1
|
Bende RJ, Slot LM, Kwakkenbos MJ, Wormhoudt TA, Jongejan A, Verstappen GM, van Kampen AC, Guikema JE, Kroese FG, van Noesel CJ. Lymphoma-associated mutations in autoreactive memory B cells of patients with Sjögren's syndrome. J Pathol 2023; 259:264-275. [PMID: 36426826 PMCID: PMC10108009 DOI: 10.1002/path.6039] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 11/01/2022] [Accepted: 11/23/2022] [Indexed: 11/27/2022]
Abstract
We recently demonstrated that normal memory B lymphocytes carry a substantial number of de novo mutations in the genome. Here, we performed exome-wide somatic mutation analyses of bona fide autoreactive rheumatoid factor (RF)-expressing memory B cells retrieved from patients with Sjӧgren's syndrome (SS). The amount and repertoire of the de novo exome mutations of RF B cells were found to be essentially different from those detected in healthy donor memory B cells. In contrast to the mutation spectra of normal B cells, which appeared random and non-selected, the mutations of the RF B cells were greater in number and enriched for mutations in genes also found mutated in B-cell non-Hodgkin lymphomas. During the study, one of the SS patients developed a diffuse large B-cell lymphoma (DLBCL) out of an RF clone that was identified 2 years earlier in an inflamed salivary gland biopsy. The successive oncogenic events in the RF precursor clone and the DLBCL were assessed. In conclusion, our findings of enhanced and selected genomic damage in growth-regulating genes in RF memory B cells of SS patients together with the documented transformation of an RF-precursor clone into DLBCL provide unique novel insight into the earliest stages of B-cell derailment and lymphomagenesis. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Richard J Bende
- Department of Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Lymphoma and Myeloma Center (LYMMCARE), Amsterdam, The Netherlands.,Cancer Center Amsterdam (CCA), Amsterdam, The Netherlands
| | - Linda M Slot
- Department of Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Lymphoma and Myeloma Center (LYMMCARE), Amsterdam, The Netherlands.,Cancer Center Amsterdam (CCA), Amsterdam, The Netherlands
| | | | - Thera Am Wormhoudt
- Department of Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Lymphoma and Myeloma Center (LYMMCARE), Amsterdam, The Netherlands.,Cancer Center Amsterdam (CCA), Amsterdam, The Netherlands
| | - Aldo Jongejan
- Bioinformatics Laboratory, Epidemiology & Data Science, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Gwenny M Verstappen
- Department of Rheumatology and Clinical Immunology, UMC Groningen, University of Groningen, Groningen, The Netherlands
| | - Antoine Cm van Kampen
- Bioinformatics Laboratory, Epidemiology & Data Science, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Biosystems Data analysis, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Jeroen Ej Guikema
- Department of Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Lymphoma and Myeloma Center (LYMMCARE), Amsterdam, The Netherlands.,Cancer Center Amsterdam (CCA), Amsterdam, The Netherlands
| | - Frans Gm Kroese
- Department of Rheumatology and Clinical Immunology, UMC Groningen, University of Groningen, Groningen, The Netherlands
| | - Carel Jm van Noesel
- Department of Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Lymphoma and Myeloma Center (LYMMCARE), Amsterdam, The Netherlands.,Cancer Center Amsterdam (CCA), Amsterdam, The Netherlands
| |
Collapse
|
3
|
lncRNA SNHG5 Modulates Endometrial Cancer Progression via the miR-25-3p/BTG2 Axis. JOURNAL OF ONCOLOGY 2019; 2019:7024675. [PMID: 31885582 PMCID: PMC6925730 DOI: 10.1155/2019/7024675] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 07/01/2019] [Accepted: 07/18/2019] [Indexed: 01/11/2023]
Abstract
Endometrial carcinoma (EC) is one of the most common malignancies of the female genital tract, although the mechanisms of EC initiation and development remain incompletely understood. In this study, we demonstrated that the noncoding RNA SNHG5 can inhibit the proliferation, migration, and invasion of EC cells by suppressing the expression of its putative target miR-25-3p. Overexpression of miR-25-3p significantly promoted the proliferation, migration, and invasion of EC cells. In addition, we showed that miR-25-3p represses the expression of BTG2 by directly binding to the 3′-UTR of BTG2 mRNA. Furthermore, increased miR-25-3p expression and decreased SNHG5 and BTG2 expression were observed in EC tissues, and the expression of SNHG5 was negatively correlated to that of miR-25-3p but positively correlated to that of BTG2. In summary, for the first time, we report that the SNHG5/miR-25-3p/BTG2 axis plays an important role in EC progression and is of great potential clinical significance for EC diagnosis and therapy.
Collapse
|
4
|
Yan W, Li SX, Gao H, Yang W. Identification of B-cell translocation gene 1-controlled gene networks in diffuse large B-cell lymphoma: A study based on bioinformatics analysis. Oncol Lett 2019; 17:2825-2835. [PMID: 30854058 PMCID: PMC6365947 DOI: 10.3892/ol.2019.9900] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 11/16/2018] [Indexed: 02/06/2023] Open
Abstract
B-cell translocation gene 1 (BTG1) is a member of the BTG/transducer of Erb family. The present study evaluated the impact of BTG1 gene expression on the clinical outcome of diffuse large B-cell lymphoma (DLBCL) and investigated potential mechanisms using the Gene Expression Omnibus (GEO) database. The gene expression profile datasets GSE31312, GSE10846, GSE65420 and GSE87371 were downloaded from the GEO database. BTG1 expression and clinicopathological data were obtained from the GSE31312 dataset. In 498 cases, the expression of BTG1 in DLBCL was associated with treatment response (χ2=19.020; P<0.001) and International Prognostic Index score (χ2=5.320; P=0.025). Using the Kaplan-Meier method, it was identified that the expression of BTG1 was associated with overall survival (OS) and progression-free survival (PFS) times. Univariate and multivariate Cox regression analysis demonstrated that BTG1 was an independent predictive factor for OS and PFS. From the overlapping analysis of 407 BTG1-associated genes and 22,187 DLBCL-associated genes, 401 genes were identified as BTG1-associated DLBCL genes. Pathway analysis revealed that BTG1-associated DLBCL genes were associated with cancer progression and DLBCL signaling pathways. Subsequently, a protein-protein interaction network was constructed of the BTG1-associated genes, which consisted of 235 genes and 601 interactions. Additionally, 24 genes with high degrees in the network were identified as hub genes, which included genes associated with ‘ribosome’ [ribosomal protein (RP) L11, RPL3, RPS29, RPL19, RPL15 and RPL12], ‘cell cycle’ (ubiquitin carboxyl extension protein 52, ATM and Ras homolog family member H), ‘mitogen-activated protein kinase pathway’ (mitogen-activated protein kinase 1), ‘histone modification’ (ASH1-like protein) and ‘transcription/translation’ (eukaryotic translation initiation factor 3 subunit E, eukaryotic translation elongation factor 1 δ, transcription termination factor 1, cAMP responsive element binding protein 1 and RNA polymerase II subunit F). In conclusion, BTG1 may serve as a predictive biomarker for DLBCL prognosis. Additionally, bioinformatics analysis indicated that BTG1 may exhibit key functions in the progression and development of DLBCL.
Collapse
Affiliation(s)
- Wei Yan
- Department of Hematology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110022, P.R. China
| | - Shawn Xiang Li
- International College, China Medical University, Shenyang, Liaoning 110022, P.R. China
| | - Hongyu Gao
- Department of Hematology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110022, P.R. China
| | - Wei Yang
- Department of Hematology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110022, P.R. China
| |
Collapse
|