1
|
Ganorkar SB, Bobade PS, Prabhu RC, Lokwani DK, Shinde RN, Telange DR, Shirkhedkar AA, Vander Heyden Y. Extension of impurity profiling on eltrombopag olamine to in-silico predictions: An effort to exploit correlated forced degradation products and known drug-related substances in drug discovery. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1248:124367. [PMID: 39547062 DOI: 10.1016/j.jchromb.2024.124367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/16/2024] [Accepted: 10/31/2024] [Indexed: 11/17/2024]
Abstract
The recent pandemic has highlighted the impact of diseases on global health and the economy. The rapid discovery of new hit molecules remains a tough challenge. Pharmaceutical impurity profiling can be linked to drug discovery through the identification of new hits from compounds identified during the analytical profiling. The present study demonstrates this linkage through the extension of the impurity (forced degradation) profiling of eltrombopag (ELT) olamine, a thrombopoietin (TPO) receptor agonist. The drug was exposed to standard degradation and the degradation products were primarily resolved and identified by UPLC-ESI-MS. This led to the identification of five forced degradation products (FDP). Thirty-three other known related substances (RS) of ELT, identified in the literature, were also considered. Molecular similarity checks were performed using Tanimoto/Jaccard's similarity searches. A set of structurally and topologically similar molecules, including ELT and 15 RS, was established and subjected to in-silico toxicity-, absorption-, distribution-, metabolism-, and elimination (ADME) predictions. The RS, predicted with similar or lower toxicity than ELT and a comparable ADME profile, were subjected to molecular docking to trace changes in TPO receptor affinity. The results indicated that five RS had a high Jaccard's similarity with ELT and higher or comparable docking scores. These compounds, along with few other impurities were predicted to have lower toxicity, better or comparable absorption, distribution, metabolism, and also a better excretion profile than ELT. This justifies their entry as potential novel TPO receptor agonists in drug discovery.
Collapse
Affiliation(s)
- Saurabh B Ganorkar
- Central Instruments Facility (CIF), Department of Pharmaceutical Chemistry and Analysis, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, MS, 425 405, India.
| | - Preeti S Bobade
- Department of Pharmaceutical Quality Assurance and Industrial Pharmacy, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, MS, 425 405, India
| | - Rakesh C Prabhu
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur 603 203, India
| | - Deepak K Lokwani
- Department of Pharmaceutical Chemistry, Rajarshi Shahu College of Pharmacy, Buldana, Maharashtra, India
| | - Ranajit N Shinde
- SVKM's NMIMS, School of Pharmacy and Technology Management, Shirpur 425 405 India
| | - Darshan R Telange
- Datta Meghe College of Pharmacy, Datta Meghe Institute of Higher Education and Research (DU), Wardha, MS, 442 007, India
| | - Atul A Shirkhedkar
- Central Instruments Facility (CIF), Department of Pharmaceutical Chemistry and Analysis, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, MS, 425 405, India
| | - Yvan Vander Heyden
- Department of Analytical Chemistry, Applied Chemometrics and Molecular Modelling, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussel, Belgium.
| |
Collapse
|
2
|
Eftekhar Z, Aghaei M, Saki N. DNA damage repair in megakaryopoiesis: molecular and clinical aspects. Expert Rev Hematol 2024; 17:705-712. [PMID: 39117495 DOI: 10.1080/17474086.2024.2391102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/09/2024] [Accepted: 08/07/2024] [Indexed: 08/10/2024]
Abstract
INTRODUCTION Endogenous DNA damage is a significant factor in the damage of hematopoietic cells. Megakaryopoiesis is one of the pathways of hematopoiesis that ends with the production of platelets and plays the most crucial role in hemostasis. Despite the presence of efficient DNA repair mechanisms, some endogenous lesions can lead to mutagenic alterations, disruption of pathways of hematopoiesis including megakaryopoiesis and potentially result in human diseases. AREAS COVERED The complex regulation of DNA repair mechanisms plays a central role in maintaining genomic integrity during megakaryopoiesis and influences platelet production efficiency and quality. Moreover, anomalies in DNA repair processes are involved in several diseases associated with megakaryopoiesis, including myeloproliferative disorders and thrombocytopenia. EXPERT OPINION In the era of personalized medicine, diagnosing diseases related to megakaryopoiesis can only be made with a complete assessment of their molecular aspects to provide physicians with critical molecular data for patient management and to identify the subset of patients who could benefit from targeted therapy.
Collapse
Affiliation(s)
- Zeinab Eftekhar
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mojtaba Aghaei
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Najmaldin Saki
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
3
|
Zhang T, Yu Q, Chen X, Yang H, Gong Y, Zhang Y, Liu X, Yang Z, Fang Y, Yan X, Zhou X, Shi J, He G. Avatrombopag as alternative therapy for severe aplastic anemia patients who are intolerant or unresponsive to eltrombopag. Front Immunol 2024; 15:1393829. [PMID: 39114665 PMCID: PMC11303196 DOI: 10.3389/fimmu.2024.1393829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 07/09/2024] [Indexed: 08/10/2024] Open
Abstract
Introduction Eltrombopag (EPAG), a thrombopoietin receptor agonist, was approved for the treatment of severe aplastic anemia (SAA) combined with immunosuppressive therapy (IST). However, EPAG contains a typical biphenyl structure, which causes liver function damage. Methods Twenty patients with SAA who were intolerant or refractory to EPAG were enrolled in a multicenter prospective registry of the Chinese Eastern Collaboration Group of Anemia (ChiCTR2100045895) from October 2020 to June 2023. Results Eight patients who were ineffective to EPAG, six with kidney impairment, and nine with abnormal liver function (two with concomitant liver and kidney impairment) were converted to avatrombopag (AVA) therapy with the median duration of AVA treatment was 6 (3-24) months. 17 cases (85%) achieved trilineage hematological response (HR): complete remission (CR) in 3 cases (15%), good partial remission (GPR) in 4 cases (20%), partial remission (PR) in 10 cases (50%), and no response (NR) in 3 cases (15%). The median time to response was 1.7 (0.5-6.9) months, with 16 cases (94%) achieving response within six months and 17 cases (100%) within 12 months. 9 cases (50%) achieved transfusion independence. AVA converted treatment was associated with higher neutrophil counts (0.8×109/L vs 2.2×109/L, p=0.0003), platelet counts (11×109/L vs 39×109/L, p=0.0008), hemoglobin count (59g/L vs 98g/L, p=0.0002), red cell count (1.06×1012/L vs 2.97×1012/L, p=0.001), and absolute reticulocyte count (31.99 ×109/L vs 67.05×109/L p=0.0004) were all significantly elevated compared with the pre-treatment level. After the conversion to AVA therapy, liver and kidney function indexes were maintained within the normal range, no AVA related grade 2 or higher adverse events occurred, and no thrombotic events occurred. Conclusion The conversion to AVA was an optimal choice for patients with SAA who were EPAG intolerant or refractory. Clinical trial registration http://www.chictr.org.cn/showproj.html?proj=125480, identifier ChiCTR2100045895.
Collapse
Affiliation(s)
- Ting Zhang
- Department of Hematology, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| | - Qingling Yu
- Department of Hematology, Affiliated Jianhu Hospital of Nantong University Xinglin College, Yancheng, China
| | - Xiaoyu Chen
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, China
| | - Hui Yang
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, China
| | - Yuemin Gong
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, China
| | - Yawen Zhang
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, China
| | - Xiaoqing Liu
- Department of Hematology, Nanjing Hospital Affiliated to Nanjing University of Chinese Medicine, Nanjing Second Hospital, Nanjing, China
| | - Zhinan Yang
- Department of Hematology, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| | - Yu Fang
- Department of Hematology, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| | - Xue Yan
- Department of Hematology, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| | - Xuan Zhou
- Department of Hematology, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| | - Jinning Shi
- Department of Hematology, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| | - Guangsheng He
- Department of Hematology, Affiliated Jianhu Hospital of Nantong University Xinglin College, Yancheng, China
| |
Collapse
|
4
|
Serio B, Giudice V, Selleri C. All Roads Lead to Interferon-γ: From Known to Untraveled Pathways in Acquired Aplastic Anemia. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:2170. [PMID: 38138273 PMCID: PMC10744863 DOI: 10.3390/medicina59122170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/08/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023]
Abstract
Bone marrow failure (BMF) syndromes are a heterogeneous group of benign hematological conditions with common clinical features including reduced bone marrow cellularity and peripheral blood cytopenias. Acquired aplastic anemia (AA) is caused by T helper(Th)1-mediated immune responses and cytotoxic CD8+ T cell-mediated autologous immune attacks against hematopoietic stem and progenitor cells (HSPCs). Interferon-γ (IFNγ), tumor necrosis factor-α, and Fas-ligand are historically linked to AA pathogenesis because they drive Th1 and cytotoxic T cell-mediated responses and can directly induce HSPC apoptosis and differentiation block. The use of omics technologies has amplified the amount of data at the single-cell level, and knowledge on AA, and new scenarios, have been opened on "old" point of view. In this review, we summarize the current state-of-art of the pathogenic role of IFNγ in AA from initial findings to novel evidence, such as the involvement of the HIF-1α pathway, and how this knowledge can be translated in clinical practice.
Collapse
Affiliation(s)
- Bianca Serio
- Department of Medicine, Surgery, and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (B.S.); (C.S.)
| | - Valentina Giudice
- Department of Medicine, Surgery, and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (B.S.); (C.S.)
- Hematology and Transplant Center, University Hospital “San Giovanni di Dio e Ruggi d’Aragona”, 84131 Salerno, Italy
| | - Carmine Selleri
- Department of Medicine, Surgery, and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (B.S.); (C.S.)
- Hematology and Transplant Center, University Hospital “San Giovanni di Dio e Ruggi d’Aragona”, 84131 Salerno, Italy
| |
Collapse
|
5
|
Modern management of Fanconi anemia. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2022; 2022:649-657. [PMID: 36485157 PMCID: PMC9821189 DOI: 10.1182/hematology.2022000393] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In this review, we present a clinical case report and discussion to outline the importance of long-term specific Fanconi anemia (FA) monitoring, and we discuss the main aspects of the general management of patients with FA and clinical complications. While several nontransplant treatments are currently under evaluation, hematopoietic stem cell transplantation (HSCT) remains the only therapeutic option for bone marrow failure (BMF). Although HSCT outcomes in patients with FA have remarkably improved over the past 20 years, in addition to the mortality intrinsic to the procedure, HSCT increases the risk and accelerates the appearance of late malignancies. HSCT offers the best outcome when performed in optimal conditions (moderate cytopenia shifting to severe, prior to transfusion dependence and before clonal evolution or myelodysplasia/acute myeloid leukemia); hence, an accurate surveillance program is vital. Haploidentical HSCT offers very good outcomes, although long-term effects on malignancies have not been fully explored. A monitoring plan is also important to identify cancers, particularly head and neck carcinomas, in very early phases. Gene therapy is still experimental and offers the most encouraging results when performed in early phases of BMF by infusing high numbers of corrected cells without genotoxic effects. Patients with FA need comprehensive monitoring and care plans, coordinated by centers with expertise in FA management, that start at diagnosis and continue throughout life. Such long-term follow-up is essential to detect complications related to the disease or treatment in this setting.
Collapse
|
6
|
Arita K, Murakami J, Iwaki N, Hosono N, Tasaki T, Tsujikawa T, Okazawa H, Imi T, Nannya Y, Ogawa S, Nakao S. An eltrombopag-induced remission of bone-marrow aplasia accompanied by marked leukoerythroblastosis and splenomegaly. Br J Haematol 2022; 198:e75-e77. [PMID: 35765195 DOI: 10.1111/bjh.18342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/14/2022] [Accepted: 06/17/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Kotaro Arita
- Department of Gastroenterology and Hematology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan.,Kotaro Arita, Department of Hematology and Immunology, School of Medicine, Kanazawa Medical University, Ishikawa, Japan
| | - Jun Murakami
- Department of Gastroenterology and Hematology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan.,Division of Transfusion Medicine and Cell Therapy, Toyama University Hospital, Toyama, Japan
| | - Noriko Iwaki
- Department of Hematology, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan.,Noriko Iwaki, Department of Hematology, National Cancer Center Hospital, Tokyo, Japan
| | - Naoko Hosono
- Department of Hematology and Oncology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Toshiki Tasaki
- Department of Hematology and Oncology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Tetsuya Tsujikawa
- Biomedical Imaging Research Center, University of Fukui, Fukui, Japan
| | - Hidehiko Okazawa
- Biomedical Imaging Research Center, University of Fukui, Fukui, Japan
| | - Tatsuya Imi
- Department of Hematology, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Yasuhito Nannya
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Seishi Ogawa
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shinji Nakao
- Department of Hematology, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
7
|
Kapoor S, Champion G, Olnes MJ. Thrombopoietin receptor agonists for marrow failure: A concise clinical review. Best Pract Res Clin Haematol 2021; 34:101274. [PMID: 34404526 DOI: 10.1016/j.beha.2021.101274] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/20/2021] [Accepted: 05/22/2021] [Indexed: 11/29/2022]
Abstract
Bone marrow failure is characterized by a disruption of hematopoietic stem cell (HSC) homeostasis and function, which causes decreased blood counts. Germline and somatic mutations within HSCs and immune dysregulation contribute to the pathogenesis of marrow failure. Allogeneic HSC transplant is a potentially curative therapy for marrow failure, although not all patients are candidates for this procedure. Immune suppressive therapy (IST) is an effective treatment for patients with aplastic anemia (AA) and select patients with myelodysplastic syndromes, but some patients fail to respond or relapse after IST. Over the past decade, the oral thrombopoietin receptor agonist eltrombopag has become a therapeutic option for AA in combination with frontline IST, and as a single agent for relapsed and refractory patients after IST. In this review, we highlight current knowledge of thrombopoietin receptor agonist mechanisms of action, and clinical indications and toxicities in patients with marrow failure, including the risk of clonal evolution.
Collapse
Affiliation(s)
- Sargam Kapoor
- Hematology and Medical Oncology, Alaska Native Tribal Health Consortium, 3900 Ambassador Dr, Anchorage, AK, 99508, USA
| | - Grace Champion
- University of Washington School of Medicine, 1959 NE Pacific St, Seattle, WA, 98195, USA
| | - Matthew J Olnes
- Hematology and Medical Oncology, Alaska Native Tribal Health Consortium, 3900 Ambassador Dr, Anchorage, AK, 99508, USA; University of Washington School of Medicine, 1959 NE Pacific St, Seattle, WA, 98195, USA; WWAMI School of Medical Education, University of Alaska Anchorage, 3211 Providence Drive, Anchorage, AK, 99508, USA.
| |
Collapse
|
8
|
Gao Y, Gao F, Shi J, Fu H, Huang H, Zhao Y. Successful treatment of refractory pure red cell aplasia with eltrombopag after ABO-incompatible allogeneic hematopoietic stem cell transplantation. J Zhejiang Univ Sci B 2021; 22:695-700. [PMID: 34414703 DOI: 10.1631/jzus.b2000532] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Pure red cell aplasia (PRCA) is a well-recognized complication of ABO major mismatched allogeneic hematopoietic stem cell transplantation (allo-HSCT), with a reported incidence of 10%-20% (Zhidong et al., 2012; Busca et al., 2018). It is clinically characterized by anemia, reticulocytopenia, and the absence of erythroblasts in a normal-appearing bone marrow biopsy (Shahan and Hildebrandt, 2015). The mechanism for PRCA has been presumed to be persistence of recipient isoagglutinins, produced by residual host B lymphocytes or plasma cells, which can interfere with the engraftment of donor erythroid cells (Zhidong et al., 2012). Several risk factors of PRCA at presentation are known, such as presence of anti-A isoagglutinins before transplantation, reduced intensity conditioning, absence of acute graft-versus-host disease (GVHD), sibling donors, and cyclosporin A (CsA) as GVHD prophylaxis (Hirokawa et al., 2013). PRCA is not considered to be a barrier to HSCT, as some patients can recover spontaneously or benefit from various approaches including high-dose steroids, erythropoietin (EPO), plasma exchange, immunoadsorption, donor lymphocyte infusion (DLI), treatment with rituximab, bortezomib, or daratumumab, and tapering or discontinuation of immunosuppression (Hirokawa et al., 2013; Bathini et al., 2019). However, there are still some patients who fail to respond even to aggressive treatment; they become red cell transfusion-dependent and iron-overloaded, and their life quality is impaired.
Collapse
Affiliation(s)
- Yang Gao
- Bone Marrow Transplantation Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China.,Institute of Hematology, Zhejiang University, Hangzhou 310058, China.,Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou 310058, China
| | - Fei Gao
- Bone Marrow Transplantation Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China.,Institute of Hematology, Zhejiang University, Hangzhou 310058, China.,Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou 310058, China
| | - Jimin Shi
- Bone Marrow Transplantation Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China.,Institute of Hematology, Zhejiang University, Hangzhou 310058, China.,Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou 310058, China
| | - Huarui Fu
- Bone Marrow Transplantation Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China.,Institute of Hematology, Zhejiang University, Hangzhou 310058, China.,Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou 310058, China
| | - He Huang
- Bone Marrow Transplantation Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China. .,Institute of Hematology, Zhejiang University, Hangzhou 310058, China. .,Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou 310058, China.
| | - Yanmin Zhao
- Bone Marrow Transplantation Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China. .,Institute of Hematology, Zhejiang University, Hangzhou 310058, China. .,Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou 310058, China.
| |
Collapse
|
9
|
Eltrombopag for patients with moderate aplastic anemia or uni-lineage cytopenias. Blood Adv 2021; 4:1700-1710. [PMID: 32330244 DOI: 10.1182/bloodadvances.2020001657] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 03/19/2020] [Indexed: 12/26/2022] Open
Abstract
There is no standard or widely effective treatment of patients with moderate aplastic anemia (MAA) or hypo-productive uni-lineage cytopenias (UC). Eltrombopag (EPAG), a small molecule thrombopoietin mimetic, has previously been shown to result in durable multi-lineage hematologic responses with low toxicity in patients with refractory severe aplastic anemia (SAA). Its safety and efficacy in MAA are unknown. This prospective phase 2 study enrolled previously untreated and treated MAA and UC patients with clinically relevant cytopenias. EPAG was administered at doses escalating from 50 to 300 mg/d. Hematologic responses were assessed at 16 to 20 weeks. Responding patients were continued on EPAG until reaching defined robust or stable blood counts. EPAG was reinstituted for relapse. Thirty-four patients were enrolled between 2012 and 2017, including 31 with MAA and 3 with UC. Seventeen patients responded in at least 1 eligible lineage by the primary end point. A striking improvement in anemia was observed in a patient with Diamond-Blackfan anemia. EPAG was well tolerated, and it was discontinued for robust or stable blood counts in 12 of 17 patients after a median of 8 months. A majority required re-initiation of EPAG for declining counts, and all regained response. Two of 34 patients developed non-chromosome 7 bone marrow cytogenetic abnormalities while taking EPAG, without dysplasia or increased blasts. Somatic mutation allele frequencies in cancer genes did not increase overall on EPAG. EPAG is a well-tolerated oral treatment of cytopenias in patients with MAA/UC. This trial was registered at www.clinicaltrials.gov as #NCT01328587.
Collapse
|
10
|
Qanash H, Li Y, Smith RH, Linask K, Young-Baird S, Hakami W, Keyvanfar K, Choy JS, Zou J, Larochelle A. Eltrombopag Improves Erythroid Differentiation in a Human Induced Pluripotent Stem Cell Model of Diamond Blackfan Anemia. Cells 2021; 10:734. [PMID: 33810313 PMCID: PMC8065708 DOI: 10.3390/cells10040734] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 03/17/2021] [Accepted: 03/22/2021] [Indexed: 12/15/2022] Open
Abstract
Diamond Blackfan Anemia (DBA) is a congenital macrocytic anemia associated with ribosomal protein haploinsufficiency. Ribosomal dysfunction delays globin synthesis, resulting in excess toxic free heme in erythroid progenitors, early differentiation arrest, and pure red cell aplasia. In this study, DBA induced pluripotent stem cell (iPSC) lines were generated from blood mononuclear cells of DBA patients with inactivating mutations in RPS19 and subjected to hematopoietic differentiation to model disease phenotypes. In vitro differentiated hematopoietic cells were used to investigate whether eltrombopag, an FDA-approved mimetic of thrombopoietin with robust intracellular iron chelating properties, could rescue erythropoiesis in DBA by restricting the labile iron pool (LIP) derived from excessive free heme. DBA iPSCs exhibited RPS19 haploinsufficiency, reduction in the 40S/60S ribosomal subunit ratio and early erythroid differentiation arrest in the absence of eltrombopag, compared to control isogenic iPSCs established by CRISPR/Cas9-mediated correction of the RPS19 point mutation. Notably, differentiation of DBA iPSCs in the presence of eltrombopag markedly improved erythroid maturation. Consistent with a molecular mechanism based on intracellular iron chelation, we observed that deferasirox, a clinically licensed iron chelator able to permeate into cells, also enhanced erythropoiesis in our DBA iPSC model. In contrast, erythroid maturation did not improve substantially in DBA iPSC differentiation cultures supplemented with deferoxamine, a clinically available iron chelator that poorly accesses LIP within cellular compartments. These findings identify eltrombopag as a promising new therapeutic to improve anemia in DBA.
Collapse
Affiliation(s)
- Husam Qanash
- Cellular and Molecular Therapeutics Branch, National Heart, Lung and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20892, USA; (H.Q.); (Y.L.); (R.H.S.); (W.H.)
- Department of Biology, Catholic University of America, Washington, DC 20064, USA;
- Department of Medical Laboratory Science, College of Applied Medical Sciences, The University of Hail, Hail 55476, Saudi Arabia
| | - Yongqin Li
- Cellular and Molecular Therapeutics Branch, National Heart, Lung and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20892, USA; (H.Q.); (Y.L.); (R.H.S.); (W.H.)
| | - Richard H. Smith
- Cellular and Molecular Therapeutics Branch, National Heart, Lung and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20892, USA; (H.Q.); (Y.L.); (R.H.S.); (W.H.)
| | - Kaari Linask
- iPSC Core Facility, NHLBI, NIH, Bethesda, MD 20892, USA; (K.L.); (J.Z.)
| | - Sara Young-Baird
- Eunice Kennedy Shriver, National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA;
- National Institute of General Medical Sciences (NIGMS), NIH, Bethesda, MD 20892, USA
| | - Waleed Hakami
- Cellular and Molecular Therapeutics Branch, National Heart, Lung and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20892, USA; (H.Q.); (Y.L.); (R.H.S.); (W.H.)
- Department of Biology, Catholic University of America, Washington, DC 20064, USA;
- Department of Medical Laboratories Technology, College of Applied Medical Sciences, Jazan University, Jazan 45142, Saudi Arabia
| | - Keyvan Keyvanfar
- Clinical Flow Core Facility, NHLBI, NIH, Bethesda, MD 20892, USA;
| | - John S. Choy
- Department of Biology, Catholic University of America, Washington, DC 20064, USA;
| | - Jizhong Zou
- iPSC Core Facility, NHLBI, NIH, Bethesda, MD 20892, USA; (K.L.); (J.Z.)
| | - Andre Larochelle
- Cellular and Molecular Therapeutics Branch, National Heart, Lung and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20892, USA; (H.Q.); (Y.L.); (R.H.S.); (W.H.)
| |
Collapse
|
11
|
Hammond D, Loghavi S. Clonal haematopoiesis of emerging significance. Pathology 2021; 53:300-311. [PMID: 33685721 DOI: 10.1016/j.pathol.2021.02.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 02/09/2021] [Accepted: 02/09/2021] [Indexed: 12/17/2022]
Abstract
Clonal haematopoiesis (CH) is a ubiquitous feature of aging and provides mechanistic insight into the inextricable relationship between chronic inflammation and age-related diseases. Although CH confers a cumulative risk of subsequent haematological malignancy, particularly myeloid neoplasms, that risk is heavily mutation- and context-specific. Individuals with mutations in DNA damage response pathway genes receiving select cytotoxic therapies for solid tumours are among the highest risk groups for subsequent development of myeloid neoplasms. Multiple lines of evidence suggest that TET2-mutated macrophages causally contribute to cardiometabolic disease through the generation of proinflammatory cytokines. It is speculated that such CH-related inflammation is a shared driver of several other chronic diseases. Whether we can intervene in individuals with CH to diminish the risk of subsequent haematological malignancy or non-haematological disease remains to be seen. However, precision anti-cytokine therapies are a rational starting point to break the feedforward loop between clonal myeloid expansion, inflammation, and end-organ damage.
Collapse
Affiliation(s)
- Danielle Hammond
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sanam Loghavi
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
12
|
MPN: The Molecular Drivers of Disease Initiation, Progression and Transformation and their Effect on Treatment. Cells 2020; 9:cells9081901. [PMID: 32823933 PMCID: PMC7465511 DOI: 10.3390/cells9081901] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/07/2020] [Accepted: 08/11/2020] [Indexed: 02/07/2023] Open
Abstract
Myeloproliferative neoplasms (MPNs) constitute a group of disorders identified by an overproduction of cells derived from myeloid lineage. The majority of MPNs have an identifiable driver mutation responsible for cytokine-independent proliferative signalling. The acquisition of coexisting mutations in chromatin modifiers, spliceosome complex components, DNA methylation modifiers, tumour suppressors and transcriptional regulators have been identified as major pathways for disease progression and leukemic transformation. They also confer different sensitivities to therapeutic options. This review will explore the molecular basis of MPN pathogenesis and specifically examine the impact of coexisting mutations on disease biology and therapeutic options.
Collapse
|
13
|
Sun L, Babushok DV. Secondary myelodysplastic syndrome and leukemia in acquired aplastic anemia and paroxysmal nocturnal hemoglobinuria. Blood 2020; 136:36-49. [PMID: 32430502 PMCID: PMC7332901 DOI: 10.1182/blood.2019000940] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 11/09/2019] [Indexed: 02/06/2023] Open
Abstract
Acquired aplastic anemia (AA) and paroxysmal nocturnal hemoglobinuria (PNH) are pathogenically related nonmalignant bone marrow failure disorders linked to T-cell-mediated autoimmunity; they are associated with an increased risk of secondary myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML). Approximately 15% to 20% of AA patients and 2% to 6% of PNH patients go on to develop secondary MDS/AML by 10 years of follow-up. Factors determining an individual patient's risk of malignant transformation remain poorly defined. Recent studies identified nearly ubiquitous clonal hematopoiesis (CH) in AA patients. Similarly, CH with additional, non-PIGA, somatic alterations occurs in the majority of patients with PNH. Factors associated with progression to secondary MDS/AML include longer duration of disease, increased telomere attrition, presence of adverse prognostic mutations, and multiple mutations, particularly when occurring early in the disease course and at a high allelic burden. Here, we will review the prevalence and characteristics of somatic alterations in AA and PNH and will explore their prognostic significance and mechanisms of clonal selection. We will then discuss the available data on post-AA and post-PNH progression to secondary MDS/AML and provide practical guidance for approaching patients with PNH and AA who have CH.
Collapse
MESH Headings
- Age of Onset
- Anemia, Aplastic/drug therapy
- Anemia, Aplastic/genetics
- Anemia, Aplastic/pathology
- Antibodies, Monoclonal, Humanized/adverse effects
- Antibodies, Monoclonal, Humanized/therapeutic use
- Benzoates/adverse effects
- Benzoates/therapeutic use
- Bone Marrow/pathology
- Chromosome Aberrations
- Chromosomes, Human, Pair 7/genetics
- Clonal Evolution/drug effects
- Clone Cells/drug effects
- Clone Cells/pathology
- Disease Progression
- Granulocyte Colony-Stimulating Factor/adverse effects
- Granulocyte Colony-Stimulating Factor/therapeutic use
- Hemoglobinuria, Paroxysmal/drug therapy
- Hemoglobinuria, Paroxysmal/genetics
- Hemoglobinuria, Paroxysmal/pathology
- Humans
- Hydrazines/adverse effects
- Hydrazines/therapeutic use
- Leukemia, Myeloid, Acute/epidemiology
- Leukemia, Myeloid, Acute/etiology
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/pathology
- Models, Biological
- Monosomy
- Mutation
- Myelodysplastic Syndromes/epidemiology
- Myelodysplastic Syndromes/etiology
- Myelodysplastic Syndromes/genetics
- Myelodysplastic Syndromes/pathology
- Oncogene Proteins, Fusion/genetics
- Pyrazoles/adverse effects
- Pyrazoles/therapeutic use
- Selection, Genetic
- Telomere Shortening
Collapse
Affiliation(s)
- Lova Sun
- Division of Hematology-Oncology, Department of Medicine, University of Pennsylvania, Philadelphia, PA; and
| | - Daria V Babushok
- Division of Hematology-Oncology, Department of Medicine, University of Pennsylvania, Philadelphia, PA; and
- Comprehensive Bone Marrow Failure Center, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA
| |
Collapse
|
14
|
Gao F, Zhou X, Shi J, Luo Y, Tan Y, Fu H, Lai X, Yu J, Huang H, Zhao Y. Eltrombopag treatment promotes platelet recovery and reduces platelet transfusion for patients with post-transplantation thrombocytopenia. Ann Hematol 2020; 99:2679-2687. [PMID: 32519094 DOI: 10.1007/s00277-020-04106-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 05/27/2020] [Indexed: 02/08/2023]
Abstract
Post-transplantation thrombocytopenia (PT) is a common and severe complication which usually leads to poor prognosis. Eltrombopag (EPAG), a novel oral thrombopoietin (TPO) receptor agonist, has shown promising effects in thrombocytopenia due to immune thrombocytopenic purpura (ITP) and refractory severe aplastic anemia (rSAA), while the effectiveness of EPAG for PT patients still needs to be evaluated. A total of 32 PT patients receiving EPAG were retrospectively analyzed between September 2017 and July 2019, including 15 patients with poor graft function (PGF) and 17 patients with secondary failure of platelet recovery (SFPR). To date, 21 (65.6%) patients achieved overall recovery (OR) and 14 (43.8%) patients achieved complete recovery (CR). Among responders, 18 (85.7%) patients discontinued or tapered the drug and 16 (76.2%) patients successfully maintained their best response. During the EPAG treatment, responders received much lower median platelet transfusion units than non-responders (11 vs. 95, P < 0.001). After a median follow-up time of 364 days (range, 24-842), the overall survival in these patients was 78.1% (100% for responders and 36.4% for non-responders, P < 0.001). In the univariate and multivariate analysis, PGF was identified as the independent risk factor for OR (P = 0.041, HR = 5.333). Megakaryocyte (Megk) amounts (P = 0.025, HR = 14.638) and splenomegaly (P = 0.042, HR = 11.278) were identified as independent risk factors for CR. Besides, PGF patients tended to take a longer time to achieve PR and CR than SFPR patients. In conclusion, our data suggest that EPAG can promote platelet recovery and reduce platelet transfusion in PT patients.
Collapse
Affiliation(s)
- Fei Gao
- Bone Marrow Transplantation Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, People's Republic of China.,Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.,Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, Zhejiang, People's Republic of China
| | - Xiaoyu Zhou
- Bone Marrow Transplantation Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, People's Republic of China.,Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.,Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, Zhejiang, People's Republic of China
| | - Jimin Shi
- Bone Marrow Transplantation Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, People's Republic of China.,Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.,Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, Zhejiang, People's Republic of China
| | - Yi Luo
- Bone Marrow Transplantation Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, People's Republic of China.,Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.,Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, Zhejiang, People's Republic of China
| | - Yamin Tan
- Bone Marrow Transplantation Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, People's Republic of China.,Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.,Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, Zhejiang, People's Republic of China
| | - Huarui Fu
- Bone Marrow Transplantation Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, People's Republic of China.,Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.,Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, Zhejiang, People's Republic of China
| | - Xiaoyu Lai
- Bone Marrow Transplantation Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, People's Republic of China.,Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.,Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, Zhejiang, People's Republic of China
| | - Jian Yu
- Bone Marrow Transplantation Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, People's Republic of China.,Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.,Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, Zhejiang, People's Republic of China
| | - He Huang
- Bone Marrow Transplantation Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, People's Republic of China. .,Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China. .,Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, Zhejiang, People's Republic of China.
| | - Yanmin Zhao
- Bone Marrow Transplantation Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, People's Republic of China. .,Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China. .,Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, Zhejiang, People's Republic of China.
| |
Collapse
|
15
|
Vogel JU, Schmidt S, Schmidt D, Rothweiler F, Koch B, Baer P, Rabenau H, Michel D, Stamminger T, Michaelis M, Cinatl J. The Thrombopoietin Receptor Agonist Eltrombopag Inhibits Human Cytomegalovirus Replication Via Iron Chelation. Cells 2019; 9:cells9010031. [PMID: 31861948 PMCID: PMC7017049 DOI: 10.3390/cells9010031] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/12/2019] [Accepted: 12/18/2019] [Indexed: 02/07/2023] Open
Abstract
The thrombopoietin receptor agonist eltrombopag was successfully used against human cytomegalovirus (HCMV)-associated thrombocytopenia refractory to immunomodulatory and antiviral drugs. These effects were ascribed to the effects of eltrombopag on megakaryocytes. Here, we tested whether eltrombopag may also exert direct antiviral effects. Therapeutic eltrombopag concentrations inhibited HCMV replication in human fibroblasts and adult mesenchymal stem cells infected with six different virus strains and drug-resistant clinical isolates. Eltrombopag also synergistically increased the anti-HCMV activity of the mainstay drug ganciclovir. Time-of-addition experiments suggested that eltrombopag interfered with HCMV replication after virus entry. Eltrombopag was effective in thrombopoietin receptor-negative cells, and the addition of Fe3+ prevented the anti-HCMV effects, indicating that it inhibits HCMV replication via iron chelation. This may be of particular interest for the treatment of cytopenias after hematopoietic stem cell transplantation, as HCMV reactivation is a major reason for transplantation failure. Since therapeutic eltrombopag concentrations are effective against drug-resistant viruses, and synergistically increase the effects of ganciclovir, eltrombopag is also a drug-repurposing candidate for the treatment of therapy-refractory HCMV disease.
Collapse
Affiliation(s)
- Jens-Uwe Vogel
- Institut für Medizinische Virologie, Universitätsklinikum, Goethe-Universität, Paul Ehrlich-Str. 40, 60596 Frankfurt am Main, Germany; (J.-U.V.); (S.S.); (D.S.); (F.R.); (H.R.)
| | - Sophie Schmidt
- Institut für Medizinische Virologie, Universitätsklinikum, Goethe-Universität, Paul Ehrlich-Str. 40, 60596 Frankfurt am Main, Germany; (J.-U.V.); (S.S.); (D.S.); (F.R.); (H.R.)
| | - Daniel Schmidt
- Institut für Medizinische Virologie, Universitätsklinikum, Goethe-Universität, Paul Ehrlich-Str. 40, 60596 Frankfurt am Main, Germany; (J.-U.V.); (S.S.); (D.S.); (F.R.); (H.R.)
| | - Florian Rothweiler
- Institut für Medizinische Virologie, Universitätsklinikum, Goethe-Universität, Paul Ehrlich-Str. 40, 60596 Frankfurt am Main, Germany; (J.-U.V.); (S.S.); (D.S.); (F.R.); (H.R.)
| | - Benjamin Koch
- Medizinische Klinik III, Nephrologie, Klinikum der Goethe-Universität, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; (B.K.); (P.B.)
| | - Patrick Baer
- Medizinische Klinik III, Nephrologie, Klinikum der Goethe-Universität, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; (B.K.); (P.B.)
| | - Holger Rabenau
- Institut für Medizinische Virologie, Universitätsklinikum, Goethe-Universität, Paul Ehrlich-Str. 40, 60596 Frankfurt am Main, Germany; (J.-U.V.); (S.S.); (D.S.); (F.R.); (H.R.)
| | - Detlef Michel
- Institut für Virologie, Universitätsklinikum Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany; (D.M.); (T.S.)
| | - Thomas Stamminger
- Institut für Virologie, Universitätsklinikum Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany; (D.M.); (T.S.)
| | - Martin Michaelis
- Industry Biotechnology Centre and School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK
- Correspondence: (J.C.); (M.M.); Tel.: +49-69-678665-72 (J.C.); +44-1227-82-7804 (M.M.)
| | - Jindrich Cinatl
- Institut für Medizinische Virologie, Universitätsklinikum, Goethe-Universität, Paul Ehrlich-Str. 40, 60596 Frankfurt am Main, Germany; (J.-U.V.); (S.S.); (D.S.); (F.R.); (H.R.)
- Correspondence: (J.C.); (M.M.); Tel.: +49-69-678665-72 (J.C.); +44-1227-82-7804 (M.M.)
| |
Collapse
|