-known cell adhesion molecules that allow binding to neighboring cells, ECM proteins, and soluble factors. The expression of cadherin, selectin, and integrin correlates with the increased drug resistance of leukemia cells. This paper will review the role of cadherins, selectins, and integrins in CAM-DR and the results of clinical trials targeting these molecules.
Collapse
Affiliation(s)
- Hye Na Kim
- Children's Hospital Los Angeles, Keck School of Medicine of University of Southern California, Cancer and Blood Disease Institute, Los Angeles, CA, United States
| | - Yongsheng Ruan
- Children's Hospital Los Angeles, Keck School of Medicine of University of Southern California, Cancer and Blood Disease Institute, Los Angeles, CA, United States.,Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Heather Ogana
- Children's Hospital Los Angeles, Keck School of Medicine of University of Southern California, Cancer and Blood Disease Institute, Los Angeles, CA, United States
| | - Yong-Mi Kim
- Children's Hospital Los Angeles, Keck School of Medicine of University of Southern California, Cancer and Blood Disease Institute, Los Angeles, CA, United States
| |
Collapse
|
17
|
Li B, Yang L, Peng X, Fan Q, Wei S, Yang S, Li X, Jin H, Wu B, Huang M, Tang S, Liu J, Li H. Emerging mechanisms and applications of ferroptosis in the treatment of resistant cancers. Biomed Pharmacother 2020; 130:110710. [PMID: 33568263 DOI: 10.1016/j.biopha.2020.110710] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/26/2020] [Accepted: 08/28/2020] [Indexed: 02/09/2023] Open
Abstract
The development of chemotherapy drugs has promoted anticancer treatment, but the effect on tumours is not clear because of treatment resistance; thus, it is necessary to further understand the mechanism of cell death to explore new therapeutic targets. As a new type of programmed cell death, ferroptosis is increasingly being targeted in the treatment of many cancers with clinical drugs and experimental compounds. Ferroptosis is stimulated in tumours with inherently high levels of ferrous ions by a reaction with abundant polyunsaturated fatty acids and the inhibition of antioxidant enzymes, which can overcome treatment resistance in cancers mainly through GPX4. In this review, we focus on the intrinsic cellular regulators against ferroptosis in cancer resistance, such as GPX4, NRF2 and the thioredoxin system. We summarize the application of novel compounds and drugs to circumvent treatment resistance. We also introduce the application of nanoparticles for the treatment of resistant cancers. In conclusion, targeting ferroptosis represents a considerable strategy for resistant cancer treatment.
Collapse
Affiliation(s)
- Bowen Li
- Department of General Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, Liaoning, China
| | - Liang Yang
- Department of General Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, Liaoning, China
| | - Xueqiang Peng
- Department of General Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, Liaoning, China
| | - Qin Fan
- Department of General Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, Liaoning, China
| | - Shibo Wei
- Department of General Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, Liaoning, China
| | - Shuo Yang
- Department of General Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, Liaoning, China
| | - Xinyu Li
- Department of General Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, Liaoning, China
| | - Hongyuan Jin
- Department of General Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, Liaoning, China
| | - Bo Wu
- Department of General Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, Liaoning, China
| | - Mingyao Huang
- Department of General Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, Liaoning, China
| | - Shilei Tang
- Department of General Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, Liaoning, China
| | - Jingang Liu
- Department of General Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, Liaoning, China
| | - Hangyu Li
- Department of General Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, Liaoning, China.
| |
Collapse
|
18
|
Kihira K, Chelakkot VS, Kainuma H, Okumura Y, Tsuboya N, Okamura S, Kurihara K, Iwamoto S, Komada Y, Hori H. Close interaction with bone marrow mesenchymal stromal cells induces the development of cancer stem cell-like immunophenotype in B cell precursor acute lymphoblastic leukemia cells. Int J Hematol 2020; 112:795-806. [PMID: 32862292 DOI: 10.1007/s12185-020-02981-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 08/05/2020] [Accepted: 08/25/2020] [Indexed: 12/15/2022]
Abstract
Minimal residual disease of leukemia may reside in the bone marrow (BM) microenvironment and escape the effects of chemotherapeutic agents. This study investigated interactions between B cell precursor (BCP)-acute lymphoblastic leukemia (ALL) cells and BM mesenchymal stromal cells (BM-MSCs) in vitro. Five BCP-ALL cell lines established from pediatric patients and primary samples from a BCP-ALL patient were examined by flow cytometry and immunocytochemistry for expression of specific cell surface markers and cell adhesion proteins. The cell lines developed chemoresistance to commonly used anti-leukemic agents through adhesion to MSC-TERT cells in long-term culture. The change in chemosensitivity after adhering to BM-MSCs was associated with the expression of CD34, CD133, P-glycoprotein and BCRP/ABCG2, and downregulation of CD38. Similar phenotypic changes were observed in primary samples obtained by marrow aspiration or biopsy from a BCP-ALL patient. BM-MSC-adhering leukemia cells also showed deceleration of cell proliferation and expressed proteins in the Cadherin and Integrin pathways. These results suggest that BCP-ALL cells residing in the BM microenvironment may acquire chemoresistance by altering their phenotype to resemble that of cancer stem cells. Our results indicate that cell adhesion could be potentially targeted to improve the chemosensitivity of residual BCP-ALL cells in the BM microenvironment.
Collapse
Affiliation(s)
- Kentaro Kihira
- Department of Pediatrics, Mie University Graduate School of Medicine, Tsu, Japan
| | | | - Hiroki Kainuma
- Department of Medical Education, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu, Mie, 514-8507, Japan
| | - Yosuke Okumura
- Department of Pediatrics, Mie University Graduate School of Medicine, Tsu, Japan
| | - Naoki Tsuboya
- Department of Pediatrics, Mie University Graduate School of Medicine, Tsu, Japan
| | - Satoshi Okamura
- Department of Pediatrics, Mie University Graduate School of Medicine, Tsu, Japan.,Department of Medical Education, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu, Mie, 514-8507, Japan
| | - Kosuke Kurihara
- Department of Pediatrics, Mie University Graduate School of Medicine, Tsu, Japan.,Department of Medical Education, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu, Mie, 514-8507, Japan
| | - Shotaro Iwamoto
- Department of Pediatrics, Mie University Graduate School of Medicine, Tsu, Japan
| | - Yoshihiro Komada
- Department of Pediatrics, Mie University Graduate School of Medicine, Tsu, Japan
| | - Hiroki Hori
- Department of Pediatrics, Mie University Graduate School of Medicine, Tsu, Japan. .,Department of Medical Education, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu, Mie, 514-8507, Japan.
| |
Collapse
|
19
|
Ruiz-Aparicio PF, Vanegas NDP, Uribe GI, Ortiz-Montero P, Cadavid-Cortés C, Lagos J, Flechas-Afanador J, Linares-Ballesteros A, Vernot JP. Dual Targeting of Stromal Cell Support and Leukemic Cell Growth by a Peptidic PKC Inhibitor Shows Effectiveness against B-ALL. Int J Mol Sci 2020; 21:ijms21103705. [PMID: 32466311 PMCID: PMC7279155 DOI: 10.3390/ijms21103705] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/02/2020] [Accepted: 05/03/2020] [Indexed: 12/11/2022] Open
Abstract
Mesenchymal stem cells (MSC) favour a scenario where leukemic cells survive. The protein kinase C (PKC) is essential to confer MSC support to leukemic cells and may be responsible for the intrinsic leukemic cell growth. Here we have evaluated the capacity of a chimeric peptide (HKPS), directed against classical PKC isoforms, to inhibit leukemic cell growth. HKPS was able to strongly inhibit viability of different leukemic cell lines, while control HK and PS peptides had no effect. Further testing showed that 30% of primary samples from paediatric B-cell acute lymphoblastic leukaemia (B-ALL) were also strongly affected by HKPS. We showed that HKPS disrupted the supportive effect of MSC that promote leukemic cell survival. Interestingly, ICAM-1 and VLA-5 expression increased in MSC during the co-cultures with B-ALL cells, and we found that HKPS inhibited the interaction between MSC and B-ALL cells due to a reduction in the expression of these adhesion molecules. Of note, the susceptibility of B-ALL cells to dexamethasone increased when MSC were treated with HKPS. These results show the relevance of these molecular interactions in the leukemic niche. The use of HKPS may be a new strategy to disrupt intercellular communications, increasing susceptibility to therapy, and at the same time, directly affecting the growth of PKC-dependent leukemic cells.
Collapse
Affiliation(s)
- Paola Fernanda Ruiz-Aparicio
- Grupo de Investigación Fisiología Celular y Molecular, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá D. C. 111321, Colombia; (P.F.R.-A.); (N.-D.P.V.); (P.O.-M.); (C.C.-C.)
| | - Natalia-Del Pilar Vanegas
- Grupo de Investigación Fisiología Celular y Molecular, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá D. C. 111321, Colombia; (P.F.R.-A.); (N.-D.P.V.); (P.O.-M.); (C.C.-C.)
| | - Gloria Inés Uribe
- Grupo de Investigación Oncohematología Pediátrica, Fundación Hospital de la Misericordia, Universidad Nacional de Colombia, Bogotá D. C. 111071, Colombia; (G.I.U.); (J.L.); (J.F.-A); (A.L.-B.)
- Servicio de Patología, Laboratorio de Hematología Especial y Citometría de flujo, Fundación Hospital de la Misericordia, Bogotá D. C. 111071, Colombia
| | - Paola Ortiz-Montero
- Grupo de Investigación Fisiología Celular y Molecular, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá D. C. 111321, Colombia; (P.F.R.-A.); (N.-D.P.V.); (P.O.-M.); (C.C.-C.)
| | - Camila Cadavid-Cortés
- Grupo de Investigación Fisiología Celular y Molecular, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá D. C. 111321, Colombia; (P.F.R.-A.); (N.-D.P.V.); (P.O.-M.); (C.C.-C.)
| | - Jimmy Lagos
- Grupo de Investigación Oncohematología Pediátrica, Fundación Hospital de la Misericordia, Universidad Nacional de Colombia, Bogotá D. C. 111071, Colombia; (G.I.U.); (J.L.); (J.F.-A); (A.L.-B.)
| | - Jessica Flechas-Afanador
- Grupo de Investigación Oncohematología Pediátrica, Fundación Hospital de la Misericordia, Universidad Nacional de Colombia, Bogotá D. C. 111071, Colombia; (G.I.U.); (J.L.); (J.F.-A); (A.L.-B.)
| | - Adriana Linares-Ballesteros
- Grupo de Investigación Oncohematología Pediátrica, Fundación Hospital de la Misericordia, Universidad Nacional de Colombia, Bogotá D. C. 111071, Colombia; (G.I.U.); (J.L.); (J.F.-A); (A.L.-B.)
| | - Jean-Paul Vernot
- Grupo de Investigación Fisiología Celular y Molecular, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá D. C. 111321, Colombia; (P.F.R.-A.); (N.-D.P.V.); (P.O.-M.); (C.C.-C.)
- Instituto de Investigaciones Biomédicas, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá D. C. 111321, Colombia
- Correspondence: ; Tel.: +571-316-5000 (ext. 15057); Fax: +571-316-5466
| |
Collapse
|
20
|
Nair RR, Piktel D, Hathaway QA, Rellick SL, Thomas P, Saralkar P, Martin KH, Geldenhuys WJ, Hollander JM, Gibson LF. Pyrvinium Pamoate Use in a B cell Acute Lymphoblastic Leukemia Model of the Bone Tumor Microenvironment. Pharm Res 2020; 37:43. [PMID: 31989336 PMCID: PMC7021357 DOI: 10.1007/s11095-020-2767-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 01/21/2020] [Indexed: 01/07/2023]
Abstract
PURPOSE Pyrvinium pamoate (PP) is an anthelmintic drug that has been found to have anti-cancer activity in several cancer types. In the present study, we evaluated PP for potential anti-leukemic activity in B cell acute lymphoblastic leukemia (ALL) cell lines, in an effort to evaluate the repurposing potential of this drug in leukemia. METHODS ALL cells were treated with PP at various concentrations to determine its effect on cell proliferation. Metabolic function was tested by evaluating Extracellular Acidification Rate (ECAR) and Oxygen Consumption Rate (OCR). Lastly, 3D spheroids were grown, and PP was reformulated into nanoparticles to evaluate distribution effectiveness. RESULTS PP was found to inhibit ALL proliferation, with varied selectivity to different ALL cell subtypes. We also found that PP's cell death activity was specific for leukemic cells, as primary normal immune cells were resistant to PP-mediated cell death. Metabolic studies indicated that PP, in part, inhibits mitochondrial oxidative phosphorylation. To increase the targeting of PP to a hypoxic bone tumor microenvironment (BTME) niche, we successfully encapsulated PP in a nanoparticle drug delivery system and demonstrated that it retained its anti-leukemic activity in a hemosphere assay. CONCLUSION We have demonstrated that PP is a novel therapeutic lead compound that counteracts the respiratory reprogramming found in refractory ALL cells and can be effectively formulated into a nanoparticle delivery system to target the BTME.
Collapse
Affiliation(s)
- Rajesh R Nair
- Department of Microbiology, Immunology and Cell Biology, West Virginia University School of Medicine, Morgantown, West Virginia, USA
| | - Debbie Piktel
- West Virginia University Cancer Institute, Robert C. Byrd Health Sciences Center, West Virginia University, PO Box 9104, Morgantown, West Virginia, 26506, USA
| | - Quincy A Hathaway
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia, USA
- Mitochondria, Metabolism and Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, West Virginia, USA
| | - Stephanie L Rellick
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, West Virginia, USA
| | - Patrick Thomas
- West Virginia University Cancer Institute, Robert C. Byrd Health Sciences Center, West Virginia University, PO Box 9104, Morgantown, West Virginia, 26506, USA
| | - Pushkar Saralkar
- Department of Pharmaceutical Sciences, West Virginia University School of Pharmacy, Morgantown, West Virginia, USA
| | - Karen H Martin
- Department of Microbiology, Immunology and Cell Biology, West Virginia University School of Medicine, Morgantown, West Virginia, USA
- West Virginia University Cancer Institute, Robert C. Byrd Health Sciences Center, West Virginia University, PO Box 9104, Morgantown, West Virginia, 26506, USA
| | - Werner J Geldenhuys
- Mitochondria, Metabolism and Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, West Virginia, USA
- Department of Pharmaceutical Sciences, West Virginia University School of Pharmacy, Morgantown, West Virginia, USA
- Department of Neuroscience, West Virginia University School of Medicine, Morgantown, West Virginia, USA
| | - John M Hollander
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia, USA
- Mitochondria, Metabolism and Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, West Virginia, USA
| | - Laura F Gibson
- Department of Microbiology, Immunology and Cell Biology, West Virginia University School of Medicine, Morgantown, West Virginia, USA.
- West Virginia University Cancer Institute, Robert C. Byrd Health Sciences Center, West Virginia University, PO Box 9104, Morgantown, West Virginia, 26506, USA.
| |
Collapse
|
21
|
Jonart LM, Ebadi M, Basile P, Johnson K, Makori J, Gordon PM. Disrupting the leukemia niche in the central nervous system attenuates leukemia chemoresistance. Haematologica 2019; 105:2130-2140. [PMID: 31624109 PMCID: PMC7395284 DOI: 10.3324/haematol.2019.230334] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 10/14/2019] [Indexed: 12/21/2022] Open
Abstract
Protection from acute lymphoblastic leukemia relapse in the central nervous system (CNS) is crucial to survival and quality of life for leukemia patients. Current CNS-directed therapies cause significant toxicities and are only partially effective. Moreover, the impact of the CNS microenvironment on leukemia biology is poorly understood. In this study we showed that leukemia cells associated with the meninges of xenotransplanted mice, or co-cultured with meningeal cells, exhibit enhanced chemoresistance due to effects on both apoptosis balance and quiescence. From a mechanistic standpoint, we found that leukemia chemoresistance is primarily mediated by direct leukemia-meningeal cell interactions and overcome by detaching the leukemia cells from the meninges. Next, we used a co-culture adhesion assay to identify drugs that disrupted leukemia-meningeal adhesion. In addition to identifying several drugs that inhibit canonical cell adhesion targets we found that Me6TREN (Tris[2-(dimethylamino)ethyl]amine), a novel hematopoietic stem cell-mobilizing compound, also disrupted leukemia-meningeal adhesion and enhanced the efficacy of cytarabine in treating CNS leukemia in xenotransplanted mice. This work demonstrates that the meninges exert a critical influence on leukemia chemoresistance, elucidates mechanisms of relapse beyond the well-described role of the blood-brain barrier, and identifies novel therapeutic approaches for overcoming chemoresistance.
Collapse
Affiliation(s)
- Leslie M Jonart
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, University of Minnesota.,Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Maryam Ebadi
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, University of Minnesota.,Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Patrick Basile
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, University of Minnesota.,Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Kimberly Johnson
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, University of Minnesota.,Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Jessica Makori
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, University of Minnesota.,Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Peter M Gordon
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, University of Minnesota .,Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
22
|
Geldenhuys WJ, Nair RR, Piktel D, Martin KH, Gibson LF. The MitoNEET Ligand NL-1 Mediates Antileukemic Activity in Drug-Resistant B-Cell Acute Lymphoblastic Leukemia. J Pharmacol Exp Ther 2019; 370:25-34. [PMID: 31010844 PMCID: PMC6538890 DOI: 10.1124/jpet.118.255984] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 04/01/2019] [Indexed: 12/13/2022] Open
Abstract
Disease relapse in B-cell acute lymphoblastic leukemia (ALL), either due to development of acquired resistance after therapy or because of de novo resistance, remains a therapeutic challenge. In the present study, we have developed a cytarabine (Ara-C)-resistant REH cell line (REH/Ara-C) as a chemoresistance model. REH/Ara-C 1) was not crossresistant to vincristine or methotrexate; 2) showed a similar proliferation rate and cell surface marker expression as parental REH; 3) demonstrated decreased chemotaxis toward bone marrow stromal cells; and 4) expressed higher transcript levels of cytidine deaminase (CDA) and mitoNEET (CISD1) than the parental REH cell line. Based on these findings, we tested NL-1, a mitoNEET inhibitor, which induced a concentration-dependent decrease in cell viability with a comparable IC50 value in REH and REH/Ara-C. Furthermore, NL-1 decreased cell viability in six different ALL cell lines and showed inhibitory activity in a hemosphere assay. NL-1 also impaired the migratory ability of leukemic cells, irrespective of the chemoattractant used, in a chemotaxis assay. More importantly, NL-1 showed specific activity in inducing death in a drug-resistant population of leukemic cells within a coculture model that mimicked the acquired resistance and de novo resistance observed in the bone marrow of relapsed patients. Subsequent studies indicated that NL-1 mediates autophagy, and inhibition of autophagy partially decreased NL-1-induced tumor cell death. Finally, NL-1 showed antileukemic activity in an in vivo mouse ALL model. Taken together, our study demonstrates that mitoNEET has potential as a novel antileukemic drug target in treatment refractory or relapsed ALL.
Collapse
Affiliation(s)
- Werner J Geldenhuys
- Department of Pharmaceutical Sciences, School of Pharmacy (W.J.G.), Department of Microbiology, Immunology and Cell Biology, School of Medicine (R.R.N., K.H.M., L.F.G.), Robert C. Byrd Health Sciences Center (W.J.G., R.R.N., D.P., K.H.M., L.F.G.), and WVU Cancer Institute (W.J.G., K.H.M., L.F.G.), West Virginia University, Morgantown, West Virginia
| | - Rajesh R Nair
- Department of Pharmaceutical Sciences, School of Pharmacy (W.J.G.), Department of Microbiology, Immunology and Cell Biology, School of Medicine (R.R.N., K.H.M., L.F.G.), Robert C. Byrd Health Sciences Center (W.J.G., R.R.N., D.P., K.H.M., L.F.G.), and WVU Cancer Institute (W.J.G., K.H.M., L.F.G.), West Virginia University, Morgantown, West Virginia
| | - Debbie Piktel
- Department of Pharmaceutical Sciences, School of Pharmacy (W.J.G.), Department of Microbiology, Immunology and Cell Biology, School of Medicine (R.R.N., K.H.M., L.F.G.), Robert C. Byrd Health Sciences Center (W.J.G., R.R.N., D.P., K.H.M., L.F.G.), and WVU Cancer Institute (W.J.G., K.H.M., L.F.G.), West Virginia University, Morgantown, West Virginia
| | - Karen H Martin
- Department of Pharmaceutical Sciences, School of Pharmacy (W.J.G.), Department of Microbiology, Immunology and Cell Biology, School of Medicine (R.R.N., K.H.M., L.F.G.), Robert C. Byrd Health Sciences Center (W.J.G., R.R.N., D.P., K.H.M., L.F.G.), and WVU Cancer Institute (W.J.G., K.H.M., L.F.G.), West Virginia University, Morgantown, West Virginia
| | - Laura F Gibson
- Department of Pharmaceutical Sciences, School of Pharmacy (W.J.G.), Department of Microbiology, Immunology and Cell Biology, School of Medicine (R.R.N., K.H.M., L.F.G.), Robert C. Byrd Health Sciences Center (W.J.G., R.R.N., D.P., K.H.M., L.F.G.), and WVU Cancer Institute (W.J.G., K.H.M., L.F.G.), West Virginia University, Morgantown, West Virginia
| |
Collapse
|
23
|
Kolesnikova M, Sen'kova A, Tairova S, Ovchinnikov V, Pospelova T, Zenkova M. Clinical and Prognostic Significance of Cell Sensitivity to Chemotherapy Detected in vitro on Treatment Response and Survival of Leukemia Patients. J Pers Med 2019; 9:jpm9020024. [PMID: 31067780 PMCID: PMC6617197 DOI: 10.3390/jpm9020024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 04/23/2019] [Accepted: 05/06/2019] [Indexed: 02/07/2023] Open
Abstract
Multidrug resistance (MDR) is a major challenge in leukemia treatment. The objective of this study was to identity predictors of MDR to allow for rapid and economical assessment of the efficacy of planned antitumor therapy for leukemia patients. The study included 113 patients with acute and chronic leukemias. Prior to antitumor therapy, we measured the sensitivity of tumor cells of patients to the panel of chemotherapeutic drugs, together with MDR1 mRNA and P-glycoprotein (P-gp) expression as one of the mechanisms of MDR, and compared these data with the response to therapy. The scales for leukemia patients according to therapy response, drug sensitivity of tumor cells, MDR1 mRNA and P-gp levels, and the presence of unfavorable immunological and cytogenetic markers were introduced for subsequent correlation analysis. We show that the drug resistance of tumor cells of leukemia patients estimated in vitro at diagnosis correlates with a poor response to chemotherapy and is usually combined with aberrant and immature immunological markers, cytogenetic abnormalities, and a high expression of MDR1 mRNA and P-gp. All together, these factors indicate unfavorable prognosis and low survival of leukemia patients. Thus, the sensitivity of tumor cells to chemotherapeutic drugs measured in vitro at diagnosis may have prognostic value for individual types of leukemia.
Collapse
Affiliation(s)
- Maria Kolesnikova
- Department of therapy, hematology and transfusiology, Novosibirsk State Medical University, Krasny Prospect 52, 630091 Novosibirsk, Russia.
| | - Aleksandra Sen'kova
- Laboratory of nucleic acids biochemistry, Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentieva ave. 8, 630090 Novosibirsk, Russia.
| | - Sofia Tairova
- Clinical and diagnostic laboratory, City Hematology Center, Polzunova Street 21, 630051 Novosibirsk, Russia.
| | - Viktor Ovchinnikov
- Clinical and diagnostic laboratory, City Hematology Center, Polzunova Street 21, 630051 Novosibirsk, Russia.
| | - Tatiana Pospelova
- Department of therapy, hematology and transfusiology, Novosibirsk State Medical University, Krasny Prospect 52, 630091 Novosibirsk, Russia.
| | - Marina Zenkova
- Laboratory of nucleic acids biochemistry, Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentieva ave. 8, 630090 Novosibirsk, Russia.
| |
Collapse
|
24
|
Nair RR, Geldenhuys WJ, Piktel D, Sadana P, Gibson LF. Novel compounds that target lipoprotein lipase and mediate growth arrest in acute lymphoblastic leukemia. Bioorg Med Chem Lett 2018; 28:1937-1942. [PMID: 29650292 DOI: 10.1016/j.bmcl.2018.03.061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 03/21/2018] [Accepted: 03/22/2018] [Indexed: 10/17/2022]
Abstract
Over the past decade, the therapeutic strategies employed to treat B-precursor acute lymphoblastic leukemia (ALL) have been progressively successful in treating the disease. Unfortunately, the treatment associated dyslipidemia, either acute or chronic, is very prevalent and a cause for decreased quality of life in the surviving patients. To overcome this hurdle, we tested a series of cylopropanecarboxamides, a family demonstrated to target lipid metabolism, for their anti-leukemic activity in ALL. Several of the compounds tested showed anti-proliferative activity, with one, compound 22, inhibiting both Philadelphia chromosome negative REH and Philadelphia chromosome positive SupB15 ALL cell division. The novel advantage of these compounds is the potential synergy with standard chemotherapeutic agents, while concomitantly blunting the emergence of dyslipidemia. Thus, the cylopropanecarboxamides represent a novel class of compounds that can be potentially used in combination with the present standard-of-care to limit treatment associated dyslipidemia in ALL patients.
Collapse
Affiliation(s)
- Rajesh R Nair
- Department of Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV 26506, USA
| | - Werner J Geldenhuys
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV 26506, USA
| | - Debbie Piktel
- West Virginia University Cancer Institute, West Virginia University, Morgantown, WV 26506, USA
| | - Prabodh Sadana
- Department of Pharmaceutical Sciences, College of Pharmacy, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| | - Laura F Gibson
- Department of Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV 26506, USA; West Virginia University Cancer Institute, West Virginia University, Morgantown, WV 26506, USA.
| |
Collapse
|
25
|
Slone WL, Moses BS, Hare I, Evans R, Piktel D, Gibson LF. BCL6 modulation of acute lymphoblastic leukemia response to chemotherapy. Oncotarget 2018; 7:23439-53. [PMID: 27015556 PMCID: PMC5029638 DOI: 10.18632/oncotarget.8273] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 02/28/2016] [Indexed: 01/26/2023] Open
Abstract
The bone marrow niche has a significant impact on acute lymphoblastic leukemia (ALL) cell phenotype. Of clinical relevance is the frequency with which quiescent leukemic cells, in this niche, survive treatment and contribute to relapse. This study suggests that marrow microenvironment regulation of BCL6 in ALL is one factor that may be involved in the transition between proliferative and quiescent states of ALL cells. Utilizing ALL cell lines, and primary patient tumor cells we observed that tumor cell BCL6 protein abundance is decreased in the presence of primary human bone marrow stromal cells (BMSC) and osteoblasts (HOB). Chemical inhibition, or shRNA knockdown, of BCL6 in ALL cells resulted in diminished ALL proliferation. As many chemotherapy regimens require tumor cell proliferation for optimal efficacy, we investigated the consequences of constitutive BCL6 expression in leukemic cells during co-culture with BMSC or HOB. Forced chronic expression of BCL6 during co-culture with BMSC or HOB sensitized the tumor to chemotherapy induced cell death. Combination treatment of caffeine, which increases BCL6 expression in ALL cells, with chemotherapy extended the event free survival of mice. These data suggest that BCL6 is one factor, modulated by microenvironment derived cues that may contribute to regulation of ALL therapeutic response.
Collapse
Affiliation(s)
- William L Slone
- Alexander B. Osborn Hematopoietic Malignancy and Transplantation Program of The WVU Cancer Institute, Robert C. Byrd Health Sciences Center, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Blake S Moses
- Alexander B. Osborn Hematopoietic Malignancy and Transplantation Program of The WVU Cancer Institute, Robert C. Byrd Health Sciences Center, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Ian Hare
- Alexander B. Osborn Hematopoietic Malignancy and Transplantation Program of The WVU Cancer Institute, Robert C. Byrd Health Sciences Center, West Virginia University School of Medicine, Morgantown, WV, USA.,Department of Microbiology, Immunology and Cell Biology, Robert C. Byrd Health Sciences Center, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Rebecca Evans
- Alexander B. Osborn Hematopoietic Malignancy and Transplantation Program of The WVU Cancer Institute, Robert C. Byrd Health Sciences Center, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Debbie Piktel
- Alexander B. Osborn Hematopoietic Malignancy and Transplantation Program of The WVU Cancer Institute, Robert C. Byrd Health Sciences Center, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Laura F Gibson
- Alexander B. Osborn Hematopoietic Malignancy and Transplantation Program of The WVU Cancer Institute, Robert C. Byrd Health Sciences Center, West Virginia University School of Medicine, Morgantown, WV, USA.,Department of Microbiology, Immunology and Cell Biology, Robert C. Byrd Health Sciences Center, West Virginia University School of Medicine, Morgantown, WV, USA
| |
Collapse
|
26
|
Barwe SP, Quagliano A, Gopalakrishnapillai A. Eviction from the sanctuary: Development of targeted therapy against cell adhesion molecules in acute lymphoblastic leukemia. Semin Oncol 2017; 44:101-112. [PMID: 28923207 DOI: 10.1053/j.seminoncol.2017.06.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 05/10/2017] [Accepted: 06/29/2017] [Indexed: 02/04/2023]
Abstract
Acute lymphoblastic leukemia (ALL) is a malignant hematological disease afflicting hematopoiesis in the bone marrow. While 80%-90% of patients diagnosed with ALL will achieve complete remission at some point during treatment, ALL is associated with high relapse rate, with a 5-year overall survival rate of 68%. The initial remission failure and the high rate of relapse can be attributed to intrinsic chemoprotective mechanisms that allow persistence of ALL cells despite therapy. These mechanisms are mediated, at least in part, through the engagement of cell adhesion molecules (CAMs) within the bone marrow microenvironment. This review assembles CAMs implicated in protection of leukemic cells from chemotherapy. Such studies are limited in ALL. Therefore, CAMs that are associated with poor outcomes or are overexpressed in ALL and have been shown to be involved in chemoprotection in other hematological cancers are also included. It is likely that these molecules play parallel roles in ALL because the CAMs identified to be a factor in ALL chemoresistance also work similarly in other hematological malignancies. We review the signaling mechanisms activated by the engagement of CAMs that provide protection from chemotherapy. Development of targeted therapies against CAMs could improve outcome and raise the overall cure rate in ALL.
Collapse
Affiliation(s)
- Sonali P Barwe
- Nemours Center for Childhood Cancer Research, A.I. DuPont Hospital for Children, Wilmington, DE.
| | - Anthony Quagliano
- Nemours Center for Childhood Cancer Research, A.I. DuPont Hospital for Children, Wilmington, DE
| | | |
Collapse
|
27
|
Quagliano A, Gopalakrishnapillai A, Barwe SP. Epigenetic drug combination overcomes osteoblast-induced chemoprotection in pediatric acute lymphoid leukemia. Leuk Res 2017; 56:36-43. [PMID: 28171800 PMCID: PMC5366080 DOI: 10.1016/j.leukres.2017.01.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 01/23/2017] [Accepted: 01/25/2017] [Indexed: 01/06/2023]
Abstract
Although there has been much progress in the treatment of acute lymphoblastic leukemia (ALL), decreased sensitivity to chemotherapy remains a significant issue. Recent studies have shown how interactions with the bone marrow microenvironment can protect ALL cells from chemotherapy and allow for the persistence of the disease. Epigenetic drugs have been used for the treatment of ALL, but there are no reports on whether these drugs can overcome bone marrow-induced chemoprotection. Our study investigates the ability of the DNA methyltransferase inhibitor azacitidine and the histone deacetylase inhibitor panobinostat to overcome chemoprotective effects mediated by osteoblasts. We show that the combination of azacitidine and panobinostat has a synergistic killing effect and that this combination is more effective than cytarabine in inducing ALL cell death in co-culture with osteoblasts. We also show that this combination can be used to sensitize ALL cells to chemotherapeutics in the presence of osteoblasts. Finally, we demonstrate that these effects can be replicated ex vivo in a number of mouse passaged xenograft lines from both B-ALL and T-ALL patients with varying cytogenetics. Thus, our data provides evidence that azacitidine and panobinostat can successfully overcome osteoblast-induced chemoprotection in vitro and ex vivo in both B-ALL and T-ALL cells.
Collapse
Affiliation(s)
- Anthony Quagliano
- Nemours Center for Childhood Cancer Research, Alfred I. duPont Hospital for Children, Wilmington, DE 19803, United States; Department of Biological Sciences, University of Delaware, Wilmington, DE 19716, United States
| | - Anilkumar Gopalakrishnapillai
- Nemours Center for Childhood Cancer Research, Alfred I. duPont Hospital for Children, Wilmington, DE 19803, United States.
| | - Sonali P Barwe
- Nemours Center for Childhood Cancer Research, Alfred I. duPont Hospital for Children, Wilmington, DE 19803, United States; Department of Biological Sciences, University of Delaware, Wilmington, DE 19716, United States.
| |
Collapse
|
28
|
Moses BS, Evans R, Slone WL, Piktel D, Martinez I, Craig MD, Gibson LF. Bone Marrow Microenvironment Niche Regulates miR-221/222 in Acute Lymphoblastic Leukemia. Mol Cancer Res 2016; 14:909-919. [PMID: 27358112 DOI: 10.1158/1541-7786.mcr-15-0474] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 06/03/2016] [Indexed: 12/18/2022]
Abstract
Acute lymphoblastic leukemia (ALL) has many features in common with normal B-cell progenitors, including their ability to respond to diverse signals from the bone marrow microenvironment (BMM) resulting in regulation of cell-cycle progression and survival. Bone marrow-derived cues influence many elements of both steady state hematopoiesis and hematopoietic tumor cell phenotypes through modulation of gene expression. miRNAs are one regulatory class of small noncoding RNAs that have been shown to be increasingly important in diverse settings of malignancy. In the current study, miRNA profiles were globally altered in ALL cells following exposure to primary human bone marrow niche cells, including bone marrow stromal cells (BMSC) and primary human osteoblasts (HOB). Specifically, mature miR-221 and miR-222 transcripts were decreased in ALL cells cocultured with BMSC or HOB, coincident with increased p27 (CDKN1B), a previously validated target. Increased p27 protein in ALL cells exposed to BMSC or HOB is consistent with accumulation of tumor cells in the G0 phase of the cell cycle and resistance to chemotherapy-induced death. Overexpression of miR-221 in ALL cells during BMSC or HOB coculture prompted cell-cycle progression and sensitization of ALL cells to cytotoxic agents, blunting the protective influence of the BMM. These novel observations indicate that BMM regulation of miR-221/222 contributes to marrow niche-supported tumor cell quiescence and survival of residual cells. IMPLICATIONS Niche-influenced miR-221/222 may define a novel therapeutic target in ALL to be combined with existing cytotoxic agents to more effectively eradicate refractory disease that contributes to relapse. Mol Cancer Res; 14(10); 909-19. ©2016 AACR.
Collapse
Affiliation(s)
- Blake S Moses
- Alexander B. Osborn Hematopoietic Malignancy and Transplantation Program of the Mary Babb Randolph Cancer Center, Robert C. Byrd Health Sciences Center, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Rebecca Evans
- Alexander B. Osborn Hematopoietic Malignancy and Transplantation Program of the Mary Babb Randolph Cancer Center, Robert C. Byrd Health Sciences Center, West Virginia University School of Medicine, Morgantown, West Virginia
| | - William L Slone
- Alexander B. Osborn Hematopoietic Malignancy and Transplantation Program of the Mary Babb Randolph Cancer Center, Robert C. Byrd Health Sciences Center, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Debbie Piktel
- Alexander B. Osborn Hematopoietic Malignancy and Transplantation Program of the Mary Babb Randolph Cancer Center, Robert C. Byrd Health Sciences Center, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Ivan Martinez
- Department of Microbiology, Immunology and Cell Biology, Robert C. Byrd Health Sciences Center, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Michael D Craig
- Alexander B. Osborn Hematopoietic Malignancy and Transplantation Program of the Mary Babb Randolph Cancer Center, Robert C. Byrd Health Sciences Center, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Laura F Gibson
- Alexander B. Osborn Hematopoietic Malignancy and Transplantation Program of the Mary Babb Randolph Cancer Center, Robert C. Byrd Health Sciences Center, West Virginia University School of Medicine, Morgantown, West Virginia. Department of Microbiology, Immunology and Cell Biology, Robert C. Byrd Health Sciences Center, West Virginia University School of Medicine, Morgantown, West Virginia.
| |
Collapse
|