1
|
Mancuso K, Barbato S, Di Raimondo F, Gay F, Musto P, Offidani M, Petrucci MT, Zamagni E, Zambello R, Cavo M. Forcing Ahead: Second-Line Treatment Options for Lenalidomide-Refractory Multiple Myeloma. Cancers (Basel) 2025; 17:1168. [PMID: 40227746 PMCID: PMC11987876 DOI: 10.3390/cancers17071168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/24/2025] [Accepted: 03/26/2025] [Indexed: 04/15/2025] Open
Abstract
The therapeutic landscape for multiple myeloma has gradually expanded in recent decades, leading to unprecedented deep and sustained responses as well as remarkable improvements in patient survival. Nonetheless, changes in treatment algorithms have raised new demands for patients with relapsed/refractory disease, as prior exposure and refractoriness to prior therapies impact the choice of subsequent treatments. In particular, refractoriness to lenalidomide-an established backbone of treatment in both front-line and maintenance settings and a key component of many approved regimens used in relapsed disease-is associated with suboptimal clinical outcomes. Therefore, identifying the most appropriate management in lenalidomide-refractory patients, and even more so in patients who are refractory to more than one agent, is critical. At present, treatment options for this growing subgroup of patients are still limited; however, recent data from clinical research are promising. Herein, we summarized the currently available treatment options and discuss future directions based on the latest results from ongoing clinical trials.
Collapse
Affiliation(s)
- Katia Mancuso
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia “Seràgnoli”, 40138 Bologna, Italy; (K.M.); (S.B.); (E.Z.)
- Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, 40138 Bologna, Italy
| | - Simona Barbato
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia “Seràgnoli”, 40138 Bologna, Italy; (K.M.); (S.B.); (E.Z.)
- Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, 40138 Bologna, Italy
| | - Francesco Di Raimondo
- Divisione di Ematologia, Azienda Ospedaliero-Universitaria Policlinico di Catania, Scuola di Specializzazione in Ematologia dell’Università di Catania, 95125 Catania, Italy;
| | - Francesca Gay
- Divisione di Ematologia 1, AOU Città della Salute e della Scienza di Torino, Dipartimento di Biotecnologie Molecolari e Scienze per la Salute, Università degli Studi di Torino, 10126 Torino, Italy;
| | - Pellegrino Musto
- Unit of Hematology and Stem Cell Transplantation, Department of Precision and Regenerative Medicine and Ionian Area, “Aldo Moro” University School of Medicine, AOUC Policlinico, 70124 Bari, Italy;
| | - Massimo Offidani
- Clinica di Ematologia, Unità di Trapianto di Cellule Staminali e Terapia Cellulare dell’AOU delle Marche, 60126 Ancona, Italy;
| | - Maria Teresa Petrucci
- Ematologia, Azienda Ospedaliera Universitaria Policlinico Umberto I, 00161 Roma, Italy;
| | - Elena Zamagni
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia “Seràgnoli”, 40138 Bologna, Italy; (K.M.); (S.B.); (E.Z.)
- Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, 40138 Bologna, Italy
| | - Renato Zambello
- Unità di Ematologia, Dipartimento di Medicina (DIMED), Università di Padova, 65100 Padova, Italy;
| | - Michele Cavo
- Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, 40138 Bologna, Italy
| |
Collapse
|
2
|
Zheng Z, Wang JB, Sun R, Wang N, Weng XQ, Xu TY, Fu D, Feng Y, Xu PP, Cheng S, Wang L, Zhao Y, Qu B, Huang CX, Zhao WL. Dual targeting PD-L1 and 4-1BB to overcome dendritic cell-mediated lenalidomide resistance in follicular lymphoma. Signal Transduct Target Ther 2025; 10:29. [PMID: 39828715 PMCID: PMC11743790 DOI: 10.1038/s41392-024-02105-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 12/13/2024] [Accepted: 12/22/2024] [Indexed: 01/22/2025] Open
Abstract
Immunomodulatory agent lenalidomide is effective in treating follicular lymphoma (FL). We conducted the first trial of immunotherapy rituximab plus lenalidomide in newly diagnosed FL in China (NCT03715309). One-hundred and fifteen patients were enrolled and treated with rituximab 375 mg/m2 intravenously on day 0 and lenalidomide 25 mg orally on day 1-10 for 6 cycles of induction treatment, as well as lenalidomide for 6 cycles and rituximab for 8 cycles of maintenance treatment. We found that inferior progression-free survival of the patients was significantly associated with elevated serum β2m and lymph node >6 cm, linking to decreased lymphoma cell autophagy and dendritic cell infiltration within the tumor microenvironment. PU.1 transcriptionally downregulated PD-L1 (Programmed death ligand 1) expression and upregulated 4-1BBL (4-1BB ligand) expression, increased lymphoma cell autophagy and dendritic cell maturation via PD-1/PD-L1 and 4-1BB/4-1BBL interaction. In vitro in co-culture system and in vivo in murine xenograft model, knockdown of PU.1 induced lenalidomide resistance, but sensitized FL cells to bi-specific PD-L1/4-1BB antibody or combined treatment of PD-L1 inhibitor and 4-1BB agonist. Collectively, PU.1 is essential in immunomodulatory effect of FL through PD-1/PD-L1- and 4-1BB/4-1BBL-mediated microenvironmental modulation. Dual targeting PD-L1 and 4-1BB could be an alternative immunotherapeutic strategy in the chemo-free era of FL treatment.
Collapse
Affiliation(s)
- Zhong Zheng
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian-Biao Wang
- Department of Laboratory Medicine, Shanghai RuiJin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rui Sun
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Nan Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiang-Qin Weng
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tian-Yuan Xu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Di Fu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Feng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Peng-Peng Xu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shu Cheng
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Zhao
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bin Qu
- Department of Laboratory Medicine, Shanghai RuiJin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chuan-Xin Huang
- Department of Immunobiology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei-Li Zhao
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Pôle de Recherches Sino-Français en Science du Vivant et Génomique, Laboratory of Molecular Pathology, Shanghai, China.
| |
Collapse
|
3
|
Meruvia-Rojas YV, Molina-Montes E, Hernández-Laguna A, Sainz-Díaz CI. Intercalation of the anticancer drug lenalidomide into montmorillonite for bioavailability improvement: a computational study. J Mol Model 2024; 31:5. [PMID: 39630314 PMCID: PMC11618151 DOI: 10.1007/s00894-024-06210-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 11/05/2024] [Indexed: 12/08/2024]
Abstract
CONTEXT Lenalidomide (LEN) is used for the treatment of myeloma blood cancer disease. It has become one of the most efficient drugs to halt this disease. LEN is a low-soluble drug in aqueous media. The search of a pharmaceutical preparation to improve the bioavailability and, therefore, to optimize its efficiency is an important issue for pharmaceutical industries and health care. The use of natural excipients such as montmorillonite (MNT) can provide changes in the physical-chemical properties for improving the bioavailability of this drug. We present the first computational study at the atomic scale of the periodic crystal forms of the polymorphs for this anticancer drug, highly demanded in the pharmacy market. In addition, we propose a pharmaceutical preparation by intercalation of LEN in natural MNT. So, our calculations predict that LEN can be intercalated in the interlayer space of MNT, and be released in aqueous media, and physiological aqueous media in consequence. This release process is a more exothermic reaction than the unpacking energy of any of its polymorphs. Besides, the infrared spectra of the LEN molecule and its crystal polymorphs, and LEN intercalated in the confined space of MNT, have been calculated at different levels of theory. The band frequencies have been assigned, matching with the experimental bands, predicting the use of this technique for experimental studies. METHOD In this work, the method is aimed to explore this research at the atomic and molecular level by using computational modelling methods including INTERFACE FF and other FF along with quantum mechanical calculations (Dmol3 and CASTEP) of 3-D periodical systems applying periodical boundary conditions. Models of the isolated molecule and two polymorphs of the crystal structures, with the model of bulk water and LEN intercalated in the MNT model, have been considered. An analysis of the intermolecular interactions is accomplished.
Collapse
Affiliation(s)
- Yumeida V Meruvia-Rojas
- Andalusian Earth Sciences Institute, CSIC, Av. de Las Palmeras, 4, 18100, Armilla, Granada, Spain
- Faculty of Pharmacy, University of Granada, Granada, Spain
| | - Esther Molina-Montes
- Faculty of Pharmacy, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria, Ibs.GRANADA, Granada, Spain
| | - Alfonso Hernández-Laguna
- Andalusian Earth Sciences Institute, CSIC, Av. de Las Palmeras, 4, 18100, Armilla, Granada, Spain.
| | - C Ignacio Sainz-Díaz
- Andalusian Earth Sciences Institute, CSIC, Av. de Las Palmeras, 4, 18100, Armilla, Granada, Spain.
| |
Collapse
|
4
|
Hungria V, Sureda A, Campelo GR, Salvino MA, Ramasamy K. Proceedings from the First Onco Summit: LATAM Chapter, 19-20 May 2023, Rio de Janeiro, Brazil. Cancers (Basel) 2024; 16:3063. [PMID: 39272921 PMCID: PMC11394439 DOI: 10.3390/cancers16173063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/20/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
The Onco Summit 2023: The Latin American (LATAM) Chapter took place over two days, from 19-20 May 2023, in Brazil. The event aimed to share the latest updates across various oncology disciplines, address critical clinical challenges, and exchange best practices to ensure optimal patient treatment. More than 30 international and regional speakers and more than 300 oncology specialists participated in the Summit. The Summit discussions centered on common challenges and therapeutic advances in cancer care, with a specific focus on the unique obstacles faced in LATAM and examples of adaptable strategies to address these challenges. The Summit also facilitated the establishment of a network of oncologists, hematologists, and scientists in LATAM, enabling collaboration to improve cancer care, both in this region and globally, through drug development and clinical research. This report summarizes the key discussions from the Summit for the global and LATAM oncology community.
Collapse
Affiliation(s)
- Vania Hungria
- Hematology, Faculty of Medical Sciences of Santa Casa de São Paulo, São Paulo 01224-001, Brazil
| | - Anna Sureda
- Clinical Hematology Department, Catalan Institut Català d'Oncologia-L'Hospitalet, Instituto de Investigación Biomédica de Bellvitge (IDIBELL), University of Barcelona (UB), 08908 Barcelona, Spain
| | - Garcia Rosario Campelo
- Thoracic Tumors Unit, Medical Oncology Department, University Hospital A Coruña Biomedical Research Institute (INIBIC), 15006 A Coruña, Spain
| | - Marco Aurélio Salvino
- Cell Therapy, D'OR Institute Research & Education (IDOR)/PPGMS-Federal University of Bahia (UFBA), Salvador 40110-100, Brazil
| | - Karthik Ramasamy
- Oxford Translational Myeloma Centre, NDORMS, University of Oxford, Oxford OX3 7LD, UK
| |
Collapse
|
5
|
Tsai JM, Nowak RP, Ebert BL, Fischer ES. Targeted protein degradation: from mechanisms to clinic. Nat Rev Mol Cell Biol 2024; 25:740-757. [PMID: 38684868 DOI: 10.1038/s41580-024-00729-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2024] [Indexed: 05/02/2024]
Abstract
Targeted protein degradation refers to the use of small molecules to induce the selective degradation of proteins. In its most common form, this degradation is achieved through ligand-mediated neo-interactions between ubiquitin E3 ligases - the principal waste disposal machines of a cell - and the protein targets of interest, resulting in ubiquitylation and subsequent proteasomal degradation. Notable advances have been made in biological and mechanistic understanding of serendipitously discovered degraders. This improved understanding and novel chemistry has not only provided clinical proof of concept for targeted protein degradation but has also led to rapid growth of the field, with dozens of investigational drugs in active clinical trials. Two distinct classes of protein degradation therapeutics are being widely explored: bifunctional PROTACs and molecular glue degraders, both of which have their unique advantages and challenges. Here, we review the current landscape of targeted protein degradation approaches and how they have parallels in biological processes. We also outline the ongoing clinical exploration of novel degraders and provide some perspectives on the directions the field might take.
Collapse
Affiliation(s)
- Jonathan M Tsai
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Radosław P Nowak
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
- Institute of Structural Biology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Benjamin L Ebert
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA, USA.
- Broad Institute of Harvard and MIT, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Boston, MA, USA.
| | - Eric S Fischer
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
6
|
Serrano G, Berastegui N, Díaz-Mazkiaran A, García-Olloqui P, Rodriguez-Res C, Huerga-Dominguez S, Ainciburu M, Vilas-Zornoza A, Martin-Uriz PS, Aguirre-Ruiz P, Ullate-Agote A, Ariceta B, Lamo-Espinosa JM, Acha P, Calvete O, Jimenez T, Molero A, Montoro MJ, Díez-Campelo M, Valcarcel D, Solé F, Alfonso-Pierola A, Ochoa I, Prósper F, Ezponda T, Hernaez M. Single-cell transcriptional profile of CD34+ hematopoietic progenitor cells from del(5q) myelodysplastic syndromes and impact of lenalidomide. Nat Commun 2024; 15:5272. [PMID: 38902243 PMCID: PMC11189937 DOI: 10.1038/s41467-024-49529-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 06/06/2024] [Indexed: 06/22/2024] Open
Abstract
While myelodysplastic syndromes with del(5q) (del(5q) MDS) comprises a well-defined hematological subgroup, the molecular basis underlying its origin remains unknown. Using single cell RNA-seq (scRNA-seq) on CD34+ progenitors from del(5q) MDS patients, we have identified cells harboring the deletion, characterizing the transcriptional impact of this genetic insult on disease pathogenesis and treatment response. Interestingly, both del(5q) and non-del(5q) cells present similar transcriptional lesions, indicating that all cells, and not only those harboring the deletion, may contribute to aberrant hematopoietic differentiation. However, gene regulatory network (GRN) analyses reveal a group of regulons showing aberrant activity that could trigger altered hematopoiesis exclusively in del(5q) cells, pointing to a more prominent role of these cells in disease phenotype. In del(5q) MDS patients achieving hematological response upon lenalidomide treatment, the drug reverts several transcriptional alterations in both del(5q) and non-del(5q) cells, but other lesions remain, which may be responsible for potential future relapses. Moreover, lack of hematological response is associated with the inability of lenalidomide to reverse transcriptional alterations. Collectively, this study reveals transcriptional alterations that could contribute to the pathogenesis and treatment response of del(5q) MDS.
Collapse
Affiliation(s)
- Guillermo Serrano
- Computational Biology Program CIMA-Universidad de Navarra, Cancer Center Clínica Universidad de Navarra (CCUN), IdISNA, Pamplona, Spain
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Nerea Berastegui
- Hematology-Oncology Program, CIMA, Cancer Center Clínica Universidad de Navarra (CCUN), IdiSNA, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer, CIBERONC, Madrid, Spain
| | - Aintzane Díaz-Mazkiaran
- Computational Biology Program CIMA-Universidad de Navarra, Cancer Center Clínica Universidad de Navarra (CCUN), IdISNA, Pamplona, Spain
- Hematology-Oncology Program, CIMA, Cancer Center Clínica Universidad de Navarra (CCUN), IdiSNA, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer, CIBERONC, Madrid, Spain
| | - Paula García-Olloqui
- Hematology-Oncology Program, CIMA, Cancer Center Clínica Universidad de Navarra (CCUN), IdiSNA, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer, CIBERONC, Madrid, Spain
| | - Carmen Rodriguez-Res
- Computational Biology Program CIMA-Universidad de Navarra, Cancer Center Clínica Universidad de Navarra (CCUN), IdISNA, Pamplona, Spain
| | - Sofia Huerga-Dominguez
- Hematology and Cell Therapy Service, Cancer Center Clínica Universidad de Navarra (CCUN), IdISNA, Pamplona, Spain
| | - Marina Ainciburu
- Hematology-Oncology Program, CIMA, Cancer Center Clínica Universidad de Navarra (CCUN), IdiSNA, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer, CIBERONC, Madrid, Spain
| | - Amaia Vilas-Zornoza
- Hematology-Oncology Program, CIMA, Cancer Center Clínica Universidad de Navarra (CCUN), IdiSNA, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer, CIBERONC, Madrid, Spain
| | - Patxi San Martin-Uriz
- Hematology-Oncology Program, CIMA, Cancer Center Clínica Universidad de Navarra (CCUN), IdiSNA, Pamplona, Spain
| | - Paula Aguirre-Ruiz
- Hematology-Oncology Program, CIMA, Cancer Center Clínica Universidad de Navarra (CCUN), IdiSNA, Pamplona, Spain
| | - Asier Ullate-Agote
- Hematology-Oncology Program, CIMA, Cancer Center Clínica Universidad de Navarra (CCUN), IdiSNA, Pamplona, Spain
| | - Beñat Ariceta
- Hematology-Oncology Program, CIMA, Cancer Center Clínica Universidad de Navarra (CCUN), IdiSNA, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer, CIBERONC, Madrid, Spain
| | | | - Pamela Acha
- MDS Research Group, Josep Carreras Leukaemia Research Institut, Universitat Autònoma de Barcelona, Barcelona, Spain
- Service of Hematology, Hospital Universitari Vall d'Hebron, Barcelona; Vall d'Hebron Instituto de Oncología (VHIO), Barcelona, Spain
| | - Oriol Calvete
- MDS Research Group, Josep Carreras Leukaemia Research Institut, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Tamara Jimenez
- Centro de Investigación Biomédica en Red de Cáncer, CIBERONC, Madrid, Spain
- Department of Hematology, Hospital Universitario de Salamanca-IBSAL, Salamanca, Spain
| | - Antonieta Molero
- Service of Hematology, Hospital Universitari Vall d'Hebron, Barcelona; Vall d'Hebron Instituto de Oncología (VHIO), Barcelona, Spain
| | - Maria Julia Montoro
- Service of Hematology, Hospital Universitari Vall d'Hebron, Barcelona; Vall d'Hebron Instituto de Oncología (VHIO), Barcelona, Spain
| | - Maria Díez-Campelo
- Centro de Investigación Biomédica en Red de Cáncer, CIBERONC, Madrid, Spain
- Department of Hematology, Hospital Universitario de Salamanca-IBSAL, Salamanca, Spain
| | - David Valcarcel
- Service of Hematology, Hospital Universitari Vall d'Hebron, Barcelona; Vall d'Hebron Instituto de Oncología (VHIO), Barcelona, Spain
| | - Francisco Solé
- MDS Research Group, Josep Carreras Leukaemia Research Institut, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ana Alfonso-Pierola
- Centro de Investigación Biomédica en Red de Cáncer, CIBERONC, Madrid, Spain
- Hematology and Cell Therapy Service, Cancer Center Clínica Universidad de Navarra (CCUN), IdISNA, Pamplona, Spain
| | - Idoia Ochoa
- Instituto de Ciencia de los Datos e Inteligencia Artificial (DATAI), University of Navarra, Pamplona, Spain
- Department of Electrical and Electronics engineering, School of Engineering (Tecnun), University of Navarra, Donostia, Spain
| | - Felipe Prósper
- Hematology-Oncology Program, CIMA, Cancer Center Clínica Universidad de Navarra (CCUN), IdiSNA, Pamplona, Spain.
- Centro de Investigación Biomédica en Red de Cáncer, CIBERONC, Madrid, Spain.
- Hematology and Cell Therapy Service, Cancer Center Clínica Universidad de Navarra (CCUN), IdISNA, Pamplona, Spain.
| | - Teresa Ezponda
- Hematology-Oncology Program, CIMA, Cancer Center Clínica Universidad de Navarra (CCUN), IdiSNA, Pamplona, Spain.
- Centro de Investigación Biomédica en Red de Cáncer, CIBERONC, Madrid, Spain.
| | - Mikel Hernaez
- Computational Biology Program CIMA-Universidad de Navarra, Cancer Center Clínica Universidad de Navarra (CCUN), IdISNA, Pamplona, Spain.
- Centro de Investigación Biomédica en Red de Cáncer, CIBERONC, Madrid, Spain.
- Instituto de Ciencia de los Datos e Inteligencia Artificial (DATAI), University of Navarra, Pamplona, Spain.
| |
Collapse
|
7
|
Berenson JR, Limon A, Rice S, Safaie T, Boccia R, Yang H, Moezi M, Lim S, Schwartz G, Eshaghian S, Brobeck M, Swift R, Eades BM, Bujarski S, Sebhat Y, Ray R, Kim S, Del Dosso A, Vescio R. A Phase I Trial Evaluating the Addition of Lenalidomide to Patients with Relapsed/Refractory Multiple Myeloma Progressing on Ruxolitinib and Methylprednisolone. Target Oncol 2024; 19:343-357. [PMID: 38643346 DOI: 10.1007/s11523-024-01049-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2024] [Indexed: 04/22/2024]
Abstract
BACKGROUND Ruxolitinib (RUX), an orally administered selective Janus kinase 1/2 inhibitor, has received approval for the treatment of myelofibrosis, polycythemia vera, and graft-versus-host disease. We have previously demonstrated the anti-multiple myeloma effects of RUX alone and in combination with the immunomodulatory agent lenalidomide (LEN) and glucocorticosteroids both pre-clinically and clinically. OBJECTIVE This study aims to evaluate whether LEN can achieve clinical activity among patients with multiple myeloma progressing on the combination of RUX and methylprednisolone (MP). METHODS In this part of a phase I, multicenter, open-label study, we evaluated the safety and efficacy of RUX and MP for patients with multiple myeloma with progressive disease who had previously received a proteasome inhibitor, LEN, glucocorticosteroids, and at least three prior regimens; we also determined the safety and efficacy of adding LEN at the time of disease progression from the initial doublet treatment. Initially, all subjects received oral RUX 15 mg twice daily and oral MP 40 mg every other day. Those patients who developed progressive disease according to the International Myeloma Working Group criteria then received LEN 10 mg once daily on days 1-21 within a 28-day cycle in addition to RUX and MP, which were administered at the same doses these patients were receiving at the time progressive disease developed. RESULTS Twenty-nine subjects (median age 64 years; 18 [62%] male) were enrolled in this part of the study and initially received the two-drug combination of RUX and MP. The median number of prior therapies was six (range 3-12). The overall response rate from this two-drug combination was 31% and the clinical benefit rate was 34%. The best responses were 1 very good partial response, 8 partial responses, 1 minor response, 12 stable disease, and 7 progressive disease. The median progression-free survival was 3.5 months (range 0.5-36.2 months). The median time to response was 3.0 months. The median duration of response was 12.5 months (range 2.8-36.2 months). Twenty (69%) patients who showed progressive disease had LEN added to RUX and MP; all patients had prior exposure to LEN and all but one patient was refractory to their last LEN-containing regimen. After the addition of LEN, the overall response rate was 30% and the clinical benefit rate was 40%. The best responses of patients following the addition of LEN were 2 very good partial responses, 4 partial responses, 2 minor responses, 8 stable disease, and 4 progressive disease. The median time to response was 2.6 months (range 0.7-15.0 months). The median duration of response was not reached. The median progression-free survival following the addition of LEN was 3.5 months (range 0.3-25.9 months). CONCLUSIONS For patients with multiple myeloma, treatment with RUX and MP is effective and well tolerated, and LEN can be used to extend the benefit of this RUX-based treatment. CLINICAL TRIAL REGISTRATION This study is registered with ClinicalTrials.gov, NCT03110822, and is ongoing.
Collapse
Affiliation(s)
- James R Berenson
- Institute for Myeloma & Bone Cancer Research, West Hollywood, CA, USA.
- ONCOtherapeutics, 9201 Sunset Boulevard Suite 300, West Hollywood, CA, 90069, USA.
- Berenson Cancer Center, West Hollywood, CA, USA.
| | - Andrea Limon
- ONCOtherapeutics, 9201 Sunset Boulevard Suite 300, West Hollywood, CA, 90069, USA
| | - Stephanie Rice
- ONCOtherapeutics, 9201 Sunset Boulevard Suite 300, West Hollywood, CA, 90069, USA
| | - Tahmineh Safaie
- ONCOtherapeutics, 9201 Sunset Boulevard Suite 300, West Hollywood, CA, 90069, USA
| | - Ralph Boccia
- Center for Cancer and Blood Disorders, Bethesda, MD, USA
| | - Honghao Yang
- The Oncology Institute of Hope and Innovation, Alhambra, CA, USA
| | - Mehdi Moezi
- Cancer Specialists of North Florida, Fleming Island, FL, USA
| | - Stephen Lim
- Cedars Sinai Samuel Oschin Cancer Center, Los Angeles, CA, USA
| | | | | | - Matthew Brobeck
- ONCOtherapeutics, 9201 Sunset Boulevard Suite 300, West Hollywood, CA, 90069, USA
| | | | | | | | | | - Rudra Ray
- Berenson Cancer Center, West Hollywood, CA, USA
| | - Susanna Kim
- ONCOtherapeutics, 9201 Sunset Boulevard Suite 300, West Hollywood, CA, 90069, USA
| | - Ashley Del Dosso
- ONCOtherapeutics, 9201 Sunset Boulevard Suite 300, West Hollywood, CA, 90069, USA
| | - Robert Vescio
- Cedars Sinai Samuel Oschin Cancer Center, Los Angeles, CA, USA
| |
Collapse
|
8
|
Copland M, Ariti C, Thomas IF, Upton L, Sydenham M, Mehta P, Islam S, Kjeldsen L, Burnett AK, Hills RK, Russell N, Dennis M. A randomised evaluation of low-dose cytosine arabinoside plus lenalidomide versus single-agent low-dose cytosine arabinoside in older patients with acute myeloid leukaemia: Results from the LI-1 trial. Br J Haematol 2024; 204:871-876. [PMID: 38016651 DOI: 10.1111/bjh.19220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/26/2023] [Accepted: 11/10/2023] [Indexed: 11/30/2023]
Abstract
Improving outcomes for older patients with acute myeloid leukaemia remains an unmet need. As part of the LI-1 trial, we evaluated lenalidomide (LEN) in combination with low-dose cytosine arabinoside (LDAC) in patients aged >60 years unfit for intensive therapy and compared this to LDAC alone. Two hundred and two patients, randomised 1:1, were evaluable. Overall response rate (CR + CRi) was higher for LDAC + LEN versus LDAC (26% and 13.7% respectively p = 0.031). However, there was no difference in overall survival between the arms (14% and 11.5% at 2 years for LDAC + LEN and LDAC respectively). The addition of LEN was associated with increased toxicity and supportive care requirements.
Collapse
Affiliation(s)
- Mhairi Copland
- Paul O'Gorman Leukaemia Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Cono Ariti
- Centre for Trials Research, Cardiff University, Cardiff, UK
- Oxon Epidemiology, Madrid, Spain
| | - Ian F Thomas
- Centre for Trials Research, Cardiff University, Cardiff, UK
| | - Laura Upton
- Centre for Trials Research, Cardiff University, Cardiff, UK
| | - Mia Sydenham
- Centre for Trials Research, Cardiff University, Cardiff, UK
| | - Priyanka Mehta
- University Hospitals of Bristol and Weston NHS Trust, Bristol, UK
| | - Shahid Islam
- Department of Haematology, Waikato Hospital, Hamilton, New Zealand
| | - Lars Kjeldsen
- Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Alan K Burnett
- Paul O'Gorman Leukaemia Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Robert K Hills
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | | | | |
Collapse
|
9
|
Tamai K, Hirose H, Akazawa Y, Yoshikawa Y, Nomura M, Takeyama H, Tokunaga M, Tei M, Okamura S, Akamaru Y. Three-year progression-free survival of a patient with concomitant mucinous adenocarcinoma of the colon with peritoneal dissemination and multiple myeloma who received lenalidomide: a case report. Surg Case Rep 2024; 10:34. [PMID: 38324080 PMCID: PMC10850042 DOI: 10.1186/s40792-024-01838-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 02/04/2024] [Indexed: 02/08/2024] Open
Abstract
BACKGROUND Concomitant multiple myeloma (MM) and other primary malignancies is rare. Therefore, the treatment outcomes of patients with these conditions have not been well discussed. Lenalidomide is an oral thalidomide analog drug used for MM. Recently, the antitumor effect of lenalidomide has been gaining attention, and lenalidomide has been applied for managing solid tumors. The current case showed the treatment course of a patient treated with lenalidomide for concomitant MM and colon cancer with peritoneal dissemination. CASE PRESENTATION A 74-year-old female patient receiving treatment for MM was diagnosed with mucinous adenocarcinoma of the transverse colon. The patient was clinically diagnosed with stage IIIC T4aN2M0 disease. Subsequently, laparoscopic colectomy with lymph node dissection was planned. However, intraperitoneal observation revealed peritoneal dissemination that had sporadically and widely spread. Therefore, palliative partial colectomy was performed to prevent future hemorrhage or obstruction. The patient was discharged on the 10th postoperative day without postoperative complication. Based on the patient's preference, lenalidomide was continually administered for MM without systemic chemotherapy. The patient survived for > 36 months without any signs of tumor progression. CONCLUSION The current case first showed the treatment course of concomitant MM and colon cancer. The antitumor effect of lenalidomide can possibly contribute to 3-year progression-free survival in patients with mucinous adenocarcinoma of the colon with peritoneal dissemination.
Collapse
Affiliation(s)
- Koki Tamai
- Department of Gastroenterological Surgery, Osaka Rosai Hospital, 1179-3 Nagasone-Kitaku, Sakai, Osaka, 591-8025, Japan
- Department of Surgery, Suita Municipal Hospital, Kishibeshinmachi 5-7, Suita City, Osaka, 564-8567, Japan
| | - Hajime Hirose
- Department of Surgery, Suita Municipal Hospital, Kishibeshinmachi 5-7, Suita City, Osaka, 564-8567, Japan.
| | - Yo Akazawa
- Department of Surgery, Suita Municipal Hospital, Kishibeshinmachi 5-7, Suita City, Osaka, 564-8567, Japan
| | - Yukihiro Yoshikawa
- Department of Gastroenterological Surgery, Osaka Rosai Hospital, 1179-3 Nagasone-Kitaku, Sakai, Osaka, 591-8025, Japan
| | - Masatoshi Nomura
- Department of Gastroenterological Surgery, Osaka Rosai Hospital, 1179-3 Nagasone-Kitaku, Sakai, Osaka, 591-8025, Japan
| | - Hiroshi Takeyama
- Department of Surgery, Suita Municipal Hospital, Kishibeshinmachi 5-7, Suita City, Osaka, 564-8567, Japan
| | - Masahiro Tokunaga
- Department of Hematology, Suita Municipal Hospital, Kishibeshinmachi 5-7, Suita City, Osaka, 564-8567, Japan
| | - Mitsuyoshi Tei
- Department of Gastroenterological Surgery, Osaka Rosai Hospital, 1179-3 Nagasone-Kitaku, Sakai, Osaka, 591-8025, Japan
| | - Shu Okamura
- Department of Surgery, Suita Municipal Hospital, Kishibeshinmachi 5-7, Suita City, Osaka, 564-8567, Japan
| | - Yusuke Akamaru
- Department of Gastroenterological Surgery, Osaka Rosai Hospital, 1179-3 Nagasone-Kitaku, Sakai, Osaka, 591-8025, Japan
| |
Collapse
|
10
|
Milunović V, Smoljanović IM, Patekar MB, Zatezalo V, Kursar M, Radić-Krišto D, Kolonić SO, Gašparov S. First-Line Therapy for Nodal T-cell Non-Hodgkin Lymphomas: an Unmet Need in Hematology. Curr Oncol Rep 2023; 25:813-824. [PMID: 37043116 DOI: 10.1007/s11912-023-01400-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/06/2023] [Indexed: 04/13/2023]
Abstract
PURPOSEOF REVIEW The main aim of this review is to summarize first-line therapy of nodal T-cell non-Hodgkin lymphoma. RECENT FINDINGS Current treatment with CHOP chemotherapy results in poor outcomes in the majority of patients. However, there are advances within the field. First breakthrough is the ECHELON-2 trial which showed that the addition of brentuximab vedotin improves outcomes in anaplastic large cell lymphoma. However, other types of peripheral T-cell non-Hodgkin lymphoma were underrepresented with optimal treatment not known. Second breakthrough is an increase of autologous stem cell transplantation usage in the first complete metabolic remission, except in ALK + anaplastic large cell lymphoma, offering better disease control. Despite advances in the field, CHOP remains the standard treatment for the majority of these lymphomas, but multiple trials are underway with the aim to improve this unmet need in hematology and, hopefully, leading us to a new era in the treatment of peripheral T-cell lymphomas.
Collapse
Affiliation(s)
- Vibor Milunović
- Division of Hematology, Clinical Hospital Merkur, Zajčeva 19, 10000, Zagreb, Croatia.
| | - Inga Mandac Smoljanović
- Division of Hematology, Clinical Hospital Merkur, Zajčeva 19, 10000, Zagreb, Croatia
- School of Medicine, University of Zagreb, Zagreb, Croatia
| | | | - Viktor Zatezalo
- Division of Hematology, Clinical Hospital Merkur, Zajčeva 19, 10000, Zagreb, Croatia
| | - Marin Kursar
- Division of Hematology, Clinical Hospital Merkur, Zajčeva 19, 10000, Zagreb, Croatia
| | - Delfa Radić-Krišto
- Division of Hematology, Clinical Hospital Merkur, Zajčeva 19, 10000, Zagreb, Croatia
- School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Slobodanka Ostojić Kolonić
- Division of Hematology, Clinical Hospital Merkur, Zajčeva 19, 10000, Zagreb, Croatia
- School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Slavko Gašparov
- School of Medicine, University of Zagreb, Zagreb, Croatia
- Clinical Department of Pathology and Cytology, Clinical Hospital Merkur, Zagreb, Croatia
| |
Collapse
|
11
|
Qian X, Yang Y, Deng Y, Liu Y, Zhou Y, Han F, Xu Y, Yuan H. SETDB1 induces lenalidomide resistance in multiple myeloma cells via epithelial‑mesenchymal transition and PI3K/AKT pathway activation. Exp Ther Med 2023; 25:274. [PMID: 37206551 PMCID: PMC10189757 DOI: 10.3892/etm.2023.11973] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 03/22/2023] [Indexed: 05/21/2023] Open
Abstract
SET domain bifurcated histone lysine methyltransferase 1 (SETDB1) is a histone H3K9 methyltransferase that stimulates cell proliferation by methylating AKT, which contributes to drug resistance in multiple myeloma (MM). Lenalidomide is an immunomodulatory agent widely used in the treatment of MM. However, lenalidomide resistance occurs in patients with MM. Currently, the role of SETDB1 in lenalidomide resistance in MM remains unclear. Thus, the present study aimed to explore the functional association between SETDB1 and lenalidomide resistance in MM. The analysis of GEO datasets revealed that SETDB1 was upregulated in lenalidomide-resistant MM cells and that its expression was associated with poor prognosis of patients with MM. Apoptosis analysis revealed that overexpression of SETDB1 in MM cells significantly decreased apoptosis, while knockdown of SETDB1 increased apoptosis. Furthermore, the IC50 value of lenalidomide in MM cells increased following SETDB1 overexpression and decreased following SETDB1 silencing. Additionally, SETDB1 mediated epithelial-mesenchymal transition (EMT) and activated the PI3K/AKT pathway. Mechanistic analysis revealed that inhibition of PI3K/AKT signaling in MM cells increased apoptosis, sensitized the cells to lenalidomide and inhibited EMT, whereas SETDB1 overexpression inhibited the effects of PI3K/AKT cascade inhibition. In conclusion, the findings of the present study indicated that SETDB1 promoted lenalidomide resistance in MM cells by promoting EMT and the PI3K/AKT signaling pathway. Thus, SETDB1 may be a potential therapeutic target for MM.
Collapse
Affiliation(s)
- Xiaoli Qian
- Department of Hematology, The Second People's Hospital of Taizhou, Medical College of Yangzhou University, Jiangyan, Taizhou, Jiangsu 225500, P.R. China
| | - Yang Yang
- Department of Gastroenterology, The Second People's Hospital of Taizhou, Medical College of Yangzhou University, Jiangyan, Taizhou, Jiangsu 225500, P.R. China
| | - Yingfen Deng
- Department of Hematology, The Second People's Hospital of Taizhou, Medical College of Yangzhou University, Jiangyan, Taizhou, Jiangsu 225500, P.R. China
| | - Yali Liu
- Department of Hematology, The Second People's Hospital of Taizhou, Medical College of Yangzhou University, Jiangyan, Taizhou, Jiangsu 225500, P.R. China
| | - Yuwen Zhou
- Department of Hematology, The Second People's Hospital of Taizhou, Medical College of Yangzhou University, Jiangyan, Taizhou, Jiangsu 225500, P.R. China
| | - Fang Han
- Department of Gastroenterology, The Second People's Hospital of Taizhou, Medical College of Yangzhou University, Jiangyan, Taizhou, Jiangsu 225500, P.R. China
| | - Yue Xu
- Department of Hematology, The Second People's Hospital of Taizhou, Medical College of Yangzhou University, Jiangyan, Taizhou, Jiangsu 225500, P.R. China
| | - Hongjian Yuan
- Department of Hematology, The Second People's Hospital of Taizhou, Medical College of Yangzhou University, Jiangyan, Taizhou, Jiangsu 225500, P.R. China
- Correspondence to: Professor Hongjian Yuan, Department of Hematology, The Second People's Hospital of Taizhou, Medical College of Yangzhou University, 27 Jiankang Road, Jiangyan, Taizhou, Jiangsu 225500, P.R. China
| |
Collapse
|
12
|
Fang Y, Wang S, Han S, Zhao Y, Yu C, Liu H, Li N. Targeted protein degrader development for cancer: advances, challenges, and opportunities. Trends Pharmacol Sci 2023; 44:303-317. [PMID: 37059054 DOI: 10.1016/j.tips.2023.03.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/08/2023] [Accepted: 03/08/2023] [Indexed: 04/16/2023]
Abstract
Anticancer-targeted therapies inhibit various kinases implicated in cancer and have been used in clinical settings for decades. However, many cancer-related targets are proteins without catalytic activity and are difficult to target using traditional occupancy-driven inhibitors. Targeted protein degradation (TPD) is an emerging therapeutic modality that has expanded the druggable proteome for cancer treatment. With the entry of new-generation immunomodulatory drugs (IMiDs), selective estrogen receptor degraders (SERDs), and proteolysis-targeting chimera (PROTAC) drugs into clinical trials, the field of TPD has seen explosive growth in the past 10 years. Several challenges remain that need to be tackled to increase successful clinical translation of TPD drugs. We present an overview of the global landscape of clinical trials of TPD drugs over the past decade and summarize the clinical profiles of new-generation TPD drugs. In addition, we highlight the challenges and opportunities for the development of effective TPD drugs for future successful clinical translation.
Collapse
Affiliation(s)
- Yuan Fang
- Clinical Trials Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Shuhang Wang
- Clinical Trials Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Songzhe Han
- Department of Chemistry, BeiGene (Beijing) Co. Ltd, Beijing 100020, China
| | - Yizhou Zhao
- Department of Chemistry, BeiGene (Beijing) Co. Ltd, Beijing 100020, China
| | - Cunjing Yu
- Translational Discovery, Research, and Medicine, BeiGene (Beijing) Co. Ltd, Beijing 100020, China
| | - Huaqing Liu
- Department of Chemistry, BeiGene (Beijing) Co. Ltd, Beijing 100020, China
| | - Ning Li
- Clinical Trials Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| |
Collapse
|
13
|
Park SM, Miyamoto DK, Han GYQ, Chan M, Curnutt NM, Tran NL, Velleca A, Kim JH, Schurer A, Chang K, Xu W, Kharas MG, Woo CM. Dual IKZF2 and CK1α degrader targets acute myeloid leukemia cells. Cancer Cell 2023; 41:726-739.e11. [PMID: 36898380 PMCID: PMC10466730 DOI: 10.1016/j.ccell.2023.02.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 12/06/2022] [Accepted: 02/09/2023] [Indexed: 03/12/2023]
Abstract
Acute myeloid leukemia (AML) is a hematologic malignancy for which several epigenetic regulators have been identified as therapeutic targets. Here we report the development of cereblon-dependent degraders of IKZF2 and casein kinase 1α (CK1α), termed DEG-35 and DEG-77. We utilized a structure-guided approach to develop DEG-35 as a nanomolar degrader of IKZF2, a hematopoietic-specific transcription factor that contributes to myeloid leukemogenesis. DEG-35 possesses additional substrate specificity for the therapeutically relevant target CK1α, which was identified through unbiased proteomics and a PRISM screen assay. Degradation of IKZF2 and CK1α blocks cell growth and induces myeloid differentiation in AML cells through CK1α-p53- and IKZF2-dependent pathways. Target degradation by DEG-35 or a more soluble analog, DEG-77, delays leukemia progression in murine and human AML mouse models. Overall, we provide a strategy for multitargeted degradation of IKZF2 and CK1α to enhance efficacy against AML that may be expanded to additional targets and indications.
Collapse
Affiliation(s)
- Sun-Mi Park
- Molecular Pharmacology Program and Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - David K Miyamoto
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Grace Y Q Han
- Molecular Pharmacology Program and Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mandy Chan
- Molecular Pharmacology Program and Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nicole M Curnutt
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Nathan L Tran
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Anthony Velleca
- Molecular Pharmacology Program and Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jun Hyun Kim
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alexandra Schurer
- Molecular Pharmacology Program and Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kathryn Chang
- Molecular Pharmacology Program and Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Wenqing Xu
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Michael G Kharas
- Molecular Pharmacology Program and Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Christina M Woo
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA; Broad Institute, Cambridge, MA, USA.
| |
Collapse
|
14
|
Yan J, Zheng Z. Discovery of Highly Potent CRBN Ligands and Insight into Their Binding Mode through Molecular Docking and Molecular Dynamics Simulations. ChemMedChem 2023; 18:e202200573. [PMID: 36750890 DOI: 10.1002/cmdc.202200573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/21/2022] [Indexed: 02/09/2023]
Abstract
Cereblon (CRBN) is a substrate receptor of E3 ubiquitin ligase as well as the target of thalidomide and lenalidomide, plays a vital role in endogenous protein degradation. In this article, two series of compounds with novel structure were designed, synthesized and evaluated against CRBN. YJ1b, designed based on our previous finding, shown strong binding affinity toward CRBN (IC50 =0.206 μM) by forming a salt bridge interaction with amino acid residue Glu377 of CRBN, it was 13-fold compared with that of lenalidomide (IC50 =2.694 μM) in TR-FRET assay. YJ2c and YJ2h, two analogs of YJ1b, also exhibit high binding affinity toward CRBN (IC50 =0.211 μM and IC50 =0.282 μM, respectively). While, molecular docking and 100 ns molecular dynamic simulation studies were conducted to insight into the unique binding mode of YJ1b, YJ2c and YJ2e toward CRBN. The new compounds with special binding mode in this article may serve for the further optimization and discovery of novel high potent CRBN ligands.
Collapse
Affiliation(s)
- Jian Yan
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Zhibing Zheng
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
| |
Collapse
|
15
|
Bhatt P, Kloock C, Comenzo R. Relapsed/Refractory Multiple Myeloma: A Review of Available Therapies and Clinical Scenarios Encountered in Myeloma Relapse. Curr Oncol 2023; 30:2322-2347. [PMID: 36826140 PMCID: PMC9954856 DOI: 10.3390/curroncol30020179] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
Multiple myeloma remains an incurable disease with the usual disease course requiring induction therapy, autologous stem cell transplantation for eligible patients, and long-term maintenance. Risk stratification tools and cytogenetic alterations help inform individualized therapeutic choices for patients in hopes of achieving long-term remissions with preserved quality of life. Unfortunately, relapses occur at different stages of the course of the disease owing to the biological heterogeneity of the disease. Addressing relapse can be complex and challenging as there are both therapy- and patient-related factors to consider. In this broad scoping review of available therapies in relapsed/refractory multiple myeloma (RRMM), we cover the pharmacologic mechanisms underlying active therapies such as immunomodulatory agents (IMiDs), proteasome inhibitors (PIs), monoclonal antibodies (mAbs), traditional chemotherapy, and Venetoclax. We then review the clinical data supporting the use of these therapies, organized based on drug resistance/refractoriness, and the role of autologous stem cell transplant (ASCT). Approaches to special situations during relapse such as renal impairment and extramedullary disease are also covered. Lastly, we look towards the future by briefly reviewing the clinical data supporting the use of chimeric antigen receptor (CAR-T) therapy, bispecific T cell engagers (BITE), and Cereblon E3 Ligase Modulators (CELMoDs).
Collapse
Affiliation(s)
- Parva Bhatt
- Correspondence: (P.B.); (R.C.); Tel.: +1-617-636-6454
| | | | | |
Collapse
|
16
|
Fuchs O. Targeting cereblon in hematologic malignancies. Blood Rev 2023; 57:100994. [PMID: 35933246 DOI: 10.1016/j.blre.2022.100994] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 01/28/2023]
Abstract
The protein cereblon (CRBN) is a substrate receptor of the cullin 4-really interesting new gene (RING) E3 ubiquitin ligase complex CRL4CRBN. Targeting CRBN mediates selective protein ubiquitination and subsequent degradation via the proteasome. This review describes novel thalidomide analogs, immunomodulatory drugs, also known as CRBN E3 ubiquitin ligase modulators or molecular glues (avadomide, iberdomide, CC-885, CC-90009, BTX-1188, CC-92480, CC-99282, CFT7455, and CC-91633), and CRBN-based proteolysis targeting chimeras (PROTACs) with increased efficacy and potent activity for application in hematologic malignancies. Both types of CRBN-binding drugs, molecular glues, and PROTACs stimulate the interaction between CRBN and its neosubstrates, recruiting target disease-promoting proteins and the E3 ubiquitin ligase CRL4CRBN. Proteins that are traditionally difficult to target (transcription factors and oncoproteins) can be polyubiquitinated and degraded in this way. The competition of CRBN neosubstrates with endogenous CRBN-interacting proteins and the pharmacology and rational combination therapies of and mechanisms of resistance to CRL4CRBN modulators or CRBN-based PROTACs are described.
Collapse
Affiliation(s)
- Ota Fuchs
- Institute of Hematology and Blood Transfusion, U Nemocnice 1, 12800 Praha 2, Czech Republic.
| |
Collapse
|
17
|
Lessons for the clinical nephrologist: lenalidomide-induced Fanconi syndrome in a patient with multiple myeloma post stem cell transplantation. J Nephrol 2022; 35:2139-2142. [PMID: 36089632 DOI: 10.1007/s40620-022-01447-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 08/18/2022] [Indexed: 10/14/2022]
|
18
|
Sha Y, Wu J, Paul B, Zhao Y, Mathews P, Li Z, Norris J, Wang E, McDonnell DP, Kang Y. PPAR agonists attenuate lenalidomide's anti-myeloma activity in vitro and in vivo. Cancer Lett 2022; 545:215832. [PMID: 35872263 PMCID: PMC10355274 DOI: 10.1016/j.canlet.2022.215832] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 07/10/2022] [Accepted: 07/14/2022] [Indexed: 01/05/2023]
Abstract
Many patients with multiple myeloma (MM) have comorbidities and are treated with PPAR agonists. Immunomodulatory agents (IMiDs) are the cornerstones for MM therapy. Currently, little is known about how co-administration of PPAR agonists impacts lenalidomide treatment in patients with MM. Here, we determined the effects of PPAR agonists on anti-myeloma activities of lenalidomide in vitro and in a myeloma xenograft mouse model. Genetic overexpression and CRISPR/cas9 knockout experiments were performed to determine the role of CRBN in the PPAR-mediated pathway. A retrospective cohort study was performed to determine the correlation of PPAR expression with the outcomes of patients with MM. PPAR agonists down-regulated CRBN expression and reduced the anti-myeloma efficacy of lenalidomide in vitro and in vivo. Co-treatment with PPAR antagonists increased CRBN expression and improved sensitivity to lenalidomide. PPAR expression was higher in bone marrow cells of patients with newly diagnosed MM than in normal control bone marrow samples. High PPAR expression was correlated with poor clinical outcomes. Our study provides the first evidence that PPARs transcriptionally regulate CRBN and that drug-drug interactions between PPAR agonists and IMiDs may impact myeloma treatment outcomes.
Collapse
Affiliation(s)
- Yonggang Sha
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Jian Wu
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Barry Paul
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Yue Zhao
- Department of Pathology, Duke University Medical Center, Durham, NC, USA
| | - Parker Mathews
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Zhiguo Li
- Duke Cancer Institute Bioinformatics Shared Resources, Duke University Medical Center, Durham, NC, USA
| | - John Norris
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - Endi Wang
- Department of Pathology, Duke University Medical Center, Durham, NC, USA
| | - Donald P McDonnell
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - Yubin Kang
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
19
|
Barreto IV, Machado CB, Almeida DB, Pessoa FMCDP, Gadelha RB, Pantoja LDC, Oliveira DDS, Ribeiro RM, Lopes GS, de Moraes Filho MO, de Moraes MEA, Khayat AS, de Oliveira EHC, Moreira-Nunes CA. Kinase Inhibition in Multiple Myeloma: Current Scenario and Clinical Perspectives. Pharmaceutics 2022; 14:pharmaceutics14091784. [PMID: 36145532 PMCID: PMC9506264 DOI: 10.3390/pharmaceutics14091784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/16/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
Multiple myeloma (MM) is a blood cell neoplasm characterized by excessive production of malignant monoclonal plasma cells (activated B lymphocytes) by the bone marrow, which end up synthesizing antibodies or antibody fragments, called M proteins, in excess. The accumulation of this production, both cells themselves and of the immunoglobulins, causes a series of problems for the patient, of a systemic and local nature, such as blood hyperviscosity, renal failure, anemia, bone lesions, and infections due to compromised immunity. MM is the third most common hematological neoplasm, constituting 1% of all cancer cases, and is a disease that is difficult to treat, still being considered an incurable disease. The treatments currently available cannot cure the patient, but only extend their lifespan, and the main and most effective alternative is autologous hematopoietic stem cell transplantation, but not every patient is eligible, often due to age and pre-existing comorbidities. In this context, the search for new therapies that can bring better results to patients is of utmost importance. Protein tyrosine kinases (PTKs) are involved in several biological processes, such as cell growth regulation and proliferation, thus, mutations that affect their functionality can have a great impact on crucial molecular pathways in the cells, leading to tumorigenesis. In the past couple of decades, the use of small-molecule inhibitors, which include tyrosine kinase inhibitors (TKIs), has been a hallmark in the treatment of hematological malignancies, and MM patients may also benefit from TKI-based treatment strategies. In this review, we seek to understand the applicability of TKIs used in MM clinical trials in the last 10 years.
Collapse
Affiliation(s)
- Igor Valentim Barreto
- Pharmacogenetics Laboratory, Department of Medicine, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza 60430-275, CE, Brazil
| | - Caio Bezerra Machado
- Pharmacogenetics Laboratory, Department of Medicine, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza 60430-275, CE, Brazil
| | | | - Flávia Melo Cunha de Pinho Pessoa
- Pharmacogenetics Laboratory, Department of Medicine, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza 60430-275, CE, Brazil
| | - Renan Brito Gadelha
- Pharmacogenetics Laboratory, Department of Medicine, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza 60430-275, CE, Brazil
| | - Laudreísa da Costa Pantoja
- Department of Biological Sciences, Oncology Research Center, Federal University of Pará, Belém 66073-005, PA, Brazil
| | | | | | - Germison Silva Lopes
- Department of Hematology, César Cals General Hospital, Fortaleza 60015-152, CE, Brazil
| | - Manoel Odorico de Moraes Filho
- Pharmacogenetics Laboratory, Department of Medicine, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza 60430-275, CE, Brazil
| | - Maria Elisabete Amaral de Moraes
- Pharmacogenetics Laboratory, Department of Medicine, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza 60430-275, CE, Brazil
| | - André Salim Khayat
- Department of Biological Sciences, Oncology Research Center, Federal University of Pará, Belém 66073-005, PA, Brazil
| | - Edivaldo Herculano Correa de Oliveira
- Faculty of Natural Sciences, Institute of Exact and Natural Sciences, Federal University of Pará (UFPA), Rua Augusto Correa, 01, Belém 66075-990, PA, Brazil
- Laboratory of Cytogenomics and Environmental Mutagenesis, Environment Section (SAMAM), Evandro Chagas Institute (IEC), BR 316, KM 7, s/n, Levilândia, Ananindeua 67030-000, PA, Brazil
| | - Caroline Aquino Moreira-Nunes
- Pharmacogenetics Laboratory, Department of Medicine, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza 60430-275, CE, Brazil
- Department of Biological Sciences, Oncology Research Center, Federal University of Pará, Belém 66073-005, PA, Brazil
- Northeast Biotechnology Network (RENORBIO), Itaperi Campus, Ceará State University, Fortaleza 60740-903, CE, Brazil
- Correspondence:
| |
Collapse
|
20
|
Lüke F, Harrer DC, Pantziarka P, Pukrop T, Ghibelli L, Gerner C, Reichle A, Heudobler D. Drug Repurposing by Tumor Tissue Editing. Front Oncol 2022; 12:900985. [PMID: 35814409 PMCID: PMC9270020 DOI: 10.3389/fonc.2022.900985] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/20/2022] [Indexed: 11/13/2022] Open
Abstract
The combinatory use of drugs for systemic cancer therapy commonly aims at the direct elimination of tumor cells through induction of apoptosis. An alternative approach becomes the focus of attention if biological changes in tumor tissues following combinatory administration of regulatorily active drugs are considered as a therapeutic aim, e.g., differentiation, transdifferentiation induction, reconstitution of immunosurveillance, the use of alternative cell death mechanisms. Editing of the tumor tissue establishes new biological 'hallmarks' as a 'pressure point' to attenuate tumor growth. This may be achieved with repurposed, regulatorily active drug combinations, often simultaneously targeting different cell compartments of the tumor tissue. Moreover, tissue editing is paralleled by decisive functional changes in tumor tissues providing novel patterns of target sites for approved drugs. Thus, agents with poor activity in non-edited tissue may reveal new clinically meaningful outcomes. For tissue editing and targeting edited tissue novel requirements concerning drug selection and administration can be summarized according to available clinical and pre-clinical data. Monoactivity is no pre-requisite, but combinatory bio-regulatory activity. The regulatorily active dose may be far below the maximum tolerable dose, and besides inhibitory active drugs stimulatory drug activities may be integrated. Metronomic scheduling often seems to be of advantage. Novel preclinical approaches like functional assays testing drug combinations in tumor tissue are needed to select potential drugs for repurposing. The two-step drug repurposing procedure, namely establishing novel functional systems states in tumor tissues and consecutively providing novel target sites for approved drugs, facilitates the systematic identification of drug activities outside the scope of any original clinical drug approvals.
Collapse
Affiliation(s)
- Florian Lüke
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
- Division of Personalized Tumor Therapy, Fraunhofer Institute for Toxicology and Experimental Medicine, Regensburg, Germany
| | - Dennis Christoph Harrer
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Pan Pantziarka
- The George Pantziarka TP53 Trust, London, United Kingdom
| | - Tobias Pukrop
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
- Bavarian Cancer Research Center (BZKF), University Hospital Regensburg, Regensburg, Germany
| | - Lina Ghibelli
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Christopher Gerner
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Albrecht Reichle
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Daniel Heudobler
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
- Bavarian Cancer Research Center (BZKF), University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
21
|
Offidani M, Corvatta L, Morè S, Manieri MV, Olivieri A. An update on novel multiple myeloma targets. Expert Rev Hematol 2022; 15:519-537. [PMID: 35640130 DOI: 10.1080/17474086.2022.2085088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Introduction: despite therapeutic progress, leading to a significant improvement of outcome, multiple myeloma (MM) remains a difficult to treat hematologic disease due to its biological heterogeneity and clinical complexity. Areas covered: Treatment of patients refractory and resistant to all classes of agents used in newly diagnosed MM, is becoming a relevant problem for every hematologist. New generation immunotherapies, such as conjugated mAb, bispecific mAbs and CAR-T cells, targeting novel molecules as BCMA, have showed relevant results in very advanced MM. In the same setting, small molecules, such as selinexor and melflufen, also proved to be effective. We are currently waiting for the results of under evaluation personalized therapy, directed against specific gene mutations or signaling pathways, responsible for disease progression. Expert Opinion: In the near future, many therapeutic strategies will become available for MM and the challenge will be to position each approach in order to cure, maintaining a good quality of life in these patients.
Collapse
Affiliation(s)
- Massimo Offidani
- Clinica di Ematologia Azienda Ospedaliero-Universitaria Ospedali Riuniti di Ancona
| | | | - Sonia Morè
- Clinica di Ematologia Azienda Ospedaliero-Universitaria Ospedali Riuniti di Ancona
| | | | - Attilio Olivieri
- Clinica di Ematologia Azienda Ospedaliero-Universitaria Ospedali Riuniti di Ancona
| |
Collapse
|
22
|
Molecular relation between biological stress and carcinogenesis. Mol Biol Rep 2022; 49:9929-9945. [PMID: 35610338 DOI: 10.1007/s11033-022-07543-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 04/29/2022] [Indexed: 10/18/2022]
Abstract
This paper aims to overview different types of stress, including DNA replication stress, oxidative stress, and psychological stress. Understanding the processes that constitute a cellular response to varied types of stress lets us find differences in how normal cells and cancer cells react to the appearance of a particular kind of stressor. The revealed dissimilarities are the key for targeting new molecules and signaling pathways in anticancer treatment. For this reason, molecular mechanisms that underlay DNA replication stress, oxidative stress, and psychological stress have been studied and briefly presented to indicate biochemical points that make stressors contribute to cancer development. What is more, the viewpoint in which cancer constitutes the outcome and the cause of stress has been taken into consideration. In a described way, this paper draws attention to the problem of cancer-related post-traumatic stress disorder and proposes a novel, multidimensional oncological approach, connecting anticancer treatment with psychiatric support.
Collapse
|
23
|
Drula R, Iluta S, Gulei D, Iuga C, Dima D, Ghiaur G, Buzoianu AD, Ciechanover A, Tomuleasa C. Exploiting the ubiquitin system in myeloid malignancies. From basic research to drug discovery in MDS and AML. Blood Rev 2022; 56:100971. [PMID: 35595613 DOI: 10.1016/j.blre.2022.100971] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/02/2022] [Accepted: 05/04/2022] [Indexed: 12/19/2022]
Abstract
The ubiquitin-proteasome system is the crucial homeostatic mechanism responsible for the degradation and turnover of proteins. As such, alterations at this level are often associated with oncogenic processes, either through accumulation of undegraded pathway effectors or, conversely, excessive degradation of tumor-suppressing factors. Therefore, investigation of the ubiquitin- proteasome system has gained much attraction in recent years, especially in the context of hematological malignancies, giving rise to efficient therapeutics such as bortezomib for multiple myeloma. Current investigations are now focused on manipulating protein degradation via fine-tuning of the ubiquitination process through inhibition of deubiquitinating enzymes or development of PROTAC systems for stimulation of ubiquitination and protein degradation. On the other hand, the efficiency of Thalidomide derivates in myelodysplastic syndromes (MDS), such as Lenalidomide, acted as the starting point for the development of targeted leukemia-associated protein degradation molecules. These novel molecules display high efficiency in overcoming the limitations of current therapeutic regimens, such as refractory diseases. Therefore, in this manuscript we will address the therapeutic opportunities and strategies based on the ubiquitin-proteasome system, ranging from the modulation of deubiquitinating enzymes and, conversely, describing the potential of modern targeted protein degrading molecules and their progress into clinical implementation.
Collapse
Affiliation(s)
- Rares Drula
- Research Center for Advanced Medicine - MedFUTURE, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
| | - Sabina Iluta
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania; Department of Hematology, Ion Chiricuta Clinical Cancer Center, Cluj Napoca, Romania
| | - Diana Gulei
- Research Center for Advanced Medicine - MedFUTURE, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
| | - Cristina Iuga
- Research Center for Advanced Medicine - MedFUTURE, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania; Department of Pharmaceutical Analysis, Faculty of Pharmacy, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Delia Dima
- Department of Hematology, Ion Chiricuta Clinical Cancer Center, Cluj Napoca, Romania
| | - Gabriel Ghiaur
- Department of Oncology, The Johns Hopkins Hospital, Johns Hopkins Medicine, Baltimore, MD, United States
| | - Anca Dana Buzoianu
- Department of Pharmacology, Toxicology and Clinical Pharmacology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj Napoca, Romania
| | - Aaron Ciechanover
- Research Center for Advanced Medicine - MedFUTURE, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania; Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania; Rappaport Technion Integrated Cancer Center, Technion-Israel Institute of Technology, Haifa 3109601, Israel; Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa 3109601, Israel
| | - Ciprian Tomuleasa
- Research Center for Advanced Medicine - MedFUTURE, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania; Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania; Department of Hematology, Ion Chiricuta Clinical Cancer Center, Cluj Napoca, Romania.
| |
Collapse
|
24
|
SIRPα+ macrophages are increased in patients with FL who progress or relapse after frontline lenalidomide and rituximab. Blood Adv 2022; 6:3286-3293. [PMID: 35359004 PMCID: PMC9198921 DOI: 10.1182/bloodadvances.2022007104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/08/2022] [Indexed: 11/20/2022] Open
Abstract
Chemoimmunotherapy is an effective treatment strategy for patients with FL who relapse after frontline R2. SIRPα+ and CSF1R+macrophages are increased in FL patients who relapse after frontline R2.
Limited data exist regarding the outcome of patients with follicular lymphoma (FL) who relapse or progress after frontline lenalidomide and rituximab (R2). Moreover, mechanisms of resistance to R2 in FL remain unclear, with increased protumoral macrophages suspected as a major contributory culprit to this phenomenon. This retrospective study analyzed the outcome of patients with advanced-stage FL grade 1 to 3A who relapsed or progressed after frontline R2. A multiplex immunofluorescence macrophage panel, including CD47, CD14, CD68, CD115 (also known as colony-stimulating factor 1 receptor [CSF1R]), CD163, CD172a (also known as signal regulatory protein α [SIRPα]), and CD274 (also known as programmed cell death-ligand 1 [PDL1]), was used to stain tissue biopsy specimens collected before initiation of R2 and at the time of progression. Among 156 patients with advanced-stage FL treated with frontline R2, 33 (21%) relapsed or progressed and required second-line therapy, after a median of 33 months (range, 1-122 months). Second-line therapy was chemoimmunotherapy in 16 (48%) patients and other therapy in 17 (52%). The overall response rate was 78%, and complete response rate was 72%. Median progression-free survival was significantly longer in patients who received chemoimmunotherapy compared with other therapy (99 vs 25 months; P = .004). Three macrophage populations were significantly increased in tissue samples collected at progression compared with before frontline treatment: CD68+CD115+ (P = .02), CD68+CD115+CD172a+ (P = .02), and CD68+CD163+CD172a+ (P = .01). Chemoimmunotherapy is an effective treatment strategy for patients with FL who relapse after frontline R2. Therapies targeting specific macrophage populations may yield novel approaches for improving outcomes with frontline R2.
Collapse
|
25
|
Du L, Liu W, Pichiorri F, Rosen ST. SUMOylation inhibition enhances multiple myeloma sensitivity to lenalidomide. Cancer Gene Ther 2022; 30:567-574. [PMID: 35338347 PMCID: PMC10104776 DOI: 10.1038/s41417-022-00450-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 01/18/2022] [Accepted: 02/24/2022] [Indexed: 11/09/2022]
Abstract
Despite the potent effect of lenalidomide (Len) in multiple myeloma (MM) treatment, patients develop Len resistance leading to progressive disease, demanding an urgent need to investigate the mechanisms mediating Len resistance. Our study identified SUMOylation as a potential mechanism regulating Len resistance in MM. Len-resistant MM cell line MMR10R presented much higher SUMO E1 (SAE2) expression and more global SUMOylation than Len-sensitive MM1S cell line. SUMOylation inhibition by using TAK-981, a novel and specific SUMO E1 inhibitor, significantly enhances myeloma sensitivity to Len in MM cell lines. Moreover, the enhanced anti-MM activity by TAK-981 and Len combination has been validated using primary relapsing MM patient samples. Overexpression of IRF4 and c-Myc is a major mechanism of Len resistance. Len showed limited effect on IRF4 and c-Myc level in Len-resistance cell line, but TAK-981 treatment reduced IRF4 and c-Myc expression in Len-resistant line and caused further decrease when combined with Len. We found SUMOylation inhibition decreases IRF4 at transcriptional and post-translational level. SUMOylation inhibition reduced DOT1L with decreased methylation of histone H3 lysine 79, to suppress IRF4 gene transcription. SUMOylation inhibition also reduced IRF4 protein level by enhancing degradation. Overall, our data revealed SUMOylation inhibition enhances Len sensitivity through downregulating IRF4.
Collapse
Affiliation(s)
- Li Du
- Toni Stephenson Lymphoma Center, Beckman Research Institute of City of Hope, Duarte, CA, USA. .,Judy and Bernard Briskin Center for Multiple Myeloma Research, Beckman Research Institute of City of Hope, Duarte, CA, USA. .,Department of Hematology and Stem Cell Transplant, Beckman Research Institute of City of Hope, Duarte, CA, USA.
| | - Wei Liu
- Toni Stephenson Lymphoma Center, Beckman Research Institute of City of Hope, Duarte, CA, USA.,Department of Hematology, Xiangya Hospital, Central South University, Changsha, China
| | - Flavia Pichiorri
- Judy and Bernard Briskin Center for Multiple Myeloma Research, Beckman Research Institute of City of Hope, Duarte, CA, USA.,Department of Hematology and Stem Cell Transplant, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Steven T Rosen
- Toni Stephenson Lymphoma Center, Beckman Research Institute of City of Hope, Duarte, CA, USA. .,Judy and Bernard Briskin Center for Multiple Myeloma Research, Beckman Research Institute of City of Hope, Duarte, CA, USA. .,Department of Hematology and Stem Cell Transplant, Beckman Research Institute of City of Hope, Duarte, CA, USA. .,City of Hope Comprehensive Cancer Center, City of Hope National Medical Center, Duarte, CA, USA.
| |
Collapse
|
26
|
Carfilzomib, dexamethasone, and daratumumab versus carfilzomib and dexamethasone for patients with relapsed or refractory multiple myeloma (CANDOR): updated outcomes from a randomised, multicentre, open-label, phase 3 study. Lancet Oncol 2021; 23:65-76. [PMID: 34871550 DOI: 10.1016/s1470-2045(21)00579-9] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/27/2021] [Accepted: 09/29/2021] [Indexed: 01/09/2023]
Abstract
BACKGROUND Despite recent advances in therapeutic options, there remains an unmet need for treating patients with relapsed or refractory multiple myeloma, especially in those previously exposed or refractory to lenalidomide. This updated efficacy and safety analysis from the phase 3 CANDOR study compared carfilzomib, daratumumab, and dexamethasone (KdD) with carfilzomib and dexamethasone (Kd) in patients with relapsed or refractory multiple myeloma. METHODS In this updated analysis of the randomised, multicentre, open-label, phase 3 CANDOR study, patients (aged ≥18 years) with relapsed or refractory multiple myeloma, at least a partial response to between one and three previous therapies, and Eastern Cooperative Oncology Group performance status of 0-2, were recruited from 102 medical centres globally and randomly assigned (2:1) by interactive voice or web response software to receive KdD or Kd. Participants were stratified by disease stage, previous proteasome inhibitor or anti-CD38 antibody exposure, and number of previous therapies. All patients received intravenous infusions of carfilzomib twice per week at 56 mg/m2 (20 mg/m2 on days 1 and 2 during cycle 1) on days 1, 2, 8, 9, 15, and 16 of each 28-day cycle. Daratumumab (8 mg/kg) was administered intravenously on days 1 and 2 of cycle 1 and at 16 mg/kg weekly for the remaining doses of the first two cycles, then every 2 weeks for four cycles (cycles 3-6), and every 4 weeks thereafter. Patients received 40 mg dexamethasone weekly (20 mg for patients >75 years old). This analysis was a preplanned interim analysis for overall survival; however, at the time of data cutoff, overall survival data were not mature. The primary endpoint was progression-free survival. Here, we provide updated progression-free survival data, assessed centrally by Onyx Response Computer Algorithm in the intention-to-treat population, with 11 months additional follow-up. Adverse events were assessed in the safety population, which included all participants who received at least one dose of trial treatment. CANDOR is registered with ClinicalTrials.gov, NCT03158688, and is active but not recruiting. FINDINGS Between June 13, 2017, and June 25, 2018, 466 patients were enrolled, of whom 312 received KdD and 154 received Kd. At data cutoff (June 15, 2020), median follow-up was 27·8 months (IQR 25·6-29·5) for KdD and 27·0 months (13·2-28·6) for Kd. Median progression-free survival was 28·6 months (95% CI 22·7-not estimable [NE]) in the KdD group and 15·2 months (11·1-19·9) in the Kd group (hazard ratio 0·59 [95% CI 0·45-0·78], log-rank p<0·0001). Treatment-emergent adverse events in the safety population were consistent with the primary analysis. Grade 3 or worse treatment-emergent adverse events occurred in 268 (87%) patients in the KdD group and 116 (76%) in the Kd group; most commonly thrombocytopenia (76 [25%] vs 25 [16%], respectively), hypertension (65 [21%] vs 23 [15%]), pneumonia (54 [18%] vs 14 [9%]), and anaemia (53 [17%] vs 23 [15%]). Serious adverse events occurred in 194 (63%) patients with KdD and 76 (50%) with Kd. Adverse events leading to death occurred in 27 (9%) patients in the KdD group and seven (5%) in the Kd group; most commonly septic shock (five [2%] vs one (1%]) and pneumonia (four [1%] vs none). No new treatment-related deaths have occurred since the primary analysis. INTERPRETATION A clear, maintained progression-free survival benefit of KdD over Kd with longer follow-up was confirmed, making KdD an emerging standard-of-care for patients with relapsed or refractory multiple myeloma. FUNDING Amgen and Janssen.
Collapse
|
27
|
Shao L, Xu C, Wu H, Jamal M, Pan S, Li S, Chen F, Yu D, Liu K, Wei Y. Recent Progress on Primary Central Nervous System Lymphoma-From Bench to Bedside. Front Oncol 2021; 11:689843. [PMID: 34485125 PMCID: PMC8416460 DOI: 10.3389/fonc.2021.689843] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/27/2021] [Indexed: 02/03/2023] Open
Abstract
Primary central nervous system lymphoma (PCNSL) is a rare subtype of extra-nodal lymphoma. The high relapse rate of PCNSL remains a major challenge to the hematologists, even though patients exhibit high sensitivity to the methotrexate-based chemotherapeutic regimens. Recently, the advent of Bruton's tyrosine kinase inhibitor (BTKi) and CAR T treatment has made more treatment options available to a proportion of patients. However, whether BTKi monotherapy should be given alone or in combination with conventional chemotherapy is still a clinical question. The status of CAR T therapy for PCNSLs also needs to be elucidated. In this review, we summarized the latest progress on the epidemiology, pathology, clinical manifestation, diagnosis, and treatment options for PCNSLs.
Collapse
Affiliation(s)
- Liang Shao
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Chengshi Xu
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Huijing Wu
- Department of Lymphoma Medicine, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Muhammad Jamal
- Department of Immunology, School of Basic Medical Science, Wuhan University, Wuhan, China
| | - Shan Pan
- School of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Sirui Li
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Fei Chen
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ding Yu
- Department of Lymphoma Medicine, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kui Liu
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yongchang Wei
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
28
|
Jan M, Sperling AS, Ebert BL. Cancer therapies based on targeted protein degradation - lessons learned with lenalidomide. Nat Rev Clin Oncol 2021; 18:401-417. [PMID: 33654306 PMCID: PMC8903027 DOI: 10.1038/s41571-021-00479-z] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/25/2021] [Indexed: 02/08/2023]
Abstract
For decades, anticancer targeted therapies have been designed to inhibit kinases or other enzyme classes and have profoundly benefited many patients. However, novel approaches are required to target transcription factors, scaffolding proteins and other proteins central to cancer biology that typically lack catalytic activity and have remained mostly recalcitrant to drug development. The selective degradation of target proteins is an attractive approach to expand the druggable proteome, and the selective oestrogen receptor degrader fulvestrant served as an early example of this concept. Following a long and tragic history in the clinic, the immunomodulatory imide drug (IMiD) thalidomide was discovered to exert its therapeutic activity via a novel and unexpected mechanism of action: targeting proteins to an E3 ubiquitin ligase for subsequent proteasomal degradation. This discovery has paralleled and directly catalysed myriad breakthroughs in drug development, leading to the rapid maturation of generalizable chemical platforms for the targeted degradation of previously undruggable proteins. Decades of clinical experience have established front-line roles for thalidomide analogues, including lenalidomide and pomalidomide, in the treatment of haematological malignancies. With a new generation of 'degrader' drugs currently in development, this experience provides crucial insights into class-wide features of degraders, including a unique pharmacology, mechanisms of resistance and emerging therapeutic opportunities. Herein, we review these past experiences and discuss their application in the clinical development of novel degrader therapies.
Collapse
Affiliation(s)
- Max Jan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Adam S Sperling
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Benjamin L Ebert
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Broad Institute of Harvard and MIT, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Boston, MA, USA.
| |
Collapse
|