1
|
Li J, Chen M, Zhao W, Lv A, Lin S, Zheng Y, Cai M, Lin N, Xu L, Huang H. The role of miR-129-5p in regulating γ-globin expression and erythropoiesis in β-thalassemia. Hum Mol Genet 2025; 34:291-303. [PMID: 39657657 DOI: 10.1093/hmg/ddae180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/04/2024] [Accepted: 11/29/2024] [Indexed: 12/12/2024] Open
Abstract
The regulation of γ-globin expression is crucial due to its beneficial effects on diseases like β-thalassemia and sickle cell disease. B-cell lymphoma/leukemia 11A (BCL11A) is a significant suppressor of γ-globin, and microRNAs (miRNAs) targeting BCL11A have been shown to alleviate this suppression. In our previous high-throughput sequencing, we identified an 11.32-fold increase in miR-129-5p expression in β-thalassemia patients. However, the regulatory mechanisms of miR-129-5p in the context of erythroid differentiation remain to be elucidated. Our study aimed to elucidate the role of miR-129-5p in γ-globin regulation and erythropoiesis. We measured miR-129-5p levels in peripheral blood from β-thalassemia major and intermedia patients. Fluorescence in situ hybridization, dual-luciferase reporter assays, miRNA pull down assays and western blot analyses were conducted to examine the effects of miR-129-5p on γ-globin expression and BCL11A repression. Cell proliferation, apoptosis, and erythroid differentiation were assessed using cell counting kit-8, Wright-Giemsa, and benzidine staining, and flow cytometry assays. The expression levels of miR-129-5p were significantly elevated in β-thalassemia patients and positively correlated with γ-globin synthesis while negatively correlating with liver damage. miR-129- 5p enhanced γ-globin gene expression in K562 and HUDEP-2 cells by effectively repressing BCL11A. Overexpression of miR-129-5p inhibited cell proliferation, induced cell cycle arrest at the G1/G0 phase, promoted apoptosis and stimulated erythroid differentiation and maturation. Conversely, inhibition of miR-129-5p produced opposite cellular effects. miR-129-5p acts as a positive regulator of erythroid differentiation and γ-globin synthesis. It offers a promising miRNA target for activating the γ-globin gene and reducing ineffective erythropoiesis in β-thalassemia patients.
Collapse
Affiliation(s)
- Jingmin Li
- College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, 88 Jiaotong Road, Taijiang District, Fuzhou 350004, China
- Medical Genetic Diagnosis and Therapy Center of Fujian Maternity and Child Health Hospital, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, 18 Daoshan Road, Gulou District, Fuzhou 350001, China
| | - Meihuan Chen
- Medical Genetic Diagnosis and Therapy Center of Fujian Maternity and Child Health Hospital, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, 18 Daoshan Road, Gulou District, Fuzhou 350001, China
| | - Wantong Zhao
- Medical Genetic Diagnosis and Therapy Center of Fujian Maternity and Child Health Hospital, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, 18 Daoshan Road, Gulou District, Fuzhou 350001, China
| | - Aixiang Lv
- College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, 88 Jiaotong Road, Taijiang District, Fuzhou 350004, China
- Medical Genetic Diagnosis and Therapy Center of Fujian Maternity and Child Health Hospital, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, 18 Daoshan Road, Gulou District, Fuzhou 350001, China
| | - Siyang Lin
- The School of Medical Technology and Engineering, Fujian Medical University, 1 Xuefu North Road, Minhou District, Fuzhou 350108, China
| | - Yanping Zheng
- College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, 88 Jiaotong Road, Taijiang District, Fuzhou 350004, China
- Medical Genetic Diagnosis and Therapy Center of Fujian Maternity and Child Health Hospital, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, 18 Daoshan Road, Gulou District, Fuzhou 350001, China
| | - Meiying Cai
- Medical Genetic Diagnosis and Therapy Center of Fujian Maternity and Child Health Hospital, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, 18 Daoshan Road, Gulou District, Fuzhou 350001, China
| | - Na Lin
- Medical Genetic Diagnosis and Therapy Center of Fujian Maternity and Child Health Hospital, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, 18 Daoshan Road, Gulou District, Fuzhou 350001, China
| | - Liangpu Xu
- Medical Genetic Diagnosis and Therapy Center of Fujian Maternity and Child Health Hospital, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, 18 Daoshan Road, Gulou District, Fuzhou 350001, China
| | - Hailong Huang
- College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, 88 Jiaotong Road, Taijiang District, Fuzhou 350004, China
- Medical Genetic Diagnosis and Therapy Center of Fujian Maternity and Child Health Hospital, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, 18 Daoshan Road, Gulou District, Fuzhou 350001, China
| |
Collapse
|
2
|
Powers SK, Lategan-Potgieter R, Goldstein E. Exercise-induced Nrf2 activation increases antioxidant defenses in skeletal muscles. Free Radic Biol Med 2024; 224:470-478. [PMID: 39181477 DOI: 10.1016/j.freeradbiomed.2024.07.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 07/30/2024] [Indexed: 08/27/2024]
Abstract
Following the discovery that exercise increases the production of reactive oxygen species in contracting skeletal muscles, evidence quickly emerged that endurance exercise training increases the abundance of key antioxidant enzymes in the trained muscles. Since these early observations, knowledge about the impact that regular exercise has on skeletal muscle antioxidant capacity has increased significantly. Importantly, in recent years, our understanding of the cell signaling pathways responsible for this exercise-induced increase in antioxidant enzymes has expanded exponentially. Therefore, the goals of this review are: 1) summarize our knowledge about the influence that exercise training has on the abundance of key antioxidant enzymes in skeletal muscles; and 2) to provide a state-of-the-art review of the nuclear factor erythroid 2-related factor (Nrf2) signaling pathway that is responsible for many of the exercise-induced changes in muscle antioxidant capacity. We begin with a discussion of the sources of reactive oxygen species in contracting muscles and then examine the exercise-induced changes in the antioxidant enzymes that eliminate both superoxide radicals and hydrogen peroxide in muscle fibers. We conclude with a discussion of the advances in our understanding of the exercise-induced control of the Nrf2 signaling pathway that is responsible for the expression of numerous antioxidant proteins. In hopes of stimulating future research, we also identify gaps in our knowledge about the signaling pathways responsible for the exercise-induced increases in muscle antioxidant enzymes.
Collapse
Affiliation(s)
- Scott K Powers
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA.
| | | | - Erica Goldstein
- Department of Health Sciences, Stetson University, Deland, FL, USA
| |
Collapse
|
3
|
Pal JK, Sur S, Mittal SPK, Dey S, Mahale MP, Mukherjee A. Clinical implications of miRNAs in erythropoiesis, anemia, and other hematological disorders. Mol Biol Rep 2024; 51:1064. [PMID: 39422834 DOI: 10.1007/s11033-024-09981-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/01/2024] [Indexed: 10/19/2024]
Abstract
Erythropoiesis is regulated by the differential expression of many genes. Besides being transcriptionally regulated, these genes are also with the oath of epigenetic regulation by the microRNAs (miRNAs), in particular. Various miRNAs appear to be very important for the normal process of erythropoiesis and various hematological abnormalities in humans. Therefore, the review aims to summarize the significance of miRNAs in erythropoiesis and different hematological diseases with clinical importance. Our analysis indicates that specific miRNAs regulate erythropoiesis in a stage-specific manner from hematopoietic stem cells to differentiated erythrocytes. Further, many miRNAs have been reported to be linked with various hematological diseases. The importance of miRNAs as biomarkers or therapeutic drug targets for various hematological disorders like anemia, β-thalassemia, and leukemia has been revealed through various clinical studies and clinical trials. The miR-34a mimic and miR-155 inhibitor demonstrate promising therapeutic effects in various hematological malignancies. Additionally, miR-34a, miR-538e, miR-193e, and miR-198 exhibit diagnostic potential in acute myeloid leukemia, while miR-451, miR-151-5p, and miR-1290 show diagnostic potential in B-cell acute lymphoblastic leukemia. Thus, this review encompasses the latest observations and implications of specific miRNAs in erythropoiesis and various hematological disorders. However, challenges persist in developing safe and efficient delivery strategies to target miRNAs specifically, minimizing off-target effects and enhancing therapeutic outcomes. Future mechanistic pre-clinical and clinical research would contribute to overcoming these challenges.
Collapse
Affiliation(s)
- Jayanta Kumar Pal
- Dr. D.Y. Patil Biotechnology and Bioinformatics Institute, 87-88, Mumbai-Bangalore Express Highway, Dr. D.Y. Patil Vidyapeeth, Tathawade, Pune, Maharashtra, 411033, India.
| | - Subhayan Sur
- Dr. D.Y. Patil Biotechnology and Bioinformatics Institute, 87-88, Mumbai-Bangalore Express Highway, Dr. D.Y. Patil Vidyapeeth, Tathawade, Pune, Maharashtra, 411033, India.
| | - Smriti P K Mittal
- Departmnt of Biotechnology, Savitribai Phule Pune University, Pune, 411007, India.
| | - Saurabh Dey
- Dr. D.Y. Patil Biotechnology and Bioinformatics Institute, 87-88, Mumbai-Bangalore Express Highway, Dr. D.Y. Patil Vidyapeeth, Tathawade, Pune, Maharashtra, 411033, India
| | | | - Arijit Mukherjee
- Departmnt of Biotechnology, Savitribai Phule Pune University, Pune, 411007, India
| |
Collapse
|
4
|
Rujito L, Wardana T, Siswandari W, Nainggolan IM, Sasongko TH. Potential Use of MicroRNA Technology in Thalassemia Therapy. J Clin Med Res 2024; 16:411-422. [PMID: 39346566 PMCID: PMC11426174 DOI: 10.14740/jocmr5245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 08/17/2024] [Indexed: 10/01/2024] Open
Abstract
Thalassemia encompasses a group of inherited hemoglobin disorders characterized by reduced or absent production of the α- or β-globin chains, leading to anemia and other complications. Current management relies on lifelong blood transfusions and iron chelation, which is burdensome for patients. This review summarizes the emerging therapeutic potential of modulating microRNAs (miRNAs) to treat thalassemia. MiRNAs are small non-coding RNAs that regulate gene expression through sequence-specific binding to messenger RNAs (mRNAs). While they commonly repress gene expression by binding to the 3' untranslated regions (UTRs) of target mRNAs, miRNAs can also interact with 5'UTRs and gene promoters to activate gene expression. Many miRNAs are now recognized as critical regulators of erythropoiesis and are abnormally expressed in β-thalassemia. Therapeutically restoring levels of deficient miRNAs or inhibiting overexpression through miRNA mimics or inhibitors (antagomir), respectively, has shown preclinical efficacy in ameliorating thalassemic phenotypes. The miR-144/451 cluster is especially compelling for targeted upregulation to reactivate fetal hemoglobin synthesis. Advances in delivery systems are addressing previous challenges in stability and targeting of miRNA-based drugs. While still early, gene therapy studies suggest combinatorial approaches with miRNA modulation may provide synergistic benefits. Several key considerations remain including enhancing delivery, minimizing off-target effects, and demonstrating long-term safety and efficacy. While no miRNA therapies have yet progressed to clinical testing for thalassemia specifically, important lessons are being learned through clinical trials for other diseases and conditions, such as cancer, cardiovascular diseases, and viral. If limitations can be overcome through multi-disciplinary collaboration, miRNAs hold great promise to expand and transform treatment options for thalassemia in the future by precisely targeting pathogenic molecular networks. Ongoing innovations, such as advancements in miRNA delivery systems, improved targeting mechanisms, and enhanced understanding of miRNA biology, continue to drive progress in this emerging field towards realizing the clinical potential of miRNA-based medicines for thalassemia patients.
Collapse
Affiliation(s)
- Lantip Rujito
- Department of Genetics and Molecular Medicine, Faculty of Medicine, Universitas Jenderal Soedirman, Purwokerto, Indonesia
| | - Tirta Wardana
- Department of Genetics and Molecular Medicine, Faculty of Medicine, Universitas Jenderal Soedirman, Purwokerto, Indonesia
| | - Wahyu Siswandari
- Department of Clinical Pathology, Faculty of Medicine, Universitas Jenderal Soedirman, Purwokerto, Indonesia
| | - Ita Margaretha Nainggolan
- Clinical Pathology Department, School of Medicine and Health Sciences, Atma Jaya Catholic University, Jakarta, Indonesia
| | - Teguh Haryo Sasongko
- Department of Physiology, School of Medicine, International Medical University, Kualalumpur, Malaysia
| |
Collapse
|
5
|
Catella J, Guillot N, Nader E, Skinner S, Poutrel S, Hot A, Connes P, Fromy B. Controversies in the pathophysiology of leg ulcers in sickle cell disease. Br J Haematol 2024; 205:61-70. [PMID: 38867511 DOI: 10.1111/bjh.19584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 05/27/2024] [Indexed: 06/14/2024]
Abstract
Patients with sickle cell disease (SCD) often experience painful vaso-occlusive crises and chronic haemolytic anaemia, as well as various acute and chronic complications, such as leg ulcers. Leg ulcers are characterized by their unpredictability, debilitating pain and prolonged healing process. The pathophysiology of SCD leg ulcers is not well defined. Known risk factors include male gender, poor social conditions, malnutrition and a lack of compression therapy when oedema occurs. Leg ulcers typically start with spontaneous pain, followed by induration, hyperpigmentation, blister formation and destruction of the epidermis. SCD is characterized by chronic haemolysis, increased oxidative stress and decreased nitric oxide bioavailability, which promote ischaemia and inflammation and consequently impair vascular function in the skin. This cutaneous vasculopathy, coupled with venostasis around the ankle, creates an ideal environment for local vaso-occlusive crises, which can result in the development of leg ulcers that resemble arterial ulcers. Following the development of the ulcer, healing is hindered as a result of factors commonly observed in venous ulceration, including venous insufficiency, oedema and impaired angiogenesis. All of these factors are modulated by genetic factors. However, our current understanding of these genetic factors remains limited and does not yet enable us to accurately predict ulceration susceptibility.
Collapse
Affiliation(s)
- Judith Catella
- Service de Médecine Interne et Vasculaire, Hôpital Edouard Herriot, Hospices Civils de Lyon, Lyon, France
- Laboratoire d'Excellence du Globule Rouge (Labex GR-Ex), Sorbonne, Paris, France
- Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Equipe "Biologie Vasculaire et du Globule Rouge", Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique (LBTI UMR 5305), CNRS/Université Claude Bernard Lyon 1, Lyon, France
| | - Nicolas Guillot
- Laboratoire d'Excellence du Globule Rouge (Labex GR-Ex), Sorbonne, Paris, France
- Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Equipe "Biologie Vasculaire et du Globule Rouge", Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| | - Elie Nader
- Laboratoire d'Excellence du Globule Rouge (Labex GR-Ex), Sorbonne, Paris, France
- Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Equipe "Biologie Vasculaire et du Globule Rouge", Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| | - Sarah Skinner
- Clinical Research and Epidemiology Unit, Montpellier University, Montpellier, France
| | - Solène Poutrel
- Service de Médecine Interne et Vasculaire, Hôpital Edouard Herriot, Hospices Civils de Lyon, Lyon, France
- Laboratoire d'Excellence du Globule Rouge (Labex GR-Ex), Sorbonne, Paris, France
- Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Equipe "Biologie Vasculaire et du Globule Rouge", Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| | - Arnaud Hot
- Service de Médecine Interne et Vasculaire, Hôpital Edouard Herriot, Hospices Civils de Lyon, Lyon, France
- Laboratoire d'Excellence du Globule Rouge (Labex GR-Ex), Sorbonne, Paris, France
- Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Equipe "Biologie Vasculaire et du Globule Rouge", Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| | - Philippe Connes
- Laboratoire d'Excellence du Globule Rouge (Labex GR-Ex), Sorbonne, Paris, France
- Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Equipe "Biologie Vasculaire et du Globule Rouge", Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| | - Berengère Fromy
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique (LBTI UMR 5305), CNRS/Université Claude Bernard Lyon 1, Lyon, France
| |
Collapse
|
6
|
Penglong T, Saensuwanna A, Jantapaso H, Phuwakanjana P, Jearawiriyapaisarn N, Paiboonsukwong K, Wanichsuwan W, Srinoun K. miR-214 aggravates oxidative stress in thalassemic erythroid cells by targeting ATF4. PLoS One 2024; 19:e0300958. [PMID: 38625890 PMCID: PMC11020981 DOI: 10.1371/journal.pone.0300958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 03/07/2024] [Indexed: 04/18/2024] Open
Abstract
Oxidative damage to erythroid cells plays a key role in the pathogenesis of thalassemia. The oxidative stress in thalassemia is potentiated by heme, nonheme iron, and free iron produced by the Fenton reaction, due to degradation of the unstable hemoglobin and iron overload. In addition, the levels of antioxidant enzymes and molecules are significantly decreased in erythrocytes in α- and β-thalassemia. The control of oxidative stress in red blood cells (RBCs) is known to be mediated by microRNAs (miRNAs). In erythroid cells, microR-214 (miR-214) has been reported to respond to external oxidative stress. However, the molecular mechanisms underlying this phenomenon remain unclear, especially during thalassemic erythropoiesis. In the present study, to further understand how miR-214 aggravates oxidative stress in thalassemia erythroid cells, we investigated the molecular mechanism of miR-214 and its regulation of the oxidative status in thalassemia erythrocytes. We have reported a biphasic expression of miR-214 in β- and α-thalassemia. In the present study the effect of miR-214 expression was investigated by using miR -inhibitor and -mimic transfection in erythroid cell lines induced by hemin. Our study showed a biphasic expression of miR-214 in β- and α-thalassemia. Subsequently, we examined the effect of miR-214 on erythroid differentiation in thalassemia. Our study reveals the loss-of-function of miR-214 during translational activation of activating transcription factor 4 mRNA, leading to decreased reactive oxygen species levels and increased glutathione levels in thalassemia erythroid cell. Our results suggest that the expression of activating transcription factor 4 regulated by miR-214 is important for oxidative stress modulation in thalassemic erythroid cells. Our findings can help to better understand the molecular mechanism of miRNA and transcription factors in regulation of oxidative status in erythroid cells, particularly in thalassemia, and could be useful for managing and relieving severe anemia symptoms in patients in the future.
Collapse
Affiliation(s)
- Tipparat Penglong
- Department of Pathology, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Apisara Saensuwanna
- Faculty of Medical Technology, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Husanai Jantapaso
- Faculty of Medical Technology, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Pongpon Phuwakanjana
- Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
- Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Natee Jearawiriyapaisarn
- Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| | - Kittiphong Paiboonsukwong
- Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| | - Worrawit Wanichsuwan
- Medical Science Research and Innovation Institute, Research and Development Office, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Kanitta Srinoun
- Faculty of Medical Technology, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| |
Collapse
|
7
|
Yang L, Chen Y, He S, Yu D. The crucial role of NRF2 in erythropoiesis and anemia: Mechanisms and therapeutic opportunities. Arch Biochem Biophys 2024; 754:109948. [PMID: 38452967 DOI: 10.1016/j.abb.2024.109948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/25/2024] [Accepted: 02/27/2024] [Indexed: 03/09/2024]
Abstract
The nuclear factor erythroid 2-related factor 2 (NRF2) is a transcription factor crucial in cellular defense against oxidative and electrophilic stresses. Recent research has highlighted the significance of NRF2 in normal erythropoiesis and anemia. NRF2 regulates genes involved in vital aspects of erythroid development, including hemoglobin catabolism, inflammation, and iron homeostasis in erythrocytes. Disrupted NRF2 activity has been implicated in various pathologies involving abnormal erythropoiesis. In this review, we summarize the progress made in understanding the mechanisms of NRF2 activation in erythropoiesis and explore the roles of NRF2 in various types of anemia. This review also discusses the potential of targeting NRF2 as a new therapeutic approach to treat anemia.
Collapse
Affiliation(s)
- Lei Yang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225009, China
| | - Yong Chen
- Department of Oncology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, 225003, China
| | - Sheng He
- Guangxi Key Laboratory of Birth Defects Research and Prevention, Guangxi Key Laboratory of Reproductive Health and Birth Defects Prevention, Guangxi Zhuang Autonomous Region Women and Children Care Hospital, Nanning, Guangxi, 530000, China
| | - Duonan Yu
- Department of Hematology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610000, China; Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou University, Yangzhou, 225009, China; Guangxi Key Laboratory of Birth Defects Research and Prevention, Guangxi Key Laboratory of Reproductive Health and Birth Defects Prevention, Guangxi Zhuang Autonomous Region Women and Children Care Hospital, Nanning, Guangxi, 530000, China.
| |
Collapse
|
8
|
Palani CD, Zhu X, Alagar M, Attucks OC, Pace BS. Bach1 inhibitor HPP-D mediates γ-globin gene activation in sickle erythroid progenitors. Blood Cells Mol Dis 2024; 104:102792. [PMID: 37633023 DOI: 10.1016/j.bcmd.2023.102792] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 07/14/2023] [Accepted: 08/15/2023] [Indexed: 08/28/2023]
Abstract
Sickle cell disease (SCD) is the most common β-hemoglobinopathy caused by various mutations in the adult β-globin gene resulting in sickle hemoglobin production, chronic hemolytic anemia, pain, and progressive organ damage. The best therapeutic strategies to manage the clinical symptoms of SCD is the induction of fetal hemoglobin (HbF) using chemical agents. At present, among the Food and Drug Administration-approved drugs to treat SCD, hydroxyurea is the only one proven to induce HbF protein synthesis, however, it is not effective in all people. Therefore, we evaluated the ability of the novel Bach1 inhibitor, HPP-D to induce HbF in KU812 cells and primary sickle erythroid progenitors. HPP-D increased HbF and decreased Bach1 protein levels in both cell types. Furthermore, chromatin immunoprecipitation assay showed reduced Bach1 and increased NRF2 binding to the γ-globin promoter antioxidant response elements. We also observed increased levels of the active histone marks H3K4Me1 and H3K4Me3 supporting an open chromatin configuration. In primary sickle erythroid progenitors, HPP-D increased γ-globin transcription and HbF positive cells and reduced sickled erythroid progenitors under hypoxia conditions. Collectively, our data demonstrate that HPP-D induces γ-globin gene transcription through Bach1 inhibition and enhanced NRF2 binding in the γ-globin promoter antioxidant response elements.
Collapse
Affiliation(s)
- Chithra D Palani
- Division of Hematology/Oncology, Department of Pediatrics, Augusta University, Augusta, GA 30912, USA; Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA
| | - Xingguo Zhu
- Division of Hematology/Oncology, Department of Pediatrics, Augusta University, Augusta, GA 30912, USA; Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA
| | - Manickam Alagar
- Division of Hematology/Oncology, Department of Pediatrics, Augusta University, Augusta, GA 30912, USA; Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA
| | | | - Betty S Pace
- Division of Hematology/Oncology, Department of Pediatrics, Augusta University, Augusta, GA 30912, USA; Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA.
| |
Collapse
|
9
|
Silva M, Faustino P. From Stress to Sick(le) and Back Again-Oxidative/Antioxidant Mechanisms, Genetic Modulation, and Cerebrovascular Disease in Children with Sickle Cell Anemia. Antioxidants (Basel) 2023; 12:1977. [PMID: 38001830 PMCID: PMC10669666 DOI: 10.3390/antiox12111977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/30/2023] [Accepted: 11/02/2023] [Indexed: 11/26/2023] Open
Abstract
Sickle cell anemia (SCA) is a genetic disease caused by the homozygosity of the HBB:c.20A>T mutation, which results in the production of hemoglobin S (HbS). In hypoxic conditions, HbS suffers autoxidation and polymerizes inside red blood cells, altering their morphology into a sickle shape, with increased rigidity and fragility. This triggers complex pathophysiological mechanisms, including inflammation, cell adhesion, oxidative stress, and vaso-occlusion, along with metabolic alterations and endocrine complications. SCA is phenotypically heterogeneous due to the modulation of both environmental and genetic factors. Pediatric cerebrovascular disease (CVD), namely ischemic stroke and silent cerebral infarctions, is one of the most impactful manifestations. In this review, we highlight the role of oxidative stress in the pathophysiology of pediatric CVD. Since oxidative stress is an interdependent mechanism in vasculopathy, occurring alongside (or as result of) endothelial dysfunction, cell adhesion, inflammation, chronic hemolysis, ischemia-reperfusion injury, and vaso-occlusion, a brief overview of the main mechanisms involved is included. Moreover, the genetic modulation of CVD in SCA is discussed. The knowledge of the intricate network of altered mechanisms in SCA, and how it is affected by different genetic factors, is fundamental for the identification of potential therapeutic targets, drug development, and patient-specific treatment alternatives.
Collapse
Affiliation(s)
- Marisa Silva
- Departamento de Genética Humana, Instituto Nacional de Saúde Doutor Ricardo Jorge (INSA), Av. Padre Cruz, 1649-016 Lisboa, Portugal;
| | - Paula Faustino
- Departamento de Genética Humana, Instituto Nacional de Saúde Doutor Ricardo Jorge (INSA), Av. Padre Cruz, 1649-016 Lisboa, Portugal;
- Grupo Ecogenética e Saúde Humana, Instituto de Saúde Ambiental (ISAMB), Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
- Laboratório Associado TERRA, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| |
Collapse
|
10
|
McCord JM, Gao B, Hybertson BM. The Complex Genetic and Epigenetic Regulation of the Nrf2 Pathways: A Review. Antioxidants (Basel) 2023; 12:antiox12020366. [PMID: 36829925 PMCID: PMC9952775 DOI: 10.3390/antiox12020366] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Nrf2 is a major transcription factor that significantly regulates-directly or indirectly-more than 2000 genes. While many of these genes are involved in maintaining redox balance, others are involved in maintaining balance among metabolic pathways that are seemingly unrelated to oxidative stress. In the past 25 years, the number of factors involved in the activation, nuclear translocation, and deactivation of Nrf2 has continued to expand. The purpose of this review is to provide an overview of the remarkable complexity of the tortuous sequence of stop-and-go signals that not only regulate expression or repression, but may also modify transcriptional intensity as well as the specificity of promoter recognition, allowing fluidity of its gene expression profile depending on the various structural modifications the transcription factor encounters on its journey to the DNA. At present, more than 45 control points have been identified, many of which represent sites of action of the so-called Nrf2 activators. The complexity of the pathway and the synergistic interplay among combinations of control points help to explain the potential advantages seen with phytochemical compositions that simultaneously target multiple control points, compared to the traditional pharmaceutical paradigm of "one-drug, one-target".
Collapse
Affiliation(s)
- Joe M. McCord
- Pathways Bioscience, Aurora, CO 80045, USA
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Correspondence:
| | - Bifeng Gao
- Pathways Bioscience, Aurora, CO 80045, USA
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Brooks M. Hybertson
- Pathways Bioscience, Aurora, CO 80045, USA
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
11
|
Bagheri L, Jafari-Gharabaghlou D, Valizadeh H, Barzegari A, Zarghami N. Design and development of biodegradable POSS-PCL-Zeolite (β) nano-scaffold for potential applications in bone regeneration. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2023:1-20. [PMID: 36680788 DOI: 10.1080/09205063.2023.2170675] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Side effects caused by bone fractures and restrictions on bone regeneration impose an enormous economic burden on the health system of society. To overcome these limitations, tissue engineering and cell-based therapies have been proposed as alternatives to induce and promote bone healing. Still, bone regeneration disadvantages, such as limited and painful surgery, the risk of infection, nerve injury, bleeding, and function damage, have led investigators to find an alternative therapy. In some studies, bone stimulants have prompted scientists to design scaffolds with appropriate physical structure with the possibility of cell adhesion and proliferation, which plays an influential role in the regeneration and repair of bone tissue. PCL nanofiber is an absorbing candidate for the formulation of biocompatible scaffolds used in tissue engineering. To overcome these negative aspects, improve the properties of PCL nanofibers, and based on the biocompatibility and superior mechanical properties of POSS, Polyhedral Oligomeric Silsesquioxane-Polycaprolactone-Zeolite (POSS-PCL-Zeolite) nanocomposite electrospun nanofiber scaffolds were fabricated in the present study. Nanohybrids and nanofibers structures were characterized by FTIR, HNMR, XRD, SEM, EDX, and DSC techniques. We used cellular and molecular assays, including DCFH ROS detection system, gene expression (RUNX-2, Osteocalcin, Nrf2, BAX, VEGF gens), and apoptotic to demonstrate the biocompatibility and induce bone differentiation of formulated POSS-PCL-Zeolite scaffolds. The results showed the biodegradability of POSS-PCL-Zeolite Nano-scaffold and supported the nesting of mesenchymal stem cells (MSCs) and induced bone differentiation by POSS-PCL-Zeolite Nano-scaffold.
Collapse
Affiliation(s)
- Leyla Bagheri
- Department of Chemistry, Faculty of Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran.,Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Davoud Jafari-Gharabaghlou
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hasan Valizadeh
- Department of Chemistry, Faculty of Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Abolfazl Barzegari
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nosratollah Zarghami
- Department of Medical Biochemistry, Faculty of Medicine, Istanbul Aydin University, Istanbul, Turkey
| |
Collapse
|
12
|
Role of microRNA in hydroxyurea mediated HbF induction in sickle cell anaemia patients. Sci Rep 2023; 13:369. [PMID: 36611033 PMCID: PMC9825386 DOI: 10.1038/s41598-022-25444-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 11/30/2022] [Indexed: 01/09/2023] Open
Abstract
Hydroxyurea (HU) is found to be beneficial in sickle cell anaemia (SCA) patients, due to its ability to increase foetal haemoglobin (HbF), however, patients show a variable response. Differences in HbF levels are attributed to many factors; but, the role of miRNA in HbF regulation is sparsely investigated. In this study, we evaluated the effect of miRNA expression on HbF induction in relation to hydroxyurea therapy in 30 normal controls, 30 SCA patients at baseline, 20 patients after 3 and 6 months of hydroxyurea (HU) therapy. HbF levels were measured by HPLC. Total RNA and miRNA were extracted from CD71+ erythroid cells and the expression was determined using Taqman probes. The mean HbF level increased 7.54 ± 2.44 fold, after 3 months of HU therapy. After the HU therapy 8 miRNAs were significantly up-regulated while 2 were down-regulated. The increase in miR-210, miR16-1, and miR-29a expression and decrease in miR-96 expression were strongly associated with the HU mediated HbF induction. Post HU therapy, decreased miR-96 expression negatively correlate with HbF and γ-globin gene while increased expression of miR-210, miR-16-1 and miR-29a post HU therapy positively corelate with HbF and γ-globin gene. Thus, suggest that miR-210, miR-16-1 and miR-29a are positive regulator of γ-globin gene and miR-96 is negative regulator of γ-globin gene. The study suggests the role of miR-210, miR16-1, miR-29a, and miR-96 in γ-globin gene regulation leading to HbF induction. Identification of the relevant protein targets might be useful for understanding the HU mediated HbF induction.
Collapse
|
13
|
Belcher JD, Nataraja S, Abdulla F, Zhang P, Chen C, Nguyen J, Ruan C, Singh M, Demes S, Olson L, Stickens D, Stanwix J, Clarke E, Huang Y, Biddle M, Vercellotti GM. The BACH1 inhibitor ASP8731 inhibits inflammation and vaso-occlusion and induces fetal hemoglobin in sickle cell disease. Front Med (Lausanne) 2023; 10:1101501. [PMID: 37144034 PMCID: PMC10152901 DOI: 10.3389/fmed.2023.1101501] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 03/27/2023] [Indexed: 05/06/2023] Open
Abstract
In sickle cell disease (SCD), heme released during intravascular hemolysis promotes oxidative stress, inflammation, and vaso-occlusion. Conversely, free heme can also activate expression of antioxidant and globin genes. Heme binds to the transcription factor BACH1, which represses NRF2-mediated gene transcription. ASP8731, is a selective small molecule inhibitor of BACH1. We investigated the ability of ASP8731 to modulate pathways involved in SCD pathophysiology. In HepG2 liver cells, ASP8731 increased HMOX1 and FTH1 mRNA. In pulmonary endothelial cells, ASP8731 decreased VCAM1 mRNA in response to TNF-α and blocked a decrease in glutathione in response to hemin. Townes-SS mice were gavaged once per day for 4 weeks with ASP8731, hydroxyurea (HU) or vehicle. Both ASP8731 and HU inhibited heme-mediated microvascular stasis and in combination, ASP8731 significantly reduced microvascular stasis compared to HU alone. In Townes-SS mice, ASP8731 and HU markedly increased heme oxygenase-1 and decreased hepatic ICAM-1, NF-kB phospho-p65 protein expression in the liver, and white blood cell counts. In addition, ASP8731 increased gamma-globin expression and HbF+ cells (F-cells) as compared to vehicle-treated mice. In human erythroid differentiated CD34+ cells, ASP8731 increased HGB mRNA and increased the percentage of F-cells 2-fold in manner similar to HU. ASP8731 and HU when given together induced more HbF+ cells compared to either drug alone. In CD34+ cells from one donor that was non-responsive to HU, ASP8731 induced HbF+ cells ~2-fold. ASP8731 and HU also increased HBG and HBA, but not HBB mRNA in erythroid differentiated CD34+ cells derived from SCD patients. These data indicate that BACH1 may offer a new therapeutic target to treat SCD.
Collapse
Affiliation(s)
- John D. Belcher
- Department of Medicine, Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN, United States
- *Correspondence: John D. Belcher,
| | | | - Fuad Abdulla
- Department of Medicine, Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN, United States
| | - Ping Zhang
- Department of Medicine, Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN, United States
| | - Chunsheng Chen
- Department of Medicine, Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN, United States
| | - Julia Nguyen
- Department of Medicine, Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN, United States
| | - Conglin Ruan
- Department of Medicine, Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN, United States
| | | | - Shilpa Demes
- Astellas Pharma Global Development Inc., Northbrook, IL, United States
| | | | | | | | | | | | | | - Gregory M. Vercellotti
- Department of Medicine, Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
14
|
Li H, Lin R, Li H, Ou R, Wang K, Lin J, Li C. MicroRNA-92a-3p-mediated inhibition of BCL11A upregulates γ-globin expression and inhibits oxidative stress and apoptosis in erythroid precursor cells. HEMATOLOGY (AMSTERDAM, NETHERLANDS) 2022; 27:1152-1162. [PMID: 36178486 DOI: 10.1080/16078454.2022.2128258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
OBJECTIVE This study attempted to investigate miR-92a-3p expression in peripheral blood of patients with severe β-thalassemia, and the effect and action mechanism of miR-92a-3p on γ-globin expression and oxidative stress in erythroid precursor cells. METHODS CD34+ hematopoietic progenitor cells (HPCs) were isolated from peripheral blood of healthy volunteers and patients with severe β-thalassemia. The levels of miR-92a-3p, BCL11A, and γ-globin were measured in erythroid precursor cells. High-performance liquid chromatography (HPLC) was used to analyze hemoglobin F (HbF) content. HPCs were induced with erythroid differentiation and erythroid precursor cells were then obtained. The relevance between miR-92a-3p and BCL11A was studied using dual luciferase reporter gene assay, and the correlation between miR-92a-3p and HbF was assayed by Pearson correlation analysis. Reactive oxygen species (ROS), glutathione (GSH), malondialdehyde (MDA), and superoxide dismutase (SOD) in erythroid precursor cells were tested to evaluate oxidative stress. Cell apoptosis was examined by flow cytometry. RESULTS Remarkably higher expression of miR-92a-3p was observed in erythroid precursor cells. Increased expression of miR-92a-3p resulted in elevated levels of γ-globin, GSH, and SOD, reduced expression of ROS and MDA, and decreased cell apoptosis. BCL11A was identified as a target of miR-92a-3p and to be downregulated by miR-92a-3p. Moreover, BCL11A knockdown alone increased the expression of γ-globin, SOD and GSH, and repressed the levels of ROS and MDA and cell apoptosis, and the following inhibition of miR-92a-3p changed these patterns. CONCLUSIONS Our data indicated that miR-92a-3p might increase γ-globin level and reduce oxidative stress and apoptosis in erythroid precursor cells by downregulating BCL11A.
Collapse
Affiliation(s)
- Huili Li
- Department of Pediatrics, The First School of Clinical Medicine, Southern Medical University, Guangzhou, People's Republic of China
| | - Ruoping Lin
- Department of Pediatrics, Huizhou First Maternal and Child Health Care Hospital, Huizhou, People's Republic of China
| | - Huan Li
- Department of Laboratory, Nanfang-Chunfu Children's Institute of Hematology & Oncology, Dongguan, People's Republic of China
| | - Rilan Ou
- Department of Laboratory, Nanfang-Chunfu Children's Institute of Hematology & Oncology, Dongguan, People's Republic of China
| | - Kaiping Wang
- Department of Pediatrics, Huizhou First Maternal and Child Health Care Hospital, Huizhou, People's Republic of China
| | - Junrong Lin
- Department of Pediatrics, Huizhou First Maternal and Child Health Care Hospital, Huizhou, People's Republic of China
| | - Chunfu Li
- Department of Pediatrics, The First School of Clinical Medicine, Southern Medical University, Guangzhou, People's Republic of China
| |
Collapse
|
15
|
Gu Q, Palani CD, Smith A, Li B, Amos-Abanyie EK, Ogu U, Lu L, Pace BS, Starlard-Davenport A. MicroRNA29B induces fetal hemoglobin via inhibition of the HBG repressor protein MYB in vitro and in humanized sickle cell mice. Front Med (Lausanne) 2022; 9:1043686. [PMID: 36507536 PMCID: PMC9732025 DOI: 10.3389/fmed.2022.1043686] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/10/2022] [Indexed: 11/26/2022] Open
Abstract
Introduction Therapeutic strategies aimed at reactivating HBG gene transcription and fetal hemoglobin (HbF) synthesis remain the most effective strategy to ameliorate the clinical symptoms of sickle cell disease (SCD). We previously identified microRNA29B (MIR29B) as a novel HbF inducer via targeting enzymes involved in DNA methylation. We provided further evidence that the introduction of MIR29B into KU812 leukemia cells significantly reduced MYB protein expression. Therefore, the aim of this study was to determine the extent to which MIR29B mediates HbF induction via targeting MYB in KU812 leukemia cells and human primary erythroid progenitors and to investigate the role of MIR29B in HbF induction in vivo in the humanized Townes SCD mouse model. Materials and methods Human KU812 were cultured and normal CD34 cells (n = 3) were differentiated using a two-phase erythropoiesis culturing system and transfected with MIR29B (50 and 100 nM) mimic or Scrambled (Scr) control in vitro. A luciferase reporter plasmid overexpressing MYB was transfected into KU812 cells. Luciferase activity was quantified after 48 h. Gene expression was determined by quantitative real-time PCR. In vivo studies were conducted using Townes SCD mice (6 per group) treated with MIR29B (2, 3, and 4 mg/kg/day) or Scr control by 28-day continuous infusion using subcutaneous mini osmotic pumps. Blood samples were collected and processed for complete blood count (CBC) with differential and reticulocytes at weeks 0, 2, and 4. Flow cytometry was used to measure the percentage of HbF-positive cells. Results In silico analysis predicted complementary base-pairing between MIR29B and the 3'-untranslated region (UTR) of MYB. Overexpression of MIR29B significantly reduced MYB mRNA and protein expression in KU812 cells and erythroid progenitors. Using a luciferase reporter vector that contained the full-length MYB 3'-UTR, we observed a significant reduction in luciferase activity among KU812 cells that co-expressed MIR29B and the full-length MYB 3'-UTR as compared to cells that only expressed MYB 3'-UTR. We confirmed the inhibitory effect of a plasmid engineered to overexpress MYB on HBG activation and HbF induction in both KU812 cells and human primary erythroid progenitors. Co-expression of MIR29B and MYB in both cell types further demonstrated the inhibitory effect of MIR29B on MYB expression, resulting in HBG reactivation by real-time PCR, Western blot, and flow cytometry analysis. Finally, we confirmed the ability of MIR29B to reduce sickling and induce HbF by decreasing expression of MYB and DNMT3 gene expression in the humanized Townes sickle cell mouse model. Discussion Our findings support the ability of MIR29B to induce HbF in vivo in Townes sickle cell mice. This is the first study to provide evidence of the ability of MIR29B to modulate HBG transcription by MYB gene silencing in vivo. Our research highlights a novel MIR-based epigenetic approach to induce HbF supporting the discovery of new drugs to expand treatment options for SCD.
Collapse
Affiliation(s)
- Qingqing Gu
- Department of Genetics, Genomics, and Informatics, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Chithra D. Palani
- Department of Pediatrics, Division of Hematology/Oncology, Augusta University, Augusta, GA, United States,Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA, United States
| | - Alana Smith
- Department of Genetics, Genomics, and Informatics, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Biaori Li
- Department of Pediatrics, Division of Hematology/Oncology, Augusta University, Augusta, GA, United States,Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA, United States
| | - Ernestine Kubi Amos-Abanyie
- Department of Genetics, Genomics, and Informatics, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Ugochi Ogu
- Center for Sickle Cell Disease, Department of Medicine-Hematology, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Lu Lu
- Department of Genetics, Genomics, and Informatics, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Betty S. Pace
- Department of Pediatrics, Division of Hematology/Oncology, Augusta University, Augusta, GA, United States,Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA, United States
| | - Athena Starlard-Davenport
- Department of Genetics, Genomics, and Informatics, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, United States,Center for Sickle Cell Disease, The University of Tennessee Health Science Center, Memphis, TN, United States,*Correspondence: Athena Starlard-Davenport,
| |
Collapse
|
16
|
Cyrus C, Vatte C, Al-Nafie A, Chathoth S, Akhtar MS, Darwish M, Almohazey D, AlDubayan SH, Steinberg MH, Al-Ali A. miRNA Expression Associated with HbF in Saudi Sickle Cell Anemia. Medicina (B Aires) 2022; 58:medicina58101470. [PMID: 36295630 PMCID: PMC9611475 DOI: 10.3390/medicina58101470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/08/2022] [Accepted: 10/12/2022] [Indexed: 11/16/2022] Open
Abstract
Background and Objectives: Sickle cell anemia (SCA) is a hereditary monogenic disease due to a single β-globin gene mutation that codes for the production of sickle hemoglobin. Its phenotype is modulated by fetal hemoglobin (HbF), a product of γ-globin genes. Exploring the molecules that regulate γ-globin genes at both transcriptional and translational levels, including microRNA (miRNA), might help identify alternative therapeutic targets. Materials and Methods: Using next-generation sequencing we identified pre-miRNAs and mature miRNA expression signatures associated with different HbF levels in patients homozygous for the sickle hemoglobin gene. The involvement of identified miRNAs in potential SCD-related pathways was investigated with the DIANA TOOL and miRWalk 2.0 database. Results: miR-184 were most highly upregulated in reticulocytes. miR-3609 and miR-483-5p were most highly downregulated in sickle cell anemia with high HbF. miR-370-3p that regulates LIN28A, and miR-451a which is effective in modulating α- and β- globin levels were also significantly upregulated. miRNA targeted gene pathway interaction identified BCL7A, BCL2L1, LIN28A, KLF6, GATA6, solute carrier family genes and ZNF genes associated with erythropoiesis, cell cycle regulation, glycosphingolipid biosynthesis, cAMP, cGMP-PKG, mTOR, MAPK and PI3K-AKT signaling pathways and cancer pathways. Conclusions: miRNA signatures and their target genes identified novel miRNAs that could regulate fetal hemoglobin production and might be exploited therapeutically.
Collapse
Affiliation(s)
- Cyril Cyrus
- Department of Biochemistry, College of Medicine, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
- Correspondence: ; Tel.: +966-553241441
| | - Chittibabu Vatte
- Department of Biochemistry, College of Medicine, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Awatif Al-Nafie
- Department of Pathology, King Fahd Hospital of the University, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam 34445, Saudi Arabia
| | - Shahanas Chathoth
- Department of Biochemistry, College of Medicine, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Mohammed S. Akhtar
- Department of Biochemistry, College of Medicine, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Mohammed Darwish
- Ministry of Health, Qatif Central Hospital, Qatif 32654, Saudi Arabia
| | - Dana Almohazey
- Department of Stem Cell Research, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Saud H. AlDubayan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Martin H. Steinberg
- Department of Medicine, Division of Hematology and Medical Oncology, Boston University School of Medicine, Boston, MA 02118, USA
| | - Amein Al-Ali
- Department of Biochemistry, College of Medicine, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| |
Collapse
|
17
|
Chang S, Chang M, Liu G, Xu D, Wang H, Sun R, Feng M. LncRNA OIP5-AS1 reduces renal epithelial cell apoptosis in cisplatin-induced AKI by regulating the miR-144-5p/PKM2 axis. Biomed J 2022; 45:642-653. [PMID: 34311128 PMCID: PMC9486127 DOI: 10.1016/j.bj.2021.07.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 07/05/2021] [Accepted: 07/19/2021] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND The abnormal expression of long non-coding RNA (lncRNA) Opa-interacting protein 5 antisense RNA 1 (OIP5-AS1) has been observed in many human cancers and the underlying mechanisms have been well studied. However, the function of OIP5-AS1 in acute kidney injury (AKI) remains unclear. METHODS To explore the role of OIP5-AS1 in the progression of AKI, the cisplatin-induced AKI mouse and cell model were established. To confirm the potential protective effect of OIP5-AS1 during cisplatin-induced AKI, rescue experiments were performed. Targetscan was used to predict the potential targets of miR-144-5p. To further determine whether the effect of miR-144-5p during cisplatin-induced AKI was mediated by PMK2, the recuse experiments using PMK2 overexpressing vector was applied. RESULTS OIP5-AS1 was significantly downregulated both in cisplatin-induced AKI mice and human renal tubular cell line HK-2 cells. Moreover, overexpression of OIP5-AS1 efficiently promoted cell growth and reduced cisplatin-induced apoptosis of HK-2 cells. Furthermore, OIP5-AS1 was identified as a sponge of miR-144-5p, and upregulation of miR-144-5p could significantly reverse overexpression of OIP5-AS1-induced protective effect on the damage of cisplatin to HK-2 cells. In addition, pyruvate kinase M2 (PKM2) was found to be a direct target of miR-144-5p, and overexpression of PKM2 efficiently reversed the effect of miR-144-5p mimics on the damage in cisplatin-stimulated HK-2 cells. CONCLUSIONS OIP5-AS1 reduced the apoptosis of cisplatin-stimulated renal epithelial cells by targeting the miR-144-5p/PKM2 axis, which extended the regulatory network of lncRNAs in cisplatin-induced AKI and also provided a novel therapeutic target for AKI treatment.
Collapse
Affiliation(s)
- Siyuan Chang
- Department of SICU, The First Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan Province, PR China
| | - Mingyang Chang
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan Province, PR China
| | - Gang Liu
- Department of SICU, The First Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan Province, PR China
| | - Daqian Xu
- Department of SICU, The First Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan Province, PR China
| | - Haili Wang
- Department of SICU, The First Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan Province, PR China
| | - Rongqing Sun
- Department of SICU, The First Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan Province, PR China
| | - Min Feng
- Department of SICU, The First Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan Province, PR China.
| |
Collapse
|
18
|
Starlard-Davenport A, Gu Q, Pace BS. Targeting Genetic Modifiers of HBG Gene Expression in Sickle Cell Disease: The miRNA Option. Mol Diagn Ther 2022; 26:497-509. [PMID: 35553407 PMCID: PMC9098152 DOI: 10.1007/s40291-022-00589-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2022] [Indexed: 12/14/2022]
Abstract
Sickle cell disease (SCD) is one of the most common inherited hemoglobinopathy disorders that affects millions of people worldwide. Reactivation of HBG (HBG1, HBG2) gene expression and induction of fetal hemoglobin (HbF) is an important therapeutic strategy for ameliorating the clinical symptoms and severity of SCD. Hydroxyurea is the only US FDA-approved drug with proven efficacy to induce HbF in SCD patients, yet serious complications have been associated with its use. Over the last three decades, numerous additional pharmacological agents that reactivate HBG transcription in vitro have been investigated, but few have proceeded to FDA approval, with the exception of arginine butyrate and decitabine; however, neither drug met the requirements for routine clinical use due to difficulties with oral delivery and inability to achieve therapeutic levels. Thus, novel approaches that produce sufficient efficacy, specificity, and sustainable HbF induction with low adverse effects are desirable. More recently, microRNAs (miRNAs) have gained attention for their diagnostic and therapeutic potential to treat various diseases ranging from cancer to Alzheimer’s disease via targeting oncogenes and their gene products. Thus, it is plausible that miRNAs that target HBG regulatory genes may be useful for inducing HbF as a treatment for SCD. Our laboratory and others have documented the association of miRNAs with HBG activation or suppression via silencing transcriptional repressors and activators, respectively, of HBG expression. Herein, we review progress made in understanding molecular mechanisms of miRNA-mediated HBG regulation and discuss the extent to which molecular targets of HBG might be suitable prospects for development of SCD clinical therapy. Lastly, we discuss challenges with the application of miRNA delivery in vivo and provide potential strategies for overcoming barriers in the future.
Collapse
Affiliation(s)
- Athena Starlard-Davenport
- College of Medicine, Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, 38163, USA.
| | - Qingqing Gu
- College of Medicine, Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, 38163, USA.,Department of Cardiology, Affiliated Hospital of Nantong University, Jiangsu, 226001, China
| | - Betty S Pace
- Department of Pediatrics, Division of Hematology/Oncology, Augusta University, Augusta, GA, USA.,Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA, USA
| |
Collapse
|
19
|
Santos EDC, Melo GIV, Santana PVB, Quadros IGS, Yahouédéhou SCMA, da Guarda CC, Santiago RP, Fiuza LM, Carvalho SP, Adorno EV, Kaneto CM, Fonseca TCC, Goncalves MS, Aleluia MM. A Description of the Hemolytic Component in Sickle Leg Ulcer: The Role of Circulating miR-199a-5p, miR-144, and miR-126. Biomolecules 2022; 12:biom12020317. [PMID: 35204817 PMCID: PMC8869177 DOI: 10.3390/biom12020317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/31/2022] [Accepted: 02/05/2022] [Indexed: 12/04/2022] Open
Abstract
Sickle leg ulcers (SLU) are malleoli lesions with exuberant hemolytic pathophysiology. The microRNAs are potential genetic biomarkers for several pathologies. Thereby, we aimed to assess the expression of circulating miR-199a-5p, miR-144, and miR-126 in association with hemolytic biomarkers in SLU. This cross-sectional study included 69 patients with sickle cell disease, 52 patients without SLU (SLU-) and 17 patients with active SLU or previous history (SLU+). The results demonstrated elevated expression of circulating miR-199a-5p and miR-144 in SLU+ patients while miR-126 expression was reduced. Circulating miR-199a-5p and miR-144 were associated with hemolytic biomarkers such as LDH, indirect bilirubin, AST, GGT, iron, ferritin, RBC, hemoglobin, and NOm, in addition to association with impaired clinical profile of SLU. Furthermore, in silico analyses indicated interactions of miR-199a-5p with HIF1A, Ets-1, and TGFB2 genes, which are associated with vasculopathy and reduced NO. In contrast, miR-126 was associated with an attenuating clinical profile of SLU, in addition to not characterizing hemolysis. In summary, this study demonstrates, for the first time, that hemolytic mechanism in SLU can be characterized by circulating miR-199a-5p and miR-144. The circulating miR-126 may play a protective role in SLU. Thus, these microRNAs can support to establish prognosis and therapeutic strategy in SLU.
Collapse
Affiliation(s)
- Edvan do Carmo Santos
- Laboratório de Patologia Aplicada e Genética, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Ilhéus 45662-900, BA, Brazil; (E.d.C.S.); (G.I.V.M.); (P.V.B.S.); (C.M.K.)
| | - Gabriela Imbassahy Valentim Melo
- Laboratório de Patologia Aplicada e Genética, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Ilhéus 45662-900, BA, Brazil; (E.d.C.S.); (G.I.V.M.); (P.V.B.S.); (C.M.K.)
| | - Paulo Vinícius Bispo Santana
- Laboratório de Patologia Aplicada e Genética, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Ilhéus 45662-900, BA, Brazil; (E.d.C.S.); (G.I.V.M.); (P.V.B.S.); (C.M.K.)
| | | | - Sètondji Cocou Modeste Alexandre Yahouédéhou
- Laboratório de Investigação em Genética e Hematologia Translacional, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador 40296-710, BA, Brazil; (S.C.M.A.Y.); (C.C.d.G.); (R.P.S.); (L.M.F.); (S.P.C.); (M.S.G.)
| | - Caroline Conceição da Guarda
- Laboratório de Investigação em Genética e Hematologia Translacional, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador 40296-710, BA, Brazil; (S.C.M.A.Y.); (C.C.d.G.); (R.P.S.); (L.M.F.); (S.P.C.); (M.S.G.)
| | - Rayra Pereira Santiago
- Laboratório de Investigação em Genética e Hematologia Translacional, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador 40296-710, BA, Brazil; (S.C.M.A.Y.); (C.C.d.G.); (R.P.S.); (L.M.F.); (S.P.C.); (M.S.G.)
| | - Luciana Magalhães Fiuza
- Laboratório de Investigação em Genética e Hematologia Translacional, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador 40296-710, BA, Brazil; (S.C.M.A.Y.); (C.C.d.G.); (R.P.S.); (L.M.F.); (S.P.C.); (M.S.G.)
- Laboratório de Pesquisa em Anemias, Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal da Bahia, Salvador 40170-115, BA, Brazil;
| | - Suéllen Pinheiro Carvalho
- Laboratório de Investigação em Genética e Hematologia Translacional, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador 40296-710, BA, Brazil; (S.C.M.A.Y.); (C.C.d.G.); (R.P.S.); (L.M.F.); (S.P.C.); (M.S.G.)
- Laboratório de Pesquisa em Anemias, Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal da Bahia, Salvador 40170-115, BA, Brazil;
| | - Elisângela Vitória Adorno
- Laboratório de Pesquisa em Anemias, Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal da Bahia, Salvador 40170-115, BA, Brazil;
| | - Carla Martins Kaneto
- Laboratório de Patologia Aplicada e Genética, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Ilhéus 45662-900, BA, Brazil; (E.d.C.S.); (G.I.V.M.); (P.V.B.S.); (C.M.K.)
| | | | - Marilda Souza Goncalves
- Laboratório de Investigação em Genética e Hematologia Translacional, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador 40296-710, BA, Brazil; (S.C.M.A.Y.); (C.C.d.G.); (R.P.S.); (L.M.F.); (S.P.C.); (M.S.G.)
- Laboratório de Pesquisa em Anemias, Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal da Bahia, Salvador 40170-115, BA, Brazil;
| | - Milena Magalhães Aleluia
- Laboratório de Patologia Aplicada e Genética, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Ilhéus 45662-900, BA, Brazil; (E.d.C.S.); (G.I.V.M.); (P.V.B.S.); (C.M.K.)
- Correspondence: ; Tel.: +55-73-3680-5574
| |
Collapse
|
20
|
Nath A, Rayabaram J, Ijee S, Bagchi A, Chaudhury AD, Roy D, Chambayil K, Singh J, Nakamura Y, Velayudhan SR. Comprehensive Analysis of microRNAs in Human Adult Erythropoiesis. Cells 2021; 10:3018. [PMID: 34831239 PMCID: PMC8616439 DOI: 10.3390/cells10113018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/13/2021] [Accepted: 10/19/2021] [Indexed: 01/08/2023] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs, which play an important role in various cellular and developmental processes. The study of miRNAs in erythropoiesis is crucial to uncover the cellular pathways that are modulated during the different stages of erythroid differentiation. Using erythroid cells derived from human CD34+ hematopoietic stem and progenitor cells (HSPCs)and small RNA sequencing, our study unravels the various miRNAs involved in critical cellular pathways in erythroid maturation. We analyzed the occupancy of erythroid transcription factors and chromatin accessibility in the promoter and enhancer regions of the differentially expressed miRNAs to integrate miRNAs in the transcriptional circuitry of erythropoiesis. Analysis of the targets of the differentially expressed miRNAs revealed novel pathways in erythroid differentiation. Finally, we described the application of Clustered regularly interspaced short palindromic repeats-Cas9 (CRISPR-Cas9) based editing of miRNAs to study their function in human erythropoiesis.
Collapse
Affiliation(s)
- Aneesha Nath
- Center for Stem Cell Research (A Unit of InStem, Bengaluru, India), Christian Medical College, Vellore 632002, India; (A.N.); (S.I.); (A.B.); (K.C.)
| | - Janakiram Rayabaram
- Department of Haematology, Christian Medical College, Vellore 632004, India; (J.R.); (A.D.C.); (D.R.)
| | - Smitha Ijee
- Center for Stem Cell Research (A Unit of InStem, Bengaluru, India), Christian Medical College, Vellore 632002, India; (A.N.); (S.I.); (A.B.); (K.C.)
| | - Abhirup Bagchi
- Center for Stem Cell Research (A Unit of InStem, Bengaluru, India), Christian Medical College, Vellore 632002, India; (A.N.); (S.I.); (A.B.); (K.C.)
| | - Anurag Dutta Chaudhury
- Department of Haematology, Christian Medical College, Vellore 632004, India; (J.R.); (A.D.C.); (D.R.)
| | - Debanjan Roy
- Department of Haematology, Christian Medical College, Vellore 632004, India; (J.R.); (A.D.C.); (D.R.)
- Manipal Academy of Higher Education, Manipal 576119, India
| | - Karthik Chambayil
- Center for Stem Cell Research (A Unit of InStem, Bengaluru, India), Christian Medical College, Vellore 632002, India; (A.N.); (S.I.); (A.B.); (K.C.)
| | - Jyoti Singh
- National Centre for Cell Science, University of Pune Campus, Pune 411007, India;
| | - Yukio Nakamura
- Cell Engineering Division, RIKEN BioResource Research Center, Ibaraki 305-0074, Japan;
| | - Shaji R. Velayudhan
- Center for Stem Cell Research (A Unit of InStem, Bengaluru, India), Christian Medical College, Vellore 632002, India; (A.N.); (S.I.); (A.B.); (K.C.)
- Department of Haematology, Christian Medical College, Vellore 632004, India; (J.R.); (A.D.C.); (D.R.)
| |
Collapse
|
21
|
Cyrus C. The Role of miRNAs as Therapeutic Tools in Sickle Cell Disease. MEDICINA (KAUNAS, LITHUANIA) 2021; 57:1106. [PMID: 34684143 PMCID: PMC8538468 DOI: 10.3390/medicina57101106] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/01/2021] [Accepted: 10/12/2021] [Indexed: 01/05/2023]
Abstract
Background and Objectives: Sickle cell disorder (SCD) is a paradigmatic example of a complex monogenic disorder. SCD is characterized by the production of abnormal hemoglobin, primarily in the deoxygenated state, which makes erythrocytes susceptible to intracellular hemoglobin polymerization. Functional studies have affirmed that the dysregulation of miRNAs enhances clinical severity or has an ameliorating effect in SCD. miRNAs can be effectively regulated to reduce the pace of cell cycle progression, to reduce iron levels, to influence hemolysis and oxidative stress, and most importantly, to increase γ-globin gene expression and enhance the effectiveness of hydroxyurea. Results: This review highlights the roles played by some key miRNAs in hemoglobinopathies, especially in hematopoiesis, erythroid differentiation, and severity of anemia, which make miRNAs attractive molecular tools for innovative therapeutic approaches. Conclusions: In this era of targeted medicine, miRNAs mimics and antagomirs may be promising inducers of HbF synthesis which could ameliorate the clinical severity of SCD.
Collapse
Affiliation(s)
- Cyril Cyrus
- Department of Biochemistry, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam 31141, Saudi Arabia
| |
Collapse
|
22
|
Starlard-Davenport A, Fitzgerald A, Pace BS. Exploring epigenetic and microRNA approaches for γ-globin gene regulation. Exp Biol Med (Maywood) 2021; 246:2347-2357. [PMID: 34292080 DOI: 10.1177/15353702211028195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Therapeutic interventions aimed at inducing fetal hemoglobin and reducing the concentration of sickle hemoglobin is an effective approach to ameliorating acute and chronic complications of sickle cell disease, exemplified by the long-term use of hydroxyurea. However, there remains an unmet need for the development of additional safe and effective drugs for single agent or combination therapy for individuals with β-hemoglobinopathies. Regulation of the γ-globin to β-globin switch is achieved by chromatin remodeling at the HBB locus on chromosome 11 and interactions of major DNA binding proteins, such as KLF1 and BCL11A in the proximal promoters of the globin genes. Experimental evidence also supports a role of epigenetic modifications including DNA methylation, histone acetylation/methylation, and microRNA expression in γ-globin gene silencing during development. In this review, we will critically evaluate the role of epigenetic mechanisms in γ-globin gene regulation and discuss data generated in tissue culture, pre-clinical animal models, and clinical trials to support drug development to date. The question remains whether modulation of epigenetic pathways will produce sufficient efficacy and specificity for fetal hemoglobin induction and to what extent targeting these pathways form the basis of prospects for clinical therapy.
Collapse
Affiliation(s)
- Athena Starlard-Davenport
- Department of Genetics, Genomics and Informatics, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Ashley Fitzgerald
- Department of Genetics, Genomics and Informatics, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Betty S Pace
- Department of Pediatrics, Division of Hematology/Oncology, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
23
|
Schmidlin CJ, Shakya A, Dodson M, Chapman E, Zhang DD. The intricacies of NRF2 regulation in cancer. Semin Cancer Biol 2021; 76:110-119. [PMID: 34020028 DOI: 10.1016/j.semcancer.2021.05.016] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/12/2021] [Accepted: 05/14/2021] [Indexed: 02/07/2023]
Abstract
The complex role of NRF2 in the context of cancer continues to evolve. As a transcription factor, NRF2 regulates various genes involved in redox homeostasis, protein degradation, DNA repair, and xenobiotic metabolism. As such, NRF2 is critical in preserving cell function and viability, particularly during stress. Importantly, NRF2 itself is regulated via a variety of mechanisms, and the mode of NRF2 activation often dictates the duration of NRF2 signaling and its role in either preventing cancer initiation or promoting cancer progression. Herein, different modes of NRF2 regulation, including oxidative stress, autophagy dysfunction, protein-protein interactions, and epigenetics, as well as pharmacological modulators targeting this cascade in cancer, are explored. Specifically, how the timing and duration of these different mechanisms of NRF2 induction affect tumor initiation, progression, and metastasis are discussed. Additionally, progress in the discovery and development of NRF2 inhibitors for the treatment of NRF2-addicted cancers is highlighted, including modulators that inhibit specific NRF2 downstream targets. Overall, a better understanding of the intricate nature of NRF2 regulation in specific cancer contexts should facilitate the generation of novel therapeutics designed to not only prevent tumor initiation, but also halt progression and ultimately improve patient wellbeing and survival.
Collapse
Affiliation(s)
- Cody J Schmidlin
- Deparment of Pharmacology and Toxicology, University of Arizona, Tucson, AZ, USA
| | - Aryatara Shakya
- Deparment of Pharmacology and Toxicology, University of Arizona, Tucson, AZ, USA
| | - Matthew Dodson
- Deparment of Pharmacology and Toxicology, University of Arizona, Tucson, AZ, USA
| | - Eli Chapman
- Deparment of Pharmacology and Toxicology, University of Arizona, Tucson, AZ, USA
| | - Donna D Zhang
- Deparment of Pharmacology and Toxicology, University of Arizona, Tucson, AZ, USA; University of Arizona Cancer Center, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
24
|
Verma HK, Ratre YK, Bhaskar LVKS, Colombatti R. Erythrocyte microRNAs: a tiny magic bullet with great potential for sickle cell disease therapy. Ann Hematol 2021; 100:607-614. [PMID: 33398452 DOI: 10.1007/s00277-020-04390-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 12/21/2020] [Indexed: 12/11/2022]
Abstract
Sickle cell disease (SCD) is a severe hereditary blood disorder caused by a mutation of the beta-globin gene, which results in a substantial reduction in life expectancy. Many studies are focused on various novel therapeutic strategies that include re-activation of the γ-globin gene. Among them, expression therapy caused by the fetal hemoglobin (HbF) at a later age is highly successful. The induction of HbF is one of the dominant genetic modulators of the hematological and clinical characteristics of SCD. In fact, HbF compensates for the abnormal beta chain and has an ameliorant effect on clinical complications. Erythropoiesis is a multi-step process that involves the proliferation and differentiation of a small population of hematopoietic stem cells and is affected by several factors, including signaling pathways, transcription factors, and small non-coding RNAs (miRNAs). miRNAs play a regulatory role through complex networks that control several epigenetic mechanisms as well as the post-transcriptional regulation of multiple genes. In this review, we briefly describe the current understanding of interactions between miRNAs, their molecular targets, and their regulatory effects in HbF induction in SCD.
Collapse
Affiliation(s)
- Henu Kumar Verma
- Institute of Endocrinology and Oncology CNR, 83031, Naples, Italy.
| | - Yashwant Kumar Ratre
- Department of Biotechnology, Guru Ghasidas Vishwavidyalaya, Bilaspur, 495009, India
| | - L V K S Bhaskar
- Department of Zoology, Guru Ghasidas Vishwavidyalaya, Bilaspur, 495009, India
| | - Raffaella Colombatti
- Clinic of Pediatric Hematology Oncology, Department of Woman's and Child's Health, University of Padova, Via Giustiniani 3, 35128, Padova, Italy
| |
Collapse
|
25
|
Abstract
β-thalassemia is a lethal inherited disease resulting from β-globin gene mutations. Severe β-thalassemia requires regular blood transfusions. Other active interventions, including iron chelating, stem cell transplantation and gene therapy, have remarkably improved the quality of life and prolonged the survival of patients with transfusion-dependent β-thalassemia, but all with significant limitations and complications. MicroRNAs (miRNAs), encoded by a class of endogenous genes, are found to play important roles in regulating globin expression. Among the miRNAs of particular interest related to β-thalassemia, miR-15a/16-1, miR-486-3p, miR-26b, miR-199b-5p, miR-210, miR-34a, miR-138, miR-326, let-7, and miR-17/92 cluster elevate γ-globin expression, while miR-96, miR-146a, miR-223-3p, and miR-144 inhibit γ-globin expression. A couple of miRNAs, miR-144 and miR-150, repress α-globin expression, whereas miR-451 induces α-, β- and γ-globin expression. Single nucleotide polymorphism in miRNA genes or their targeted genes might also contribute to the abnormal expression of hemoglobin. Moreover, changes in the expression of miR-125b, miR-210, miR-451, and miR-609 reflect the severity of anemia and hemolysis in β-thalassemia patients. These results suggest that miRNAs are potential biomarkers for the diagnosis and prognosis of β-thalassemia, and miRNA-based therapeutic strategy might be used as a coordinated approach for effectively treating β-thalassemia.
Collapse
|
26
|
Gbotosho OT, Kapetanaki MG, Kato GJ. The Worst Things in Life are Free: The Role of Free Heme in Sickle Cell Disease. Front Immunol 2021; 11:561917. [PMID: 33584641 PMCID: PMC7873693 DOI: 10.3389/fimmu.2020.561917] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 12/04/2020] [Indexed: 12/15/2022] Open
Abstract
Hemolysis is a pathological feature of several diseases of diverse etiology such as hereditary anemias, malaria, and sepsis. A major complication of hemolysis involves the release of large quantities of hemoglobin into the blood circulation and the subsequent generation of harmful metabolites like labile heme. Protective mechanisms like haptoglobin-hemoglobin and hemopexin-heme binding, and heme oxygenase-1 enzymatic degradation of heme limit the toxicity of the hemolysis-related molecules. The capacity of these protective systems is exceeded in hemolytic diseases, resulting in high residual levels of hemolysis products in the circulation, which pose a great oxidative and proinflammatory risk. Sickle cell disease (SCD) features a prominent hemolytic anemia which impacts the phenotypic variability and disease severity. Not only is circulating heme a potent oxidative molecule, but it can act as an erythrocytic danger-associated molecular pattern (eDAMP) molecule which contributes to a proinflammatory state, promoting sickle complications such as vaso-occlusion and acute lung injury. Exposure to extracellular heme in SCD can also augment the expression of placental growth factor (PlGF) and interleukin-6 (IL-6), with important consequences to enthothelin-1 (ET-1) secretion and pulmonary hypertension, and potentially the development of renal and cardiac dysfunction. This review focuses on heme-induced mechanisms that are implicated in disease pathways, mainly in SCD. A special emphasis is given to heme-induced PlGF and IL-6 related mechanisms and their role in SCD disease progression.
Collapse
Affiliation(s)
- Oluwabukola T. Gbotosho
- Division of Hematology-Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Maria G. Kapetanaki
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Gregory J. Kato
- Division of Hematology-Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|
27
|
Cai D, Yan H, Liu J, Chen S, Jiang L, Wang X, Qin J. Ergosterol limits osteoarthritis development and progression through activation of Nrf2 signaling. Exp Ther Med 2021; 21:194. [PMID: 33488803 PMCID: PMC7812583 DOI: 10.3892/etm.2021.9627] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 11/04/2020] [Indexed: 11/06/2022] Open
Abstract
Osteoarthritis (OA) is a common joint disorder characterized by progressive articular cartilage degeneration and destruction and results in gradual disability among middle-aged and elderly patients. Our previous study demonstrated that depletion of nuclear factor erythroid 2-related factor 2 (Nrf2) exacerbated cartilage erosion in an OA model and that activation of the Nrf2 pathway could counter this process. As a downstream target of Nrf2, heme oxygenase (HO) degrades heme to free iron, biliverdin and carbon monoxide (CO), which protects against oxidative stress. Ergosterol (ER), which is extracted from fungi, is a newly discovered Nrf2 activator and displayed efficacy against myocardial injury. The present study aimed to investigate the potential protective effects of ER against cartilage damage during OA. Primary mouse chondrocytes were treated with ER for in vitro assays. Furthermore, mice that underwent destabilization of the medial meniscus surgery were orally administered with ER. Western blotting suggested that ER increased protein expression of Nrf2 and HO-1 in primary chondrocytes and articular cartilage from knee joints. Cartilage damage in knee joints was significantly reduced by ER treatment. Western blotting and PCR analysis confirmed that ER could also suppress the expression of MMP-9 and MMP-13 in vivo and in vitro. The present findings suggested that ER effectively alleviated cartilage degradation and that activation of the Nrf2-heme oxygenase 1 pathway may play a role in ER-mediated cartilage protection against OA.
Collapse
Affiliation(s)
- Dawei Cai
- Department of Orthopaedics, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu 211100, P.R. China
| | - Huyong Yan
- Department of Orthopaedics, The Second Affiliated Hospital of Nanhua University, Hengyang, Hunan 421000, P.R. China
| | - Jun Liu
- Department of Orthopaedics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210011, P.R. China
| | - Sichun Chen
- Department of Orthopaedics, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu 211100, P.R. China
| | - Longhai Jiang
- Department of Orthopaedics, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu 211100, P.R. China
| | - Xiaoxu Wang
- Department of Orthopaedics, The Second Affiliated Hospital of Nanhua University, Hengyang, Hunan 421000, P.R. China
| | - Jian Qin
- Department of Orthopaedics, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu 211100, P.R. China
| |
Collapse
|
28
|
Zhu X, Xi C, Ward A, Takezaki M, Shi H, Peterson KR, Pace BS. NRF2 mediates γ-globin gene regulation through epigenetic modifications in a β-YAC transgenic mouse model. Exp Biol Med (Maywood) 2020; 245:1308-1318. [PMID: 32715783 DOI: 10.1177/1535370220945305] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
IMPACT STATEMENT Sickle cell disease is an inherited hemoglobin disorder that affects over 100,000 people in the United States causing high morbidity and early mortality. Although new treatments were recently approved by the FDA, only one drug Hydroxyurea induces fetal hemoglobin expression to inhibit sickle hemoglobin polymerization in red blood cells. Our laboratory previously demonstrated the ability of the NRF2 activator, dimethyl fumarate to induce fetal hemoglobin in the sickle cell mouse model. In this study, we investigated molecular mechanisms of γ-globin gene activation by NRF2. We observed the ability of NRF2 to modulate chromatin structure in the human β-like globin gene locus of β-YAC transgenic mice during development. Furthermore, an NRF2/TET3 interaction regulates γ-globin gene DNA methylation. These findings provide potential new molecular targets for small molecule drug developed for treating sickle cell disease.
Collapse
Affiliation(s)
- Xingguo Zhu
- Division of Hematology/Oncology, Department of Pediatrics, Augusta University, Augusta, GA 30912, USA.,Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA
| | - Caixia Xi
- Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA
| | - Alexander Ward
- Division of Hematology/Oncology, Department of Pediatrics, Augusta University, Augusta, GA 30912, USA
| | - Mayuko Takezaki
- Division of Hematology/Oncology, Department of Pediatrics, Augusta University, Augusta, GA 30912, USA
| | - Huidong Shi
- Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA
| | - Kenneth R Peterson
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Betty S Pace
- Division of Hematology/Oncology, Department of Pediatrics, Augusta University, Augusta, GA 30912, USA.,Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA.,Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
29
|
Fan X, Murray SC, Staitieh BS, Spearman P, Guidot DM. HIV Impairs Alveolar Macrophage Function via MicroRNA-144-Induced Suppression of Nrf2. Am J Med Sci 2020; 361:90-97. [PMID: 32773107 DOI: 10.1016/j.amjms.2020.07.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 04/23/2020] [Accepted: 07/17/2020] [Indexed: 12/25/2022]
Abstract
BACKGROUND Despite anti-retroviral therapy, HIV-1 infection increases the risk of pneumonia and causes oxidative stress and defective alveolar macrophage (AM) immune function. We have previously determined that HIV-1 proteins inhibit antioxidant defenses and impair AM phagocytosis by suppressing nuclear factor (erythroid-derived 2)-like 2 (Nrf2). Given its known effects on Nrf2, we hypothesize miR-144 mediates the HIV-1 induced suppression of Nrf2. METHODS Primary AMs isolated from HIV-1 transgenic (HIV-1 Tg) rats and wild type littermates (WT) as well as human monocyte-derived macrophages (MDMs) infected ex vivo with HIV-1 were used. We modulated miR-144 expression using a miR-144 mimic or an inhibitor to assay its effects on Nrf2/ARE activity and AM functions in vitro and in vivo. RESULTS MiR-144 expression was increased in AMs from HIV-1 Tg rats and in HIV-1-infected human MDMs compared to cells from WT rats and non-infected human MDMs, respectively. Increasing miR-144 with a miR-144 mimic inhibited the expression of Nrf2 and its downstream effectors in WT rat macrophages and consequently impaired their bacterial phagocytic capacity and H2O2 scavenging ability. These effects on Nrf2 expression and AM function were reversed by antagonizing miR-144 ex vivo or in the airways of HIV-1 Tg rats in vivo, but this protection was abrogated by silencing Nrf2 expression. CONCLUSIONS Our results suggest that inhibiting miR-144 or interfering with its deleterious effects on Nrf2 attenuates HIV-1-mediated AM immune dysfunction and improves lung health in individuals with HIV.
Collapse
Affiliation(s)
- Xian Fan
- Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, Emory University School of Medicine, Atlanta, Georgia.
| | - Shannon C Murray
- Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Bashar S Staitieh
- Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Paul Spearman
- Department of Pediatrics, Cincinnati Children's Hospital, Cincinnati, Ohio
| | - David M Guidot
- Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, Emory University School of Medicine, Atlanta, Georgia; Atlanta VA Medical Center, Decatur, Georgia
| |
Collapse
|
30
|
Jadeja RN, Martin PM. Data on the role of miR-144 in regulating fetal hemoglobin production in retinal pigmented epithelial cells. Data Brief 2019; 28:104874. [PMID: 31890774 PMCID: PMC6926119 DOI: 10.1016/j.dib.2019.104874] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/13/2019] [Accepted: 11/18/2019] [Indexed: 01/21/2023] Open
Abstract
The data presented in this article are connected to our related article entitled "Inhibiting microRNA-144 potentiates Nrf2-dependent antioxidant signaling in retinal pigmented epithelial cells (RPE) and protects against oxidative stress-induced outer retinal degeneration" [1] where, we have shown that miR-144 induces oxidative stress in RPE cells by targeting Nrf2 expression. Previous studies from our laboratory have shown that like erythroid cells, RPE cells express α, β and γ-globin and produce hemoglobin locally in retina. Further, the ability to therapeutically reactivate fetal hemoglobin production in these cells, a strategy of high potential benefit in the treatment of complications of sickle cell disease, including retinopathy, is impacted by Nrf2-mediated signaling [2,3]. Studies by others [4,5] provide compelling evidence of a regulatory role for miR-144 and Nrf2 in fetal hemoglobin production in erythroid cells. Our current work confirms this finding in human RPE. We additionally show that miR-144-mediated regulation of fetal hemoglobin production in RPE cells is independent of kruppel like factor 1 (KLF-1). This supports the plausibility that in RPE, hemoglobin, particularly fetal hemoglobin, may be important for functions other than oxygen transport (e.g., antioxidant defense). Indeed, our new data on miR-144 in RPE supports strongly the potential mechanistic between fetal hemoglobin production and the regulation of oxidative stress in this cell type [1].
Collapse
Affiliation(s)
- Ravirajsinh N Jadeja
- Departments of Biochemistry and Molecular Biology, The Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Pamela M Martin
- Departments of Biochemistry and Molecular Biology, The Medical College of Georgia at Augusta University, Augusta, GA 30912, USA.,Departments of Ophthalmology, The Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
31
|
Pulati N, Zhang Z, Gulimilamu A, Qi X, Yang J. HPV16+‐miRNAs in cervical cancer and the anti‐tumor role played by miR‐5701. J Gene Med 2019; 21:e3126. [PMID: 31498525 DOI: 10.1002/jgm.3126] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 08/15/2019] [Accepted: 08/30/2019] [Indexed: 12/19/2022] Open
Affiliation(s)
- Nuerbieke Pulati
- Department of Radiation OncologyPeople's Hospital of Xinjiang Uygur Autonomous Region Urumqi Xinjiang China
| | - Zegao Zhang
- Department of Radiation OncologyPeople's Hospital of Xinjiang Uygur Autonomous Region Urumqi Xinjiang China
| | - Aireti Gulimilamu
- Department of Radiation OncologyPeople's Hospital of Xinjiang Uygur Autonomous Region Urumqi Xinjiang China
| | - Xiaoli Qi
- Department of Radiation OncologyPeople's Hospital of Xinjiang Uygur Autonomous Region Urumqi Xinjiang China
| | - Jie Yang
- Department of Radiation OncologyPeople's Hospital of Xinjiang Uygur Autonomous Region Urumqi Xinjiang China
| |
Collapse
|
32
|
Inhibiting microRNA-144 potentiates Nrf2-dependent antioxidant signaling in RPE and protects against oxidative stress-induced outer retinal degeneration. Redox Biol 2019; 28:101336. [PMID: 31590045 PMCID: PMC6812120 DOI: 10.1016/j.redox.2019.101336] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 09/11/2019] [Accepted: 09/26/2019] [Indexed: 01/03/2023] Open
Abstract
The retinal pigment epithelium (RPE) is consistently exposed to high levels of pro-oxidant and inflammatory stimuli. As such, under normal conditions the antioxidant machinery in the RPE cell is one of the most efficient in the entire body. However, antioxidant defense mechanisms are often impacted negatively by the process of aging and/or degenerative disease leaving RPE susceptible to damage which contributes to retinal dysfunction. Thus, understanding better the mechanisms governing antioxidant responses in RPE is critically important. Here, we evaluated the role of the redox sensitive microRNA miR-144 in regulation of antioxidant signaling in human and mouse RPE. In cultured human RPE, miR-144-3p and miR-144-5p expression was upregulated in response to pro-oxidant stimuli. Likewise, overexpression of miR-144-3p and -5p using targeted miR mimics was associated with reduced expression of Nrf2 and downstream antioxidant target genes (NQO1 and GCLC), reduced levels of glutathione and increased RPE cell death. Alternately, some protection was conferred against the above when miR-144-3p and miR-144-5p expression was suppressed using antagomirs. Expression analyses revealed a higher conservation of miR-144-3p expression across species and additionally, the presence of two potential Nrf2 binding sites in the 3p sequence compared to only one in the 5p sequence. Thus, we evaluated the impact of miR-144-3p expression in the retinas of mice in which a robust pro-oxidant environment was generated using sodium iodate (SI). Subretinal injection of miR-144-3p antagomir in SI mice preserved retinal integrity and function, decreased oxidative stress, limited apoptosis and enhanced antioxidant gene expression. Collectively, the present work establishes miR-144 as a potential target for preventing and treating degenerative retinal diseases in which oxidative stress is paramount and RPE is prominently affected (e.g., age-related macular degeneration and diabetic retinopathy).
Collapse
|
33
|
Srinoun K, Sathirapongsasuti N, Paiboonsukwong K, Sretrirutchai S, Wongchanchailert M, Fucharoen S. miR-144 regulates oxidative stress tolerance of thalassemic erythroid cell via targeting NRF2. Ann Hematol 2019; 98:2045-2052. [PMID: 31243572 DOI: 10.1007/s00277-019-03737-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 06/10/2019] [Indexed: 10/26/2022]
Abstract
Thalassemia has a high prevalence in Thailand. Oxidative damage to erythroid cells is known to be one of the major etiologies in thalassemia pathophysiology. Oxidative stress status of thalassemia is potentiated by the heme, nonheme iron, and free iron resulting from imbalanced globin synthesis. In addition, levels of antioxidant proteins are reduced in α-thalassemia and β-thalassemia erythrocytes. However, the primary molecular mechanism for this phenotype remains unknown. Our study showed a high expression of miR-144 in β- and α-thalassemia. An increased miR-144 expression leads to decreased expression of nuclear factor erythroid 2-related factor 2 (NRF2) target, especially in α-thalassemia. In α-thalassemia, miR-144 and NRF2 target are associated with glutathione level and anemia severity. To study the effect of miR-144 expression, the gain-loss of miR-144 expression was performed by miR inhibitor and mimic transfection in the erythroblastic cell line. This study reveals that miR-144 expression was upregulated, whereas NRF2 expression and glutathione levels were decreased in comparison with the untreated condition after miR mimic transfection, while the reduction of miR-144 expression contributed to the increased NRF2 expression and glutathione level compared with the untreated condition after miR inhibitor transfection. Moreover, miR-144 overexpression leads to significantly increased sensitivity to oxidative stress at indicated concentrations of hydrogen peroxide (H2O2) and rescued by miR-144 inhibitor. Taken together, our findings suggest that dysregulation of miR-144 may play a role in the reduced ability of erythrocyte to deal with oxidative stress and increased RBC hemolysis susceptibility especially in thalassemia.
Collapse
Affiliation(s)
- Kanitta Srinoun
- Faculty of Medical Technology, Prince of Songkla University, 15, Kanjanavanit Rd. Hat Yai, Songkhla, 90110, Thailand.
| | - Nuankanya Sathirapongsasuti
- Section for Translational Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, 25/25, 270 Rama VI Rd., Ratchathewi, Bangkok, 10400, Thailand
| | - Kittiphong Paiboonsukwong
- Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, 25/25, Putthamonthon Sai 4 Rd. Salaya, Putthamonthon, Nakron Pratom, 73170, Thailand
| | - Somporn Sretrirutchai
- Department of Pathology, Faculty of Medicine, Prince of Songkla University, 15, Kanjanavanit Rd. Hat Yai, Songkhla, 90110, Thailand
| | - Malai Wongchanchailert
- Department of Pediatrics, Faculty of Medicine, Prince of Songkla University, 15, Kanjanavanit Rd. Hat Yai, Songkhla, 90110, Thailand
| | - Suthat Fucharoen
- Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, 25/25, Putthamonthon Sai 4 Rd. Salaya, Putthamonthon, Nakron Pratom, 73170, Thailand
| |
Collapse
|
34
|
Jiang L, Meng W, Yu G, Yin C, Wang Z, Liao L, Meng F. MicroRNA-144 targets APP to regulate AML1/ETO + leukemia cell migration via the p-ERK/c-Myc/MMP-2 pathway. Oncol Lett 2019; 18:2034-2042. [PMID: 31423275 DOI: 10.3892/ol.2019.10477] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 12/04/2018] [Indexed: 12/30/2022] Open
Abstract
Extramedullary infiltration (EMI) is common in patients with acute myeloid leukemia (AML) and is closely associated with the prognosis of disease. We previously reported that patients carrying the AML1/ETO (A/E) fusion gene and expressing the amyloid precursor protein (APP) tended to develop EMI, and had a poor prognosis. In the present study, the relapse-free survival (RFS) time and overall survival (OS) time were significantly lower in patients with EMI. The results demonstrated that the EMI incidence was significantly higher (P<0.05), while the RFS and OS rates were significantly lower (P<0.05), in patients with high APP expression. Kasumi-1 cells, which are A/E+, and the APP gene were used as the in vitro cell model to detect the mechanism of action in detail. Following the knockdown of APP expression, cell migration was significantly reduced (P<0.05). Furthermore, western blotting demonstrated that the protein expression of phosphorylated extracellular-signal-regulated kinase (p-ERK), matrix metalloproteinase-2 (MMP-2) and c-Myc was markedly reduced following interference of APP, while the expression of CXCR4 and MMP-9 was not altered. Kasumi-1 cells were co-cultured with p-ERK or c-Myc inhibitors and demonstrated that the APP/p-ERK/c-Myc/MMP-2 pathway was involved in signal transduction and regulation of cell migration. MicroRNA-144 (miR-144) mimics and transfected Kasumi-1 cells were generated. Reverse transcription-quantitative polymerase chain reaction and western blotting demonstrated that miR-144 was a negative regulator of APP. Taken together, the findings of the present study suggest that miR-144 negatively targets the APP gene and regulates cell migration via the APP/p-ERK/c-Myc/MMP-2 pathway.
Collapse
Affiliation(s)
- Ling Jiang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510500, P.R. China
| | - Wei Meng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Guopan Yu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510500, P.R. China
| | - Changxin Yin
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510500, P.R. China
| | - Zhixiang Wang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510500, P.R. China
| | - Libin Liao
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510500, P.R. China
| | - Fanyi Meng
- Department of Hematology, Kang Hua Hospital, Dongguan, Guangdong 523080, P.R. China
| |
Collapse
|
35
|
|
36
|
Nolfi-Donegan D, Pradhan-Sundd T, Pritchard KA, Hillery CA. Redox Signaling in Sickle Cell Disease. CURRENT OPINION IN PHYSIOLOGY 2019; 9:26-33. [PMID: 31240269 DOI: 10.1016/j.cophys.2019.04.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Sickle cell disease (SCD) is characterized by chronic hemolysis and repeated episodes of vascular occlusion leading to progressive organ injury. SCD is characterized by unbalanced, simultaneous pro-oxidant and anti-oxidant processes at the molecular, cellular and tissue levels, with the majority of reactions tipped in favor of pro-oxidant pathways. In this brief review we discuss new findings regarding how oxidized hemin, hemolysis, mitochondrial dysfunction and the innate immune system generate oxidative stress while hemopexin, haptoglobin, heme oxygenase-1 (HO-1) and nuclear factor erythroid 2-related factor 2 (Nrf2) may provide protection in human and murine SCD. We will also describe recent clinical trials showing beneficial effects of antioxidant therapy in SCD.
Collapse
Affiliation(s)
- Deirdre Nolfi-Donegan
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Tirthadipa Pradhan-Sundd
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Kirkwood A Pritchard
- Department of Surgery, Division of Pediatric Surgery, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Cheryl A Hillery
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|
37
|
Light DR. Can natural variation in erythroid microRNA-29b be translated to sickle cell disease severity? Br J Haematol 2019; 186:11-12. [PMID: 30908602 DOI: 10.1111/bjh.15871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- David R Light
- Hemoglobinopathies, Bioverativ, A Sanofi Company, Waltham, MA, USA
| |
Collapse
|
38
|
Starlard-Davenport A, Smith A, Vu L, Li B, Pace BS. MIR29B mediates epigenetic mechanisms of HBG gene activation. Br J Haematol 2019; 186:91-100. [PMID: 30891745 PMCID: PMC6589104 DOI: 10.1111/bjh.15870] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 01/28/2019] [Indexed: 12/22/2022]
Abstract
Sickle cell disease (SCD) affects over 2 million people worldwide with high morbidity and mortality in underdeveloped countries. Therapeutic interventions aimed at reactivating fetal haemoglobin (HbF) is an effective approach for improving survival and ameliorating the clinical severity of SCD. A class of agents that inhibit DNA methyltransferase (DNMT) activity show promise as HbF inducers because off-target effects are not observed at low concentrations. However, these compounds are rapidly degraded by cytidine deaminase when taken by oral administration, creating a critical barrier to clinical development for SCD. We previously demonstrated that microRNA29B (MIR29B) inhibits de novo DNMT synthesis, therefore, the goal of our study was to determine if MIR29 mediates HbF induction. Overexpression of MIR29B in human KU812 cells and primary erythroid progenitors significantly increased the percentage of HbF positive cells, while decreasing the expression of DNMT3A and the HBG repressor MYB. Furthermore, HBG promoter methylation levels decreased significantly following MIR29B overexpression in human erythroid progenitors. We subsequently, observed higher MIR29B expression in SCD patients with higher HbF levels compared to those with low HbF. Our findings provide evidence for the ability of MIR29B to induce HbF and supports further investigation to expand treatment options for SCD.
Collapse
Affiliation(s)
- Athena Starlard-Davenport
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Alana Smith
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Luan Vu
- Department of Comparative Biomedical Science, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA
| | - Biaoru Li
- Department of Pediatrics, Division of Hematology/Oncology, Augusta University, Augusta, GA, USA
| | - Betty S Pace
- Department of Pediatrics, Division of Hematology/Oncology, Augusta University, Augusta, GA, USA
| |
Collapse
|
39
|
Zhu X, Oseghale AR, Nicole LH, Li B, Pace BS. Mechanisms of NRF2 activation to mediate fetal hemoglobin induction and protection against oxidative stress in sickle cell disease. Exp Biol Med (Maywood) 2019; 244:171-182. [PMID: 30674214 DOI: 10.1177/1535370219825859] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
IMPACT STATEMENT Sickle cell disease (SCD) is a group of inherited blood disorders caused by mutations in the human β-globin gene, leading to the synthesis of abnormal hemoglobin S, chronic hemolysis, and oxidative stress. Inhibition of hemoglobin S polymerization by fetal hemoglobin holds the greatest promise for treating SCD. The transcription factor NRF2, is the master regulator of the cellular oxidative stress response and activator of fetal hemoglobin expression. In animal models, various small chemical molecules activate NRF2 and ameliorate the pathophysiology of SCD. This review discusses the mechanisms of NRF2 regulation and therapeutic strategies of NRF2 activation to design the treatment options for individuals with SCD.
Collapse
Affiliation(s)
- Xingguo Zhu
- 1 Department of Pediatrics, Augusta University, Augusta, GA 30912, USA
| | - Aluya R Oseghale
- 2 Vascular Biology Center, Augusta University, Augusta, GA 30912, USA
| | - Lopez H Nicole
- 1 Department of Pediatrics, Augusta University, Augusta, GA 30912, USA
| | - Biaoru Li
- 1 Department of Pediatrics, Augusta University, Augusta, GA 30912, USA
| | - Betty S Pace
- 1 Department of Pediatrics, Augusta University, Augusta, GA 30912, USA.,2 Vascular Biology Center, Augusta University, Augusta, GA 30912, USA.,3 Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|