2
|
Luo C, Wang L, Wu G, Huang X, Zhang Y, Ma Y, Xie M, Sun Y, Huang Y, Huang Z, Song Q, Li H, Hou Y, Li X, Xu S, Chen J. Comparison of the efficacy of hematopoietic stem cell mobilization regimens: a systematic review and network meta-analysis of preclinical studies. Stem Cell Res Ther 2021; 12:310. [PMID: 34051862 PMCID: PMC8164253 DOI: 10.1186/s13287-021-02379-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 05/10/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Mobilization failure may occur when the conventional hematopoietic stem cells (HSCs) mobilization agent granulocyte colony-stimulating factor (G-CSF) is used alone, new regimens were developed to improve mobilization efficacy. Multiple studies have been performed to investigate the efficacy of these regimens via animal models, but the results are inconsistent. We aim to compare the efficacy of different HSC mobilization regimens and identify new promising regimens with a network meta-analysis of preclinical studies. METHODS We searched Medline and Embase databases for the eligible animal studies that compared the efficacy of different HSC mobilization regimens. Primary outcome is the number of total colony-forming cells (CFCs) in per milliliter of peripheral blood (/ml PB), and the secondary outcome is the number of Lin- Sca1+ Kit+ (LSK) cells/ml PB. Bayesian network meta-analyses were performed following the guidelines of the National Institute for Health and Care Excellence Decision Support Unit (NICE DSU) with WinBUGS version 1.4.3. G-CSF-based regimens were classified into the SD (standard dose, 200-250 μg/kg/day) group and the LD (low dose, 100-150 μg/kg/day) group based on doses, and were classified into the short-term (2-3 days) group and the long-term (4-5 days) group based on administration duration. Long-term SD G-CSF was chosen as the reference treatment. Results are presented as the mean differences (MD) with the associated 95% credibility interval (95% CrI) for each regimen. RESULTS We included 95 eligible studies and reviewed the efficacy of 94 mobilization agents. Then 21 studies using the poor mobilizer mice model (C57BL/6 mice) to investigate the efficacy of different mobilization regimens were included for network meta-analysis. Network meta-analyses indicated that compared with long-term SD G-CSF alone, 14 regimens including long-term SD G-CSF + Me6, long-term SD G-CSF + AMD3100 + EP80031, long-term SD G-CSF + AMD3100 + FG-4497, long-term SD G-CSF + ML141, long-term SD G-CSF + desipramine, AMD3100 + meloxicam, long-term SD G-CSF + reboxetine, AMD3100 + VPC01091, long-term SD G-CSF + FG-4497, Me6, long-term SD G-CSF + EP80031, POL5551, long-term SD G-CSF + AMD3100, AMD1300 + EP80031 and long-term LD G-CSF + meloxicam significantly increased the collections of total CFCs. G-CSF + Me6 ranked first among these regimens in consideration of the number of harvested CFCs/ml PB (MD 2168.0, 95% CrI 2062.0-2272.0). In addition, 7 regimens including long-term SD G-CSF + AMD3100, AMD3100 + EP80031, long-term SD G-CSF + EP80031, short-term SD G-CSF + AMD3100 + IL-33, long-term SD G-CSF + ML141, short-term LD G-CSF + ARL67156, and long-term LD G-CSF + meloxicam significantly increased the collections of LSK cells compared with G-CSF alone. Long-term SD G-CSF + AMD3100 ranked first among these regimens in consideration of the number of harvested LSK cells/ml PB (MD 2577.0, 95% CrI 2422.0-2733.0). CONCLUSIONS Considering the number of CFC and LSK cells in PB as outcomes, G-CSF plus AMD3100, Me6, EP80031, ML141, FG-4497, IL-33, ARL67156, meloxicam, desipramine, and reboxetine are all promising mobilizing regimens for future investigation.
Collapse
Affiliation(s)
- Chengxin Luo
- Center for Hematology, Southwest Hospital, Third Military Medical University, #30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China.,Key Laboratory of Cancer Immunotherapy of Chongqing, Chongqing, China
| | - Li Wang
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Guixian Wu
- Center for Hematology, Southwest Hospital, Third Military Medical University, #30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China.,Key Laboratory of Cancer Immunotherapy of Chongqing, Chongqing, China
| | - Xiangtao Huang
- Center for Hematology, Southwest Hospital, Third Military Medical University, #30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China.,Key Laboratory of Cancer Immunotherapy of Chongqing, Chongqing, China
| | - Yali Zhang
- Center for Hematology, Southwest Hospital, Third Military Medical University, #30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China.,Key Laboratory of Cancer Immunotherapy of Chongqing, Chongqing, China
| | - Yanni Ma
- Center for Hematology, Southwest Hospital, Third Military Medical University, #30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China.,Key Laboratory of Cancer Immunotherapy of Chongqing, Chongqing, China
| | - Mingling Xie
- Center for Hematology, Southwest Hospital, Third Military Medical University, #30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China.,Key Laboratory of Cancer Immunotherapy of Chongqing, Chongqing, China
| | - Yanni Sun
- Center for Hematology, Southwest Hospital, Third Military Medical University, #30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China.,Key Laboratory of Cancer Immunotherapy of Chongqing, Chongqing, China
| | - Yarui Huang
- Center for Hematology, Southwest Hospital, Third Military Medical University, #30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China.,Key Laboratory of Cancer Immunotherapy of Chongqing, Chongqing, China
| | - Zhen Huang
- Center for Hematology, Southwest Hospital, Third Military Medical University, #30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China.,Key Laboratory of Cancer Immunotherapy of Chongqing, Chongqing, China
| | - Qiuyue Song
- Department of Health Statistics, Third Military Medical University, Chongqing, China
| | - Hui Li
- Center for Hematology, Southwest Hospital, Third Military Medical University, #30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China.,Key Laboratory of Cancer Immunotherapy of Chongqing, Chongqing, China
| | - Yu Hou
- Center for Hematology, Southwest Hospital, Third Military Medical University, #30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China.,Key Laboratory of Cancer Immunotherapy of Chongqing, Chongqing, China
| | - Xi Li
- Institute of Infectious Disease, Southwest Hospital, Third Military Medical University, #30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China.
| | - Shuangnian Xu
- Center for Hematology, Southwest Hospital, Third Military Medical University, #30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China. .,Key Laboratory of Cancer Immunotherapy of Chongqing, Chongqing, China.
| | - Jieping Chen
- Center for Hematology, Southwest Hospital, Third Military Medical University, #30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China. .,Key Laboratory of Cancer Immunotherapy of Chongqing, Chongqing, China.
| |
Collapse
|
3
|
Chen J, Lazarus HM, Dahi PB, Avecilla S, Giralt SA. Getting blood out of a stone: Identification and management of patients with poor hematopoietic cell mobilization. Blood Rev 2020; 47:100771. [PMID: 33213986 DOI: 10.1016/j.blre.2020.100771] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 07/15/2020] [Accepted: 10/14/2020] [Indexed: 12/13/2022]
Abstract
Hematopoietic cell transplantation (HCT) has become a primary treatment for many cancers. Nowadays, the primary source of hematopoietic cells is by leukapheresis collection of these cells from peripheral blood, after a forced egress of hematopoietic cells from marrow into blood circulation, a process known as "mobilization". In this process, mobilizing agents disrupt binding interactions between hematopoietic cells and marrow microenvironment to facilitate collection. As the first essential step of HCT, poor mobilization, i.e. failure to obtain a desired or required number of hematopoietic cell, is one of the major factors affecting engraftment or even precluding transplantation. This review summarizes the available mobilization regimens using granulocyte-colony stimulating factor (G-CSF) and plerixafor, as well as the current understanding of the factors that are associated with poor mobilization. Strategies to mobilize patients or healthy donors who failed previous mobilization are discussed. Multiple novel agents are under investigation and some of them have shown the potential to enhance the mobilization response to G-CSF and/or plerixafor. Further investigation of the risk factors including genetic factors will offer an opportunity to better understand the molecular mechanism of mobilization and help develop new therapeutic strategies for successful mobilizations.
Collapse
Affiliation(s)
- Jian Chen
- Department of Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States; Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX, United States
| | - Hillard M Lazarus
- Department of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Parastoo B Dahi
- Department of Medicine, Bone Marrow Transplant Service, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Scott Avecilla
- Department of Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Sergio A Giralt
- Department of Medicine, Bone Marrow Transplant Service, Memorial Sloan Kettering Cancer Center, New York, NY, United States.
| |
Collapse
|
4
|
Roy IM, Biswas A, Verfaillie C, Khurana S. Energy Producing Metabolic Pathways in Functional Regulation of the Hematopoietic Stem Cells. IUBMB Life 2019; 70:612-624. [PMID: 29999238 DOI: 10.1002/iub.1870] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 04/20/2018] [Indexed: 02/06/2023]
Abstract
The hematopoietic system has a very well-studied hierarchy with the long-term (LT) hematopoietic stem cells (HSCs) taking the top position. The pool of quiescent adult LT-HSCs generated during the fetal and early postnatal life acts as a reservoir to supply all the blood cells. Therefore, the maintenance of this stem cell pool is pivotal to maintaining homeostasis in hematopoietic system. It has long been known that external cues, along with the internal genetic factors influence the status of HSCs in the bone marrow (BM). Hypoxia is one such factor that regulates the vascular as well as hematopoietic ontogeny from a very early time point in development. The metabolic outcomes of a hypoxic microenvironment play important roles in functional regulation of HSCs, especially in case of adult BM HSCs. Anaerobic metabolic pathways therefore perform prominent role in meeting energy demands. Increased oxidative pathways on the other hand result in loss of stemness. Recent studies have attributed the functional differences in HSCs across different life stages to their metabolic phenotypes regulated by respective niches. Indicating thus, that various energy production pathways could play distinct role in regulating HSC function at different developmental/physiological states. Here, we review the current status of our understanding over the role that energy production pathways play in regulating HSC stemness. © 2018 IUBMB Life, 70(7):612-624, 2018.
Collapse
Affiliation(s)
- Irene M Roy
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Kerala, India
| | - Atreyi Biswas
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Kerala, India
| | | | - Satish Khurana
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Kerala, India
| |
Collapse
|
5
|
Nowlan B, Williams ED, Doran MR, Levesque JP. CD27, CD201, FLT3, CD48, and CD150 cell surface staining identifies long-term mouse hematopoietic stem cells in immunodeficient non-obese diabetic severe combined immune deficient-derived strains. Haematologica 2019; 105:71-82. [PMID: 31073070 PMCID: PMC6939540 DOI: 10.3324/haematol.2018.212910] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 05/02/2019] [Indexed: 02/06/2023] Open
Abstract
Staining for CD27 and CD201 (endothelial protein C receptor) has been recently suggested as an alternative to stem cell antigen-1 (Sca1) to identify hematopoietic stem cells in inbred mouse strains with low or nil expression of SCA1. However, whether staining for CD27 and CD201 is compatible with low fms-like tyrosine kinase 3 (FLT3) expression and the "SLAM" code defined by CD48 and CD150 to identify mouse long-term reconstituting hematopoietic stem cells has not been established. We compared the C57BL/6 strain, which expresses a high level of SCA1 on hematopoietic stem cells to non-obese diabetic severe combined immune deficient NOD.CB17-prkdc scid/Sz (NOD-scid) mice and NOD.CB17-prkdc scid il2rg tm1Wj1/Sz (NSG) mice which both express low to negative levels of SCA1 on hematopoietic stem cells. We demonstrate that hematopoietic stem cells are enriched within the linage-negative C-KIT+ CD27+ CD201+ FLT3- CD48-CD150+ population in serial dilution long-term competitive transplantation assays. We also make the novel observation that CD48 expression is up-regulated in Lin- KIT+ progenitors from NOD-scid and NSG strains, which otherwise have very few cells expressing the CD48 ligand CD244. Finally, we report that unlike hematopoietic stem cells, SCA1 expression is similar on bone marrow endothelial and mesenchymal progenitor cells in C57BL/6, NOD-scid and NSG mice. In conclusion, we propose that the combination of Lineage, KIT, CD27, CD201, FLT3, CD48, and CD150 antigens can be used to identify long-term reconstituting hematopoietic stem cells from mouse strains expressing low levels of SCA1 on hematopoietic cells.
Collapse
Affiliation(s)
- Bianca Nowlan
- Stem Cell Therapies Laboratory, School of Biomedical Science, Faculty of Health, Queensland University of Technology (QUT), Brisbane.,School of Biomedical Science, Faculty of Health, Institute of Health and Biomedical Innovation, QUT, Kelvin Grove, Queensland.,Mater Research Institute - The University of Queensland, Woolloongabba.,Australian Prostate Cancer Research Centre - Queensland, Brisbane, Queensland.,Translational Research Institute, Woolloongabba, Queensland
| | - Elizabeth D Williams
- School of Biomedical Science, Faculty of Health, Institute of Health and Biomedical Innovation, QUT, Kelvin Grove, Queensland.,Australian Prostate Cancer Research Centre - Queensland, Brisbane, Queensland.,Translational Research Institute, Woolloongabba, Queensland
| | - Michael R Doran
- Stem Cell Therapies Laboratory, School of Biomedical Science, Faculty of Health, Queensland University of Technology (QUT), Brisbane .,School of Biomedical Science, Faculty of Health, Institute of Health and Biomedical Innovation, QUT, Kelvin Grove, Queensland.,Mater Research Institute - The University of Queensland, Woolloongabba.,Australian Prostate Cancer Research Centre - Queensland, Brisbane, Queensland.,Translational Research Institute, Woolloongabba, Queensland.,Australian National Centre for the Public Awareness of Science, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Jean-Pierre Levesque
- Mater Research Institute - The University of Queensland, Woolloongabba .,Translational Research Institute, Woolloongabba, Queensland
| |
Collapse
|
6
|
Bisht K, Brunck ME, Matsumoto T, McGirr C, Nowlan B, Fleming W, Keech T, Magor G, Perkins AC, Davies J, Walkinshaw G, Flippin L, Winkler IG, Levesque JP. HIF prolyl hydroxylase inhibitor FG-4497 enhances mouse hematopoietic stem cell mobilization via VEGFR2/KDR. Blood Adv 2019; 3:406-418. [PMID: 30733301 PMCID: PMC6373754 DOI: 10.1182/bloodadvances.2018017566] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Accepted: 01/06/2019] [Indexed: 02/06/2023] Open
Abstract
In normoxia, hypoxia-inducible transcription factors (HIFs) are rapidly degraded within the cytoplasm as a consequence of their prolyl hydroxylation by oxygen-dependent prolyl hydroxylase domain (PHD) enzymes. We have previously shown that hematopoietic stem and progenitor cells (HSPCs) require HIF-1 for effective mobilization in response to granulocyte colony-stimulating factor (G-CSF) and CXCR4 antagonist AMD3100/plerixafor. Conversely, HIF PHD inhibitors that stabilize HIF-1 protein in vivo enhance HSPC mobilization in response to G-CSF or AMD3100 in a cell-intrinsic manner. We now show that extrinsic mechanisms involving vascular endothelial growth factor receptor-2 (VEGFR2), via bone marrow (BM) endothelial cells, are also at play. PTK787/vatalanib, a tyrosine kinase inhibitor selective for VEGFR1 and VEGFR2, and neutralizing anti-VEGFR2 monoclonal antibody DC101 blocked enhancement of HSPC mobilization by FG-4497. VEGFR2 was absent on mesenchymal and hematopoietic cells and was detected only in Sca1+ endothelial cells in the BM. We propose that HIF PHD inhibitor FG-4497 enhances HSPC mobilization by stabilizing HIF-1α in HSPCs as previously demonstrated, as well as by activating VEGFR2 signaling in BM endothelial cells, which facilitates HSPC egress from the BM into the circulation.
Collapse
Affiliation(s)
- Kavita Bisht
- Cancer Care and Biology Program, Mater Research Institute-The University of Queensland, Translational Research Institute, Woolloongabba, QLD, Australia
| | - Marion E Brunck
- Cancer Care and Biology Program, Mater Research Institute-The University of Queensland, Translational Research Institute, Woolloongabba, QLD, Australia
| | - Taichi Matsumoto
- Cancer Care and Biology Program, Mater Research Institute-The University of Queensland, Translational Research Institute, Woolloongabba, QLD, Australia
- Faculty of Pharmacological Sciences, Fukuoka University, Fukuoka, Japan
| | - Crystal McGirr
- Cancer Care and Biology Program, Mater Research Institute-The University of Queensland, Translational Research Institute, Woolloongabba, QLD, Australia
| | - Bianca Nowlan
- Cancer Care and Biology Program, Mater Research Institute-The University of Queensland, Translational Research Institute, Woolloongabba, QLD, Australia
| | - Whitney Fleming
- Cancer Care and Biology Program, Mater Research Institute-The University of Queensland, Translational Research Institute, Woolloongabba, QLD, Australia
| | - Thomas Keech
- Cancer Care and Biology Program, Mater Research Institute-The University of Queensland, Translational Research Institute, Woolloongabba, QLD, Australia
| | - Graham Magor
- Cancer Care and Biology Program, Mater Research Institute-The University of Queensland, Translational Research Institute, Woolloongabba, QLD, Australia
| | - Andrew C Perkins
- Cancer Care and Biology Program, Mater Research Institute-The University of Queensland, Translational Research Institute, Woolloongabba, QLD, Australia
| | - Julie Davies
- Cancer Care and Biology Program, Mater Research Institute-The University of Queensland, Translational Research Institute, Woolloongabba, QLD, Australia
| | | | | | - Ingrid G Winkler
- Cancer Care and Biology Program, Mater Research Institute-The University of Queensland, Translational Research Institute, Woolloongabba, QLD, Australia
- Faculty of Medicine, The University of Queensland, Herston, QLD, Australia
| | - Jean-Pierre Levesque
- Cancer Care and Biology Program, Mater Research Institute-The University of Queensland, Translational Research Institute, Woolloongabba, QLD, Australia
- Faculty of Medicine, The University of Queensland, Herston, QLD, Australia
| |
Collapse
|