1
|
Tang Y, Chen L, Xiao Y, Ran Q, Li Z, Chen M. Clinical Significance of Complement and Coagulation Cascades Genes for Patients With Acute Lymphoblastic Leukemia. Int J Lab Hematol 2025; 47:266-275. [PMID: 39523585 DOI: 10.1111/ijlh.14392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 10/03/2024] [Accepted: 10/13/2024] [Indexed: 11/16/2024]
Abstract
INTRODUCTION Acute lymphoblastic leukemia (ALL) is the second most common acute leukemia in adults and the 5-year survival remains low. METHODS We analyzed the gene expression profiles of the complement and coagulation cascades pathway (CCCP) in 998 bone marrow (BM) and 122 peripheral blood (PB) samples of ALL patients and healthy individuals obtained from the TCGA database and evaluated their clinical significance in terms of being diagnostic and prognostic biomarkers. RESULTS We identified 18 CCCP genes (SERPINA1, C5AR1, F5, CD55, PLAUR, C3AR1, THBD, CD59, PLAU, VWF, CFD, F13A1, C1QA, C1QB, C1QC, A2M, SERPINE1 and CR2) differentially expressed in the BM samples of ALL patients compared to healthy individuals. The expression levels of CD55, F13A1 and CR2 in BM were linked with the overall survival of ALL patients. While in PB only 11 CCCP genes (e.g., SERPINA1, C5AR1, F5, PLAUR, C3AR1, THBD, CFD, F13A1, C1QA, SERPINE1, and CR2) were differentially expressed and F13A1 was significantly associated with ALL patient survival. Machine learning enabled us to predict ALL using the CCCP genes and the accuracy can reach 0.9701 and 0.9167 using the BM and PB, respectively. Furthermore, using single-cell RNA sequencing, we found that the differential expression of CCCP genes was found with diversity in the BM-derived immune cells of ALL patients. CONCLUSION Our findings suggest that the CCCP genes may play a key role in the progression of ALL and can be used as potential therapeutic targets and diagnostic markers.
Collapse
Affiliation(s)
- Yuting Tang
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Center, the Second Affiliated Hospital, Army Medical University, Chongqing, China
- Laboratory of Precision Medicine, Department of Blood Transfusion, Laboratory Medicine Center, the Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Li Chen
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Center, the Second Affiliated Hospital, Army Medical University, Chongqing, China
- Laboratory of Precision Medicine, Department of Blood Transfusion, Laboratory Medicine Center, the Second Affiliated Hospital, Army Medical University, Chongqing, China
- Hematopoietic Acute Radiation Syndrome Medical and Pharmaceutical Basic Research Innovation Center, Ministry of Education of the People's Republic of China, Laboratory Medicine Center, Department of Blood Transfusion, the Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Yanni Xiao
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Center, the Second Affiliated Hospital, Army Medical University, Chongqing, China
- Hematopoietic Acute Radiation Syndrome Medical and Pharmaceutical Basic Research Innovation Center, Ministry of Education of the People's Republic of China, Laboratory Medicine Center, Department of Blood Transfusion, the Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Qian Ran
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Center, the Second Affiliated Hospital, Army Medical University, Chongqing, China
- Hematopoietic Acute Radiation Syndrome Medical and Pharmaceutical Basic Research Innovation Center, Ministry of Education of the People's Republic of China, Laboratory Medicine Center, Department of Blood Transfusion, the Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Zhongjun Li
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Center, the Second Affiliated Hospital, Army Medical University, Chongqing, China
- Laboratory of Precision Medicine, Department of Blood Transfusion, Laboratory Medicine Center, the Second Affiliated Hospital, Army Medical University, Chongqing, China
- Hematopoietic Acute Radiation Syndrome Medical and Pharmaceutical Basic Research Innovation Center, Ministry of Education of the People's Republic of China, Laboratory Medicine Center, Department of Blood Transfusion, the Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Maoshan Chen
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Center, the Second Affiliated Hospital, Army Medical University, Chongqing, China
- Laboratory of Precision Medicine, Department of Blood Transfusion, Laboratory Medicine Center, the Second Affiliated Hospital, Army Medical University, Chongqing, China
- Hematopoietic Acute Radiation Syndrome Medical and Pharmaceutical Basic Research Innovation Center, Ministry of Education of the People's Republic of China, Laboratory Medicine Center, Department of Blood Transfusion, the Second Affiliated Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
2
|
Le Y, Zhu S, Peng H, Wang Z. Unveiling the omics tapestry of B-acute lymphoblastic leukemia: bridging genomics, metabolomics, and immunomics. Sci Rep 2025; 15:3188. [PMID: 39863799 PMCID: PMC11762316 DOI: 10.1038/s41598-025-87684-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 01/21/2025] [Indexed: 01/27/2025] Open
Abstract
Acute B-lymphoblastic leukemia (B-ALL) is a highly heterogeneous hematologic malignancy, characterized by significant molecular differences among patients as the disease progresses. While the PI3K-Akt signaling pathway and metabolic reprogramming are known to play crucial roles in B-ALL, the interactions between lipid metabolism, immune pathways, and drug resistance remain unclear. In this study, we performed multi-omics analysis on different patient cohorts (newly diagnosed, relapsed, standard-risk, and poor-risk) to investigate the molecular characteristics associated with metabolism, signaling pathways, and immune regulation in B-ALL. Our findings indicate that the PI3K-Akt signaling pathway is significantly enriched across all groups, highlighting its critical role in B-ALL pathogenesis and progression. Furthermore, metabolomic analysis revealed that lipid metabolism, ferroptosis, and glutathione metabolism are closely linked to disease progression. Notably, in relapsed patients, dysregulated lipid metabolism and the activation of antioxidant mechanisms may contribute to treatment resistance. Immune-related pathways, such as the complement system and coagulation cascade, were also significantly enriched in patients with B-ALL. This suggests that these pathways, alongside the PI3K-Akt pathway, play a role in forming the tumor microenvironment, thereby promoting disease progression and relapse. Based on these findings, this study provides novel potential therapeutic targets for the personalized treatment of B-ALL and lays the foundation for further development of PI3K-Akt pathway inhibitors and immunometabolism-targeted therapies.
Collapse
Affiliation(s)
- Yin Le
- Division of Hematology, Second Xiang-ya Hospital, Central South University, Changsha, China
- Institute of Molecular Hematology, Central South University, Changsha, China
- Hunan Engineering Research Center of Cell Immunotherapy for Hematopoietic Malignancies, Changsha, China
| | - Shicong Zhu
- Department of Geriatrics, Second Xiangya Hospital, Central South University, Changsha, China
| | - Hongling Peng
- Division of Hematology, Second Xiang-ya Hospital, Central South University, Changsha, China.
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, Changsha, 410011, Hunan, China.
- Institute of Molecular Hematology, Central South University, Changsha, China.
- Hunan Engineering Research Center of Cell Immunotherapy for Hematopoietic Malignancies, Changsha, China.
| | - Zhihua Wang
- Division of Hematology, Second Xiang-ya Hospital, Central South University, Changsha, China.
| |
Collapse
|
3
|
Ebelt ND, Loganathan S, Avsharian LC, Manuel ER. Effects of Hypomethylating Agents on Gene Modulation in the Leukemic Microenvironment and Disease Trajectory in a Mouse Model of AML. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.01.626276. [PMID: 39677768 PMCID: PMC11642732 DOI: 10.1101/2024.12.01.626276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Hypomethylating agents (HMAs), such as decitabine and 5-azacytidine (AZA), are valuable treatment options for patients with acute myeloid leukemia that are ineligible for intensive chemotherapy. Despite providing significant extensions in survival when used alone or in combination, eventual relapse and resistance to HMAs are observed. The mechanisms leading to these outcomes are still not well defined and may, in part, be due to a focus on leukemic populations with limited information on the effects of HMAs on non-leukemic cells in the blood and other tissue compartments. In this study, we elucidated effects on immune-related gene expression in non-leukemic blood cells and the spleen during AZA treatment in leukemia-challenged mice. We observed significant changes in pathways regulating adhesion, thrombosis, and angiogenesis as well as a dichotomy in extramedullary disease sites that manifests during relapse. We also identify several genes that may contribute to the anti-leukemic activity of AZA in blood and spleen. Overall, this work has identified novel gene targets and pathways that could be further modulated to augment efficacy of HMA treatment.
Collapse
Affiliation(s)
- Nancy D. Ebelt
- Department of Immuno-Oncology, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | | | - Lara C. Avsharian
- Department of Immuno-Oncology, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
- Irell and Manella Graduate School of Biological Sciences, City of Hope, Duarte, CA 91010, USA
| | - Edwin R. Manuel
- Department of Immuno-Oncology, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| |
Collapse
|
4
|
Oakes A, Liu Y, Dubielecka PM. Complement or insult: the emerging link between complement cascade deficiencies and pathology of myeloid malignancies. J Leukoc Biol 2024; 116:966-984. [PMID: 38836653 PMCID: PMC11531810 DOI: 10.1093/jleuko/qiae130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/01/2024] [Accepted: 05/03/2024] [Indexed: 06/06/2024] Open
Abstract
The complement cascade is an ancient and highly conserved arm of the immune system. The accumulating evidence highlights elevated activity of the complement cascade in cancer microenvironment and emphasizes its effects on the immune, cancer, and cancer stroma cells, pointing to a role in inflammation-mediated etiology of neoplasms. The role the cascade plays in development, progression, and relapse of solid tumors is increasingly recognized, however its role in hematological malignancies, especially those of myeloid origin, has not been thoroughly assessed and remains obscure. As the role of inflammation and autoimmunity in development of myeloid malignancies is becoming recognized, in this review we focus on summarizing the links that have been identified so far for complement cascade involvement in the pathobiology of myeloid malignancies. Complement deficiencies are primary immunodeficiencies that cause an array of clinical outcomes including an increased risk of a range of infectious as well as local or systemic inflammatory and thrombotic conditions. Here, we discuss the impact that deficiencies in complement cascade initiators, mid- and terminal-components and inhibitors have on the biology of myeloid neoplasms. The emergent conclusions indicate that the links between complement cascade, inflammatory signaling, and the homeostasis of hematopoietic system exist, and efforts should continue to detail the mechanistic involvement of complement cascade in the development and progression of myeloid cancers.
Collapse
Affiliation(s)
- Alissa Oakes
- Department of Medicine, Alpert Medical School, Brown University, 69 Brown St, Providence, RI 02906, USA
- Division of Hematology/Oncology, Rhode Island Hospital, 69 Brown St, Providence, RI 02906, USA
- Therapeutic Sciences Graduate program, Brown University, 69 Brown St, Providence, RI 02906, USA
| | - Yuchen Liu
- Greenebaum Comprehensive Cancer Center, University of Maryland Medical Center, 22. S. Greene St., Baltimore, MD 21201-1595, USA
| | - Patrycja M Dubielecka
- Department of Medicine, Alpert Medical School, Brown University, 69 Brown St, Providence, RI 02906, USA
- Division of Hematology/Oncology, Rhode Island Hospital, 69 Brown St, Providence, RI 02906, USA
- Therapeutic Sciences Graduate program, Brown University, 69 Brown St, Providence, RI 02906, USA
- Legorreta Cancer Center, Brown University, One Hoppin St., Coro West, Suite 5.01, Providence, RI 02903, USA
| |
Collapse
|
5
|
Alom MM, Faruqe MO, Molla MKI, Rahman MM. Exploring Prognostic Biomarkers of Acute Myeloid Leukemia to Determine Its Most Effective Drugs from the FDA-Approved List through Molecular Docking and Dynamic Simulation. BIOMED RESEARCH INTERNATIONAL 2023; 2023:1946703. [PMID: 37359050 PMCID: PMC10287530 DOI: 10.1155/2023/1946703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 05/04/2023] [Accepted: 05/20/2023] [Indexed: 06/28/2023]
Abstract
Acute myeloid leukemia (AML) is a blood cancer caused by the abnormal proliferation and differentiation of hematopoietic stem cells in the bone marrow. The actual genetic markers and molecular mechanisms of AML prognosis are unclear till today. This study used bioinformatics approaches for identifying hub genes and pathways associated with AML development to uncover potential molecular mechanisms. The expression profiles of RNA-Seq datasets, GSE68925 and GSE183817, were retrieved from the Gene Expression Omnibus (GEO) database. These two datasets were analyzed by GREIN to obtain differentially expressed genes (DEGs), which were used for performing the Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, protein-protein interaction (PPI), and survival analysis. The molecular docking and dynamic simulation were performed to identify the most effective drug/s for AML from the drug list approved by the Food and Drug Administration (FDA). By integrating the two datasets, 238 DEGs were identified as likely to be affected by AML progression. GO enrichment analyses exhibited that the upregulated genes were mainly associated with inflammatory response (BP) and extracellular region (CC). The downregulated DEGs were involved in the T-cell receptor signalling pathway (BP), an integral component of the lumenal side of the endoplasmic reticulum membrane (CC) and peptide antigen binding (MF). The pathway enrichment analysis showed that the upregulated DEGs were mainly associated with the T-cell receptor signalling pathway. Among the top 15 hub genes, the expression levels of ALDH1A1 and CFD were associated with the prognosis of AML. Four FDA-approved drugs were selected, and a top-ranked drug was identified for each biomarker through molecular docking studies. The top-ranked drugs were further confirmed by molecular dynamic simulation that revealed their binding stability and confirmed their stable performance. Therefore, the drug compounds, enasidenib and gilteritinib, can be recommended as the most effective drugs against the ALDH1A1 and CFD proteins, respectively.
Collapse
Affiliation(s)
- Md. Murshid Alom
- Laboratory of Molecular Health Science, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Md Omar Faruqe
- Department of Computer Science and Engineering, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Md. Khademul Islam Molla
- Department of Computer Science and Engineering, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Md Motiur Rahman
- Laboratory of Molecular Health Science, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh
| |
Collapse
|
6
|
Pan L, Peng C, Wang L, Li L, Huang S, Fei C, Wang N, Chu F, Peng D, Duan X. Network pharmacology and experimental validation-based approach to understand the effect and mechanism of Taohong Siwu Decoction against ischemic stroke. JOURNAL OF ETHNOPHARMACOLOGY 2022; 294:115339. [PMID: 35525530 DOI: 10.1016/j.jep.2022.115339] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 04/16/2022] [Accepted: 04/29/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Taohong Siwu Decoction (THSWD) is a classic prescription of traditional Chinese medicine that is mainly used for promoting blood circulation and alleviating blood stasis. THSWD is composed of Prunus persica (L.) Batsch, Carthamus tinctorius L., Ligusticum chuanxiong hort, Angelica sinensis (Oliv.) Diels, Rehmannia glutinosa (Gaertn.) DC, and Paeoniae Radix Alba. This prescription eliminates blood stasis, supplements blood, and dredges the body as an auxiliary treatment. AIM OF THE STUDY To investigate the mechanistic effects of THSWD in the treatment of cerebral ischemia. MATERIALS AND METHODS we downloaded 39 blood components for THSWD from the PharmMapper database for target prediction studies and identified the targets of cerebral ischemia. We identified the intersection between the components and targets, constructed a protein-protein interaction (PPI) network, carried out GO and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. a rat model of cerebral ischemia was established in rats, and the results of network pharmacology were verified by in vivo experiments. RESULTS Established a component-target-pathway network, further transcriptomics analysis identified a total of 11 target genes (Plau, Fabp4, Mmp9, Mmp12, Cfd, Lcn2, Trem1, Lgals3, Hmox1, Selp and Slc6a4), a total of seven pathways (focal adhesion, complement and coagulation cascades, Staphylococcus aureus infection, malaria, transcriptional dysregulation in cancer, progesterone-mediated oocyte maturation, and the PI3K-Akt signaling pathway), because both targets genes and the complement and coagulation cascade signaling pathways mediate inflammatory responses, the signaling pathways associated with the complement and coagulation cascades were selected for experimental verification. We detected inflammatory factors and several key proteins in the complement and coagulation cascade signaling pathway (C1qb, C1qc, C3ar1, C5ar1, and Cfd). Analysis showed that THSWD can reduce the release of inflammatory factors and inhibit activation of the complement signaling pathways, thereby protecting against ischemic stroke disease. CONCLUSIONS Our findings provide preliminary clarification of the predominant mechanism of action of THSWD when used to treat ischemic stroke.
Collapse
Affiliation(s)
- Lingyu Pan
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Can Peng
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Lei Wang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Lili Li
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Shi Huang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Changyi Fei
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Ni Wang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Furui Chu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Daiyin Peng
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China; College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Xianchun Duan
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China.
| |
Collapse
|
7
|
In vivo genome-wide CRISPR screening in murine acute myeloid leukemia uncovers microenvironmental dependencies. Blood Adv 2022; 6:5072-5084. [PMID: 35793392 PMCID: PMC9631646 DOI: 10.1182/bloodadvances.2022007250] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 06/26/2022] [Indexed: 11/20/2022] Open
Abstract
In vivo CRISPR screens in AML define key interactors of the microenvironment, including integrins, immune modulators, and glycosylation. Eight in vivo–specific hits are recurrently associated with adverse prognosis: BTBD6, FERMT3, ILK, SLC19A1, TAP2, TLN1, TPST2, and TRMT12.
Genome-wide CRISPR screens have been extremely useful in identifying therapeutic targets in diverse cancers by defining genes that are essential for malignant growth. However, most CRISPR screens were performed in vitro and thus cannot identify genes that are essential for interactions with the microenvironment in vivo. Here, we report genome-wide CRISPR screens in 2 in vivo murine models of acute myeloid leukemia (AML) driven by the KMT2A/MLLT3 fusion or by the constitutive coexpression of Hoxa9 and Meis1. Secondary validation using a focused library identified 72 genes specifically essential for leukemic growth in vivo, including components of the major histocompatibility complex class I complex, Cd47, complement receptor Cr1l, and the β-4-galactosylation pathway. Importantly, several of these in vivo–specific hits have a prognostic effect or are inferred to be master regulators of protein activity in human AML cases. For instance, we identified Fermt3, a master regulator of integrin signaling, as having in vivo–specific dependency with high prognostic relevance. Overall, we show an experimental and computational pipeline for genome-wide functional screens in vivo in AML and provide a genome-wide resource of essential drivers of leukemic growth in vivo.
Collapse
|
8
|
Depreter B, De Moerloose B, Vandepoele K, Uyttebroeck A, Van Damme A, Terras E, Denys B, Dedeken L, Dresse MF, Van der Werff Ten Bosch J, Hofmans M, Philippé J, Lammens T. Deciphering molecular heterogeneity in pediatric AML using a cancer vs. normal transcriptomic approach. Pediatr Res 2021; 89:1695-1705. [PMID: 33069162 DOI: 10.1038/s41390-020-01199-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 07/30/2020] [Accepted: 09/25/2020] [Indexed: 11/10/2022]
Abstract
BACKGROUND Still 30-40% of pediatric acute myeloid leukemia (pedAML) patients relapse. Delineation of the transcriptomic profile of leukemic subpopulations could aid in a better understanding of molecular biology and provide novel biomarkers. METHODS Using microarray profiling and quantitative PCR validation, transcript expression was measured in leukemic stem cells (LSC, n = 24) and leukemic blasts (L-blast, n = 25) from pedAML patients in comparison to hematopoietic stem cells (HSCs, n = 19) and control myeloblasts (C-blast, n = 20) sorted from healthy subjects. Gene set enrichment analysis was performed to identify relevant gene set enrichment signatures, and functional protein associations were identified by STRING analysis. RESULTS Highly significantly overexpressed genes in LSC and L-blast were identified with a vast majority not studied in AML. CDKN1A, CFP, and CFD (LSC) and HOMER3, CTSA, and GADD45B (L-blast) represent potentially interesting biomarkers and therapeutic targets. Eleven LSC downregulated targets were identified that potentially qualify as tumor suppressor genes, with MYCT1, PBX1, and PTPRD of highest interest. Inflammatory and immune dysregulation appeared to be perturbed biological networks in LSC, whereas dysregulated metabolic profiles were observed in L-blast. CONCLUSION Our study illustrates the power of taking into account cell population heterogeneity and reveals novel targets eligible for functional evaluation and therapy in pedAML. IMPACT Novel transcriptional targets were discovered showing a significant differential expression in LSCs and blasts from pedAML patients compared to their normal counterparts from healthy controls. Deregulated pathways, including immune and metabolic dysregulation, were addressed for the first time in children, offering a deeper understanding of the molecular pathogenesis. These novel targets have the potential of acting as biomarkers for risk stratification, follow-up, and targeted therapy. Multiple LSC-downregulated targets endow tumor suppressor roles in other cancer entities, and further investigation whether hypomethylating therapy could result into LSC eradication in pedAML is warranted.
Collapse
Affiliation(s)
- Barbara Depreter
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium.
| | - Barbara De Moerloose
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent, Ghent, Belgium.,Department of Pediatric Hematology-Oncology and Stem Cell Transplantation, Ghent University Hospital, Ghent, Belgium
| | - Karl Vandepoele
- Cancer Research Institute Ghent, Ghent, Belgium.,Department of Laboratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Anne Uyttebroeck
- Department of Pediatrics, University Hospital Gasthuisberg, Leuven, Belgium
| | - An Van Damme
- Department of Pediatric Hematology Oncology, University Hospital Saint-Luc, Brussels, Belgium
| | - Eva Terras
- Department of Pediatric Hematology-Oncology and Stem Cell Transplantation, Ghent University Hospital, Ghent, Belgium
| | - Barbara Denys
- Department of Laboratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Laurence Dedeken
- Department of Pediatric Hematology Oncology, Queen Fabiola Children's University Hospital, Brussels, Belgium
| | | | | | - Mattias Hofmans
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent, Ghent, Belgium
| | - Jan Philippé
- Cancer Research Institute Ghent, Ghent, Belgium.,Department of Laboratory Medicine, Ghent University Hospital, Ghent, Belgium.,Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Tim Lammens
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent, Ghent, Belgium.,Department of Pediatric Hematology-Oncology and Stem Cell Transplantation, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
9
|
Mao X, Zhou L, Tey SK, Ma APY, Yeung CLS, Ng TH, Wong SWK, Liu BHM, Fung YME, Patz EF, Cao P, Gao Y, Yam JWP. Tumour extracellular vesicle-derived Complement Factor H promotes tumorigenesis and metastasis by inhibiting complement-dependent cytotoxicity of tumour cells. J Extracell Vesicles 2020; 10:e12031. [PMID: 33708358 PMCID: PMC7890557 DOI: 10.1002/jev2.12031] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 10/02/2020] [Accepted: 11/07/2020] [Indexed: 12/12/2022] Open
Abstract
The complement system is involved in the immunosurveillance of pathogens and tumour cells. Proteomic profiling revealed that extracellular vesicles (EVs) released by metastatic hepatocellular carcinoma (HCC) cells contained a significant number of complement proteins. Complement Factor H (CFH), an abundant soluble serum protein that inhibits the alternative complement pathway, was found to be highly expressed in EVs of metastatic HCC cell lines. Here, we investigated the functional role of EV-CFH and explored the therapeutic efficacy of targeting EV-CFH with an anti-CFH antibody in HCC. The results showed that EVs that are enriched in CFH promoted HCC cell growth, migration, invasiveness and enhanced liver tumour formation in mice. EV-CFH also promoted metastasis, which was significantly abrogated when treated with an anti-CFH antibody. These findings demonstrate an unexplored function of EV-CFH in protecting HCC cells by evading complement attack, thereby facilitating tumorigenesis and metastasis. Lastly, we demonstrated the therapeutic efficacy of an anti-CFH antibody in suppressing tumour formation in a syngeneic mouse model. This study suggests a new therapeutic strategy for HCC, by inhibiting EV-CFH with a tumour specific anti-CFH antibody.
Collapse
Affiliation(s)
- Xiaowen Mao
- Department of Pathology, Li Ka Shing Faculty of MedicineThe University of Hong KongPokfulamHong Kong
| | - Longyin Zhou
- Department of Pathology, Li Ka Shing Faculty of MedicineThe University of Hong KongPokfulamHong Kong
| | - Sze Keong Tey
- Department of Pathology, Li Ka Shing Faculty of MedicineThe University of Hong KongPokfulamHong Kong
| | - Angel Po Yee Ma
- Department of Pathology, Li Ka Shing Faculty of MedicineThe University of Hong KongPokfulamHong Kong
| | - Cherlie Lot Sum Yeung
- Department of Pathology, Li Ka Shing Faculty of MedicineThe University of Hong KongPokfulamHong Kong
| | - Tung Him Ng
- Department of Pathology, Li Ka Shing Faculty of MedicineThe University of Hong KongPokfulamHong Kong
| | - Samuel Wan Ki Wong
- Department of Pathology, Li Ka Shing Faculty of MedicineThe University of Hong KongPokfulamHong Kong
| | - Bonnie Hei Man Liu
- Department of Pathology, Li Ka Shing Faculty of MedicineThe University of Hong KongPokfulamHong Kong
| | - Yi Man Eva Fung
- Department of Chemistry, State Key Laboratory of Synthetic ChemistryThe University of Hong KongPokfulamHong Kong
| | - Edward F. Patz
- Department of RadiologyDuke University Medical CenterDurhamUSA
- Department of Pharmacology and Cancer BiologyDuke University Medical CenterDurhamUSA
| | - Peihua Cao
- Clinical Research Center, Zhujiang HospitalSouthern Medical UniversityGuangzhouGuangdongP. R. China
- Department of Hepatobiliary Surgery II, Zhujiang HospitalSouthern Medical UniversityGuangzhouGuangdongP. R. China
| | - Yi Gao
- Department of Hepatobiliary Surgery II, Zhujiang HospitalSouthern Medical UniversityGuangzhouGuangdongP. R. China
- Institute of Regenerative Medicine, Zhujiang HospitalSouthern Medical UniversityGuangzhouP. R. China
- Artificial Organs and Tissue Engineering Centre of Guangdong ProvinceGuangzhouP. R. China
- State Key Laboratory of Organ Failure ResearchSouthern Medical UniversityGuangzhouP. R. China
| | - Judy Wai Ping Yam
- Department of Pathology, Li Ka Shing Faculty of MedicineThe University of Hong KongPokfulamHong Kong
- Department of Hepatobiliary Surgery II, Zhujiang HospitalSouthern Medical UniversityGuangzhouGuangdongP. R. China
- State Key Laboratory of Liver Research (The University of Hong Kong)PokfulamHong Kong
| |
Collapse
|
10
|
Wu J, Xiao Y, Sun J, Sun H, Chen H, Zhu Y, Fu H, Yu C, E W, Lai S, Ma L, Li J, Fei L, Jiang M, Wang J, Ye F, Wang R, Zhou Z, Zhang G, Zhang T, Ding Q, Wang Z, Hao S, Liu L, Zheng W, He J, Huang W, Wang Y, Xie J, Li T, Cheng T, Han X, Huang H, Guo G. A single-cell survey of cellular hierarchy in acute myeloid leukemia. J Hematol Oncol 2020; 13:128. [PMID: 32977829 PMCID: PMC7517826 DOI: 10.1186/s13045-020-00941-y] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 07/21/2020] [Indexed: 02/07/2023] Open
Abstract
Background Acute myeloid leukemia (AML) is a fatal hematopoietic malignancy and has a prognosis that varies with its genetic complexity. However, there has been no appropriate integrative analysis on the hierarchy of different AML subtypes. Methods Using Microwell-seq, a high-throughput single-cell mRNA sequencing platform, we analyzed the cellular hierarchy of bone marrow samples from 40 patients and 3 healthy donors. We also used single-cell single-molecule real-time (SMRT) sequencing to investigate the clonal heterogeneity of AML cells. Results From the integrative analysis of 191727 AML cells, we established a single-cell AML landscape and identified an AML progenitor cell cluster with novel AML markers. Patients with ribosomal protein high progenitor cells had a low remission rate. We deduced two types of AML with diverse clinical outcomes. We traced mitochondrial mutations in the AML landscape by combining Microwell-seq with SMRT sequencing. We propose the existence of a phenotypic “cancer attractor” that might help to define a common phenotype for AML progenitor cells. Finally, we explored the potential drug targets by making comparisons between the AML landscape and the Human Cell Landscape. Conclusions We identified a key AML progenitor cell cluster. A high ribosomal protein gene level indicates the poor prognosis. We deduced two types of AML and explored the potential drug targets. Our results suggest the existence of a cancer attractor.
Collapse
Affiliation(s)
- Junqing Wu
- Center for Stem Cell and Regenerative Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.,Stem Cell Institute, Zhejiang University, Hangzhou, 310058, China
| | - Yanyu Xiao
- Center for Stem Cell and Regenerative Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.,Stem Cell Institute, Zhejiang University, Hangzhou, 310058, China
| | - Jie Sun
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Huiyu Sun
- Center for Stem Cell and Regenerative Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.,Stem Cell Institute, Zhejiang University, Hangzhou, 310058, China
| | - Haide Chen
- Center for Stem Cell and Regenerative Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.,Stem Cell Institute, Zhejiang University, Hangzhou, 310058, China
| | - Yuanyuan Zhu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Huarui Fu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Chengxuan Yu
- Center for Stem Cell and Regenerative Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.,Stem Cell Institute, Zhejiang University, Hangzhou, 310058, China
| | - Weigao E
- Center for Stem Cell and Regenerative Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.,Stem Cell Institute, Zhejiang University, Hangzhou, 310058, China
| | - Shujing Lai
- Center for Stem Cell and Regenerative Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.,Stem Cell Institute, Zhejiang University, Hangzhou, 310058, China
| | - Lifeng Ma
- Center for Stem Cell and Regenerative Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.,Stem Cell Institute, Zhejiang University, Hangzhou, 310058, China
| | - Jiaqi Li
- Center for Stem Cell and Regenerative Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.,Stem Cell Institute, Zhejiang University, Hangzhou, 310058, China
| | - Lijiang Fei
- Center for Stem Cell and Regenerative Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.,Stem Cell Institute, Zhejiang University, Hangzhou, 310058, China
| | - Mengmeng Jiang
- Center for Stem Cell and Regenerative Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.,Stem Cell Institute, Zhejiang University, Hangzhou, 310058, China
| | - Jingjing Wang
- Center for Stem Cell and Regenerative Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.,Stem Cell Institute, Zhejiang University, Hangzhou, 310058, China
| | - Fang Ye
- Center for Stem Cell and Regenerative Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.,Stem Cell Institute, Zhejiang University, Hangzhou, 310058, China
| | - Renying Wang
- Center for Stem Cell and Regenerative Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.,Stem Cell Institute, Zhejiang University, Hangzhou, 310058, China
| | - Ziming Zhou
- Center for Stem Cell and Regenerative Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.,Stem Cell Institute, Zhejiang University, Hangzhou, 310058, China
| | - Guodong Zhang
- Center for Stem Cell and Regenerative Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.,Stem Cell Institute, Zhejiang University, Hangzhou, 310058, China
| | - Tingyue Zhang
- Center for Stem Cell and Regenerative Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.,Stem Cell Institute, Zhejiang University, Hangzhou, 310058, China
| | - Qiong Ding
- Wuhan Biobank Co., LTD, Wuhan, 430075, China
| | - Zou Wang
- Wuhan Biobank Co., LTD, Wuhan, 430075, China
| | - Sheng Hao
- Wuhan Biobank Co., LTD, Wuhan, 430075, China
| | - Lizhen Liu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Weiyan Zheng
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Jingsong He
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Weijia Huang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Yungui Wang
- Institute of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Jin Xie
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, 310058, China
| | - Tiefeng Li
- Institute of Applied Mechanics, Zhejiang University, Hangzhou, 310027, China
| | - Tao Cheng
- Institute of Hematology and Blood Disease Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300000, China.,Alliance for Atlas of Blood Cells, Tianjin, China
| | - Xiaoping Han
- Center for Stem Cell and Regenerative Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China. .,Stem Cell Institute, Zhejiang University, Hangzhou, 310058, China. .,Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, 311121, China.
| | - He Huang
- Institute of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China. .,Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China. .,Stem Cell Institute, Zhejiang University, Hangzhou, 310058, China. .,Alliance for Atlas of Blood Cells, Tianjin, China. .,Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, 311121, China.
| | - Guoji Guo
- Center for Stem Cell and Regenerative Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China. .,Institute of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China. .,Stem Cell Institute, Zhejiang University, Hangzhou, 310058, China. .,Alliance for Atlas of Blood Cells, Tianjin, China. .,Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, 311121, China.
| |
Collapse
|
11
|
Hui T, Cao Q, Wegrzyn-Woltosz J, O'Neill K, Hammond CA, Knapp DJHF, Laks E, Moksa M, Aparicio S, Eaves CJ, Karsan A, Hirst M. High-Resolution Single-Cell DNA Methylation Measurements Reveal Epigenetically Distinct Hematopoietic Stem Cell Subpopulations. Stem Cell Reports 2018; 11:578-592. [PMID: 30078558 PMCID: PMC6093082 DOI: 10.1016/j.stemcr.2018.07.003] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 07/08/2018] [Accepted: 07/09/2018] [Indexed: 02/06/2023] Open
Abstract
Increasing evidence of functional and transcriptional heterogeneity in phenotypically similar cells examined individually has prompted interest in obtaining parallel methylome data. We describe the development and application of such a protocol to index-sorted murine and human hematopoietic cells that are highly enriched in their content of functionally defined stem cells. Utilizing an optimized single-cell bisulfite sequencing protocol, we obtained quantitative DNA methylation measurements of up to 5.7 million CpGs in single hematopoietic cells. In parallel, we developed an analytical strategy (PDclust) to define single-cell DNA methylation states through pairwise comparisons of single-CpG methylation measurements. PDclust revealed that a single-cell epigenetic state can be described by a small (<1%) stochastically sampled fraction of CpGs and that these states are reflective of cell identity and state. Using relationships revealed by PDclust, we derive near complete methylomes for epigenetically distinct subpopulations of hematopoietic cells enriched for functional stem cell content.
Collapse
Affiliation(s)
- Tony Hui
- Department of Microbiology and Immunology and Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z 1L3, Canada
| | - Qi Cao
- Department of Microbiology and Immunology and Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Joanna Wegrzyn-Woltosz
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z 1L3, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 2B5, Canada
| | - Kieran O'Neill
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z 1L3, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 2B5, Canada; Terry Fox Laboratory, BC Cancer, Vancouver, BC V5Z 1L3, Canada
| | - Colin A Hammond
- Terry Fox Laboratory, BC Cancer, Vancouver, BC V5Z 1L3, Canada; Department of Medicine, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | - David J H F Knapp
- Terry Fox Laboratory, BC Cancer, Vancouver, BC V5Z 1L3, Canada; Department of Medicine, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | - Emma Laks
- Department of Molecular Oncology, BC Cancer, Vancouver, BC V5Z 1L3, Canada
| | - Michelle Moksa
- Department of Microbiology and Immunology and Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Samuel Aparicio
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 2B5, Canada; Department of Molecular Oncology, BC Cancer, Vancouver, BC V5Z 1L3, Canada
| | - Connie J Eaves
- Terry Fox Laboratory, BC Cancer, Vancouver, BC V5Z 1L3, Canada; Department of Medicine, University of British Columbia, Vancouver, BC V5Z 1M9, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, BC V6H 3N1, Canada
| | - Aly Karsan
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z 1L3, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 2B5, Canada; Terry Fox Laboratory, BC Cancer, Vancouver, BC V5Z 1L3, Canada
| | - Martin Hirst
- Department of Microbiology and Immunology and Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z 1L3, Canada.
| |
Collapse
|
12
|
Bartaula-Brevik S, Lindstad Brattås MK, Tvedt THA, Reikvam H, Bruserud Ø. Splenic tyrosine kinase (SYK) inhibitors and their possible use in acute myeloid leukemia. Expert Opin Investig Drugs 2018; 27:377-387. [DOI: 10.1080/13543784.2018.1459562] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Sushma Bartaula-Brevik
- Section for Hematology, Department of Clinical Science, University of Bergen, Bergen, Norway
| | | | - Tor Henrik Anderson Tvedt
- Section for Hematology, Department of Clinical Science, University of Bergen, Bergen, Norway
- Section for Hematology, Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Håkon Reikvam
- Section for Hematology, Department of Clinical Science, University of Bergen, Bergen, Norway
- Section for Hematology, Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Øystein Bruserud
- Section for Hematology, Department of Clinical Science, University of Bergen, Bergen, Norway
- Section for Hematology, Department of Medicine, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
13
|
Cecotka A, Polanska J. Region-Specific Methylation Profiling in Acute Myeloid Leukemia. Interdiscip Sci 2018; 10:33-42. [PMID: 29405013 PMCID: PMC5838208 DOI: 10.1007/s12539-018-0285-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 01/21/2018] [Accepted: 01/27/2018] [Indexed: 01/09/2023]
Abstract
Alteration of DNA methylation level in cancer diseases leads to deregulation of gene expression-silencing of tumor suppressor genes and enhancing of protooncogenes. There are several tools devoted to the problem of identification of CpG sites' demethylation but majority of them focuses on single site level and does not allow for quantification of region methylation changes. The aim was to create an adaptive algorithm supporting detection of differentially methylated CpG sites and genomic regions specific for acute myeloid leukemia. Knowledge on AML methylation fingerprint helps in better understanding the epigenetics of leukemogenesis. Proposed algorithm is data driven and does not use predefined quantification thresholds. Gaussian mixture modeling supports classification of CpG sites to several levels of demethylation. p value integration allows for translation from single site demethylation to the demethylation of gene promoter and body regions. Methylation profiles of healthy controls and AML patients were examined (GEO:GSE63409). The differences in whole genome methylation profiles were observed. The methylation profile differs significantly among genomic regions. The lowest methylation level was observed for promoter regions, while sites from intergenic regions were by average higher methylated. The observed number of AML related down methylated sites has not substantially exceeded the expected number by chance. Intergenic regions were characterized by the highest percentage of AML up methylated sites. Methylation enhancement/diminution is the most frequent for intergenic region while methylation compensation (positive or negative) is specific for promoter regions. Functional analysis performed for AML down methylated or extreme high up methylated genes showed strong connection to the leukemic processes.
Collapse
Affiliation(s)
- Agnieszka Cecotka
- Data Mining Division, Faculty of Automatic Control, Electronics and Computer Science, Institute of Automatic Control, Silesian University of Technology, ul. Akademicka 16, 44-100, Gliwice, Poland
| | - Joanna Polanska
- Data Mining Division, Faculty of Automatic Control, Electronics and Computer Science, Institute of Automatic Control, Silesian University of Technology, ul. Akademicka 16, 44-100, Gliwice, Poland.
| |
Collapse
|
14
|
Mao CX, Yin JY, Zhang Y, Wang ZB, Yang ZQ, He ZW, Li XM, Mao XY, Cui RT, Li XJ, Li X, Zhang W, Zhou HH, Liu ZQ. The molecular classification of astrocytic tumors. Oncotarget 2017; 8:96340-96350. [PMID: 29221210 PMCID: PMC5707104 DOI: 10.18632/oncotarget.22047] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 08/23/2017] [Indexed: 12/31/2022] Open
Abstract
Aim This study will explore the genetic and epigenetic alterations in astrocytomas, and identify the critical molecular signatures and signaling pathways for prognosis assessment by multiplatform comprehensive analysis. Method We performed integration analyses of incorporating DNA methylation, mRNA expression, microRNA expression, and long non-coding RNA (lncRNA) expression in 33 astrocytic tumor tissues and 9 non-tumor brain tissues. Result We observed that 11,795 DNA methylation sites, 3,627 genes, 136 microRNAs, and 3,334 lncRNAs were significantly differential between tumors and non-tumor brain tissues, and the filtered signatures through comprehensive analysis were significantly enriched in calcium signaling pathway. Furthermore, four signatures involved in calcium signaling pathway and age could contribute to predicting the patients’ overall survival. Additionally, we identified differentially expressed signatures between IDH-mutated and IDH wild-type astrocytic tumors, and complement and coagulation cascades pathway was the most significant pathway in functional enrichment analysis using multiplatform data. The IDH wild-type astrocytomas were divided into two subtypes by Cluster of Cluster (CoC) analysis, one of which was enriched for astrocytomas overexpressed in chemokine signaling pathway. Conclusion The calcium signaling pathway played a key role in astrocytoma tumorigenesis and prognosis. IDH mutation was a vital biomarker, and resulted in the change of expression level in complement and coagulation cascades pathway. The chemokine signaling pathway could characterize subtypes of IDH wild-type astrocytomas.
Collapse
Affiliation(s)
- Chen-Xue Mao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, P. R. China
| | - Ji-Ye Yin
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, P. R. China
| | - Ying Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, P. R. China
| | - Zhi-Bin Wang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, P. R. China
| | - Zhi-Quan Yang
- Department Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, P. R. China
| | - Zheng-Wen He
- Department of Neurosurgery, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410014, P. R. China
| | - Xiang-Min Li
- Department of Emergency, Xiangya Hospital, Central South University, Changsha 410008, P. R. China
| | - Xiao-Yuan Mao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, P. R. China
| | - Ru-Tao Cui
- Departments of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118, USA
| | - Xue-Jun Li
- Department Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, P. R. China
| | - Xi Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, P. R. China
| | - Wei Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, P. R. China
| | - Hong-Hao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, P. R. China
| | - Zhao-Qian Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, P. R. China
| |
Collapse
|
15
|
Abstract
In addition to being a component of innate immunity and an ancient defense mechanism against invading pathogens, complement activation also participates in the adaptive immune response, inflammation, hemostasis, embryogenesis, and organ repair and development. Activation of the complement system via classical, lectin, or alternative pathways generates anaphylatoxins (C3a and C5a) and membrane attack complex (C5b-9) and opsonizes targeted cells. Complement activation end products and their receptors mediate cell-cell interactions that regulate several biological functions in the extravascular tissue. Signaling of anaphylatoxin receptors or assembly of membrane attack complex promotes cell dedifferentiation, proliferation, and migration in addition to reducing apoptosis. As a result, complement activation in the tumor microenvironment enhances tumor growth and increases metastasis. In this Review, I discuss immune and nonimmune functions of complement proteins and the tumor-promoting effect of complement activation.
Collapse
|