1
|
Hjazi A, Jasim SA, Al-Dhalimy AMB, Bansal P, Kaur H, Qasim MT, Mohammed IH, Deorari M, Jawad MA, Zwamel AH. HOXA9 versus HOXB9; particular focus on their controversial role in tumor pathogenesis. J Appl Genet 2024; 65:473-492. [PMID: 38753266 DOI: 10.1007/s13353-024-00868-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/07/2024] [Accepted: 04/09/2024] [Indexed: 08/09/2024]
Abstract
The Homeobox (HOX) gene family is essential to regulating cellular processes because it maintains the exact coordination required for tissue homeostasis, cellular differentiation, and embryonic development. The most distinctive feature of this class of genes is the presence of the highly conserved DNA region known as the homeobox, which is essential for controlling their regulatory activities. Important players in the intricate process of genetic regulation are the HOX genes. Many diseases, especially in the area of cancer, are linked to their aberrant functioning. Due to their distinctive functions in biomedical research-particularly in the complex process of tumor advancement-HOXA9 and HOXB9 have drawn particular attention. HOXA9 and HOXB9 are more significant than what is usually connected with HOX genes since they have roles in the intricate field of cancer and beyond embryonic processes. The framework for a focused study of the different effects of HOXA9 and HOXB9 in the context of tumor biology is established in this study.
Collapse
Affiliation(s)
- Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, 11942, Al-Kharj, Saudi Arabia
| | | | | | - Pooja Bansal
- Department of Biotechnology and Genetics, Jain (Deemed-to-Be) University, Bengaluru, Karnataka, 560069, India
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan, 303012, India
| | - Harpreet Kaur
- School of Basic & Applied Sciences, Shobhit University, Gangoh, Uttar Pradesh, 247341, India
- Department of Health & Allied Sciences, Arka Jain University, Jamshedpur, Jharkhand, 831001, India
| | - Maytham T Qasim
- College of Health and Medical Technology, Al-Ayen University, Thi-Qar, Nasiriyah, 64001, Iraq
| | - Israa Hussein Mohammed
- College of Nursing, National University of Science and Technology, Dhi Qar, Nasiriyah, Iraq
| | - Mahamedha Deorari
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Mohammed Abed Jawad
- Department of Medical Laboratories Technology, Al-Nisour University College, Baghdad, Iraq
| | - Ahmed Hussein Zwamel
- Medical Laboratory Technique College, The Islamic University, Najaf, Iraq
- Medical Laboratory Technique College, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- Medical Laboratory Technique College, The Islamic University of Babylon, Babylon, Iraq
| |
Collapse
|
2
|
Camiolo G, Mullen CG, Ottersbach K. Mechanistic insights into the developmental origin of pediatric hematologic disorders. Exp Hematol 2024; 136:104583. [PMID: 39059457 DOI: 10.1016/j.exphem.2024.104583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024]
Abstract
Embryonic and fetal hematopoietic stem and progenitor cells differ in some key properties from cells that are part of the adult hematopoietic system. These include higher proliferation and self-renewal capacity, different globin gene usage, and differing lineage biases. Although these evolved to cover specific requirements of embryonic development, they can have serious consequences for the pathogenesis of hematologic malignancies that initiate prebirth in fetal blood cells and may result in a particularly aggressive disease that does not respond well to treatments that have been designed for adult leukemias. This indicates that these infant/pediatric leukemias should be considered developmental diseases, where a thorough understanding of their unique biology is essential for designing more effective therapies. In this review, we will highlight some of these unique fetal properties and detail the underlying molecular drivers of these phenotypes. We specifically focus on those that are pertinent to disease pathogenesis and that may therefore reveal disease vulnerabilities. We have also included an extensive description of the origins, phenotypes, and key molecular drivers of the main infant and pediatric leukemias that have a known prenatal origin. Importantly, successes in recent years in generating faithful models of these malignancies in which cellular origins, key drivers, and potential vulnerabilities can be investigated have resulted in uncovering potential, new therapeutic avenues.
Collapse
Affiliation(s)
- Giuseppina Camiolo
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, United Kingdom
| | - Christopher G Mullen
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, United Kingdom
| | - Katrin Ottersbach
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, United Kingdom.
| |
Collapse
|
3
|
Milne TA. Chromatin and aberrant enhancer activity in KMT2A rearranged acute lymphoblastic leukemia. Curr Opin Genet Dev 2024; 86:102191. [PMID: 38579381 DOI: 10.1016/j.gde.2024.102191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/11/2024] [Accepted: 03/19/2024] [Indexed: 04/07/2024]
Abstract
To make a multicellular organism, genes need to be transcribed at the right developmental stages and in the right tissues. DNA sequences termed 'enhancers' are crucial to achieve this. Despite concerted efforts, the exact mechanisms of enhancer activity remain elusive. Mixed lineage leukemia (MLL or KMT2A) rearrangements (MLLr), commonly observed in cases of acute lymphoblastic leukemia (ALL) and acute myeloid leukemia, produce novel in-frame fusion proteins. Recent work has shown that the MLL-AF4 fusion protein drives aberrant enhancer activity at key oncogenes in ALL, dependent on the continued presence of MLL-AF4 complex components. As well as providing some general insights into enhancer function, these observations may also provide an explanation for transcriptional heterogeneity observed in MLLr patients.
Collapse
Affiliation(s)
- Thomas A Milne
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK.
| |
Collapse
|
4
|
Ling RE, Cross JW, Roy A. Aberrant stem cell and developmental programs in pediatric leukemia. Front Cell Dev Biol 2024; 12:1372899. [PMID: 38601080 PMCID: PMC11004259 DOI: 10.3389/fcell.2024.1372899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 03/11/2024] [Indexed: 04/12/2024] Open
Abstract
Hematopoiesis is a finely orchestrated process, whereby hematopoietic stem cells give rise to all mature blood cells. Crucially, they maintain the ability to self-renew and/or differentiate to replenish downstream progeny. This process starts at an embryonic stage and continues throughout the human lifespan. Blood cancers such as leukemia occur when normal hematopoiesis is disrupted, leading to uncontrolled proliferation and a block in differentiation of progenitors of a particular lineage (myeloid or lymphoid). Although normal stem cell programs are crucial for tissue homeostasis, these can be co-opted in many cancers, including leukemia. Myeloid or lymphoid leukemias often display stem cell-like properties that not only allow proliferation and survival of leukemic blasts but also enable them to escape treatments currently employed to treat patients. In addition, some leukemias, especially in children, have a fetal stem cell profile, which may reflect the developmental origins of the disease. Aberrant fetal stem cell programs necessary for leukemia maintenance are particularly attractive therapeutic targets. Understanding how hijacked stem cell programs lead to aberrant gene expression in place and time, and drive the biology of leukemia, will help us develop the best treatment strategies for patients.
Collapse
Affiliation(s)
- Rebecca E. Ling
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Joe W. Cross
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Anindita Roy
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
- Department of Haematology, Great Ormond Street Hospital for Children, London, United Kingdom
| |
Collapse
|
5
|
Bueno C, Torres-Ruiz R, Velasco-Hernandez T, Molina O, Petazzi P, Martinez A, Rodriguez V, Vinyoles M, Cantilena S, Williams O, Vega-Garcia N, Rodriguez-Perales S, Segovia JC, Quintana-Bustamante O, Roy A, Meyer C, Marschalek R, Smith AL, Milne TA, Fraga MF, Tejedor JR, Menéndez P. A human genome editing-based MLL::AF4 ALL model recapitulates key cellular and molecular leukemogenic features. Blood 2023; 142:1752-1756. [PMID: 37756522 DOI: 10.1182/blood.2023020858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/20/2023] [Accepted: 08/18/2023] [Indexed: 09/29/2023] Open
Abstract
Cellular ontogeny and MLL breakpoint site influence the capacity of MLL-edited CD34+ hematopoietic cells to initiate and recapitulate infant patients' features in pro-B-cell acute lymphoblastic leukemia (B-ALL). We provide key insights into the leukemogenic determinants of MLL-AF4+ infant B-ALL.
Collapse
Affiliation(s)
- Clara Bueno
- Stem Cell Biology, Immunotherapy and Developmental Leukemia Laboratory. Josep Carreras Leukemia Research Institute, Barcelona, Spain
- Spanish Network for Advanced Therapies, Carlos III Health Institute, Barcelona, Spain
- Spanish Collaborative Cancer Network, Carlos III Health Institute, Barcelona, Spain
| | - Raul Torres-Ruiz
- Stem Cell Biology, Immunotherapy and Developmental Leukemia Laboratory. Josep Carreras Leukemia Research Institute, Barcelona, Spain
- Division of Hematopoietic Innovative Therapies, Biomedical Innovation Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas, Madrid, Spain
- Advanced Therapies Unit, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid, Spain
- Molecular Cytogenetics and Genome Editing Unit, Human Cancer Genetics Program, Centro Nacional de Investigaciones Oncologicas, Madrid, Spain
| | - Talia Velasco-Hernandez
- Stem Cell Biology, Immunotherapy and Developmental Leukemia Laboratory. Josep Carreras Leukemia Research Institute, Barcelona, Spain
- Spanish Network for Advanced Therapies, Carlos III Health Institute, Barcelona, Spain
| | - Oscar Molina
- Stem Cell Biology, Immunotherapy and Developmental Leukemia Laboratory. Josep Carreras Leukemia Research Institute, Barcelona, Spain
- Spanish Network for Advanced Therapies, Carlos III Health Institute, Barcelona, Spain
| | - Paolo Petazzi
- Stem Cell Biology, Immunotherapy and Developmental Leukemia Laboratory. Josep Carreras Leukemia Research Institute, Barcelona, Spain
| | - Alba Martinez
- Stem Cell Biology, Immunotherapy and Developmental Leukemia Laboratory. Josep Carreras Leukemia Research Institute, Barcelona, Spain
- Spanish Network for Advanced Therapies, Carlos III Health Institute, Barcelona, Spain
| | - Virginia Rodriguez
- Stem Cell Biology, Immunotherapy and Developmental Leukemia Laboratory. Josep Carreras Leukemia Research Institute, Barcelona, Spain
- Spanish Network for Advanced Therapies, Carlos III Health Institute, Barcelona, Spain
| | - Meritxell Vinyoles
- Stem Cell Biology, Immunotherapy and Developmental Leukemia Laboratory. Josep Carreras Leukemia Research Institute, Barcelona, Spain
- Spanish Network for Advanced Therapies, Carlos III Health Institute, Barcelona, Spain
| | - Sandra Cantilena
- Development Biology Cancer Program, Cancer Section, UCLGOS Institute of Child Health, London, United Kingdom
| | - Owen Williams
- Development Biology Cancer Program, Cancer Section, UCLGOS Institute of Child Health, London, United Kingdom
| | - Nerea Vega-Garcia
- Hematology Laboratory, Hospital Sant Joan de Déu Barcelona, Barcelona, Spain
- Developmental Tumors Biology Group, Leukemia, and other Pediatric Hemopathies, Pediatric Cancer Center Barcelona, Institut de Recerca, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Sandra Rodriguez-Perales
- Molecular Cytogenetics and Genome Editing Unit, Human Cancer Genetics Program, Centro Nacional de Investigaciones Oncologicas, Madrid, Spain
| | - Jose C Segovia
- Division of Hematopoietic Innovative Therapies, Biomedical Innovation Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas, Madrid, Spain
- Advanced Therapies Unit, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid, Spain
| | - Oscar Quintana-Bustamante
- Division of Hematopoietic Innovative Therapies, Biomedical Innovation Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas, Madrid, Spain
- Advanced Therapies Unit, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid, Spain
| | - Anindita Roy
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, Oxford Biomedical Research Center Hematology Theme, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
- Department of Pediatrics and National Institute for Health and Care Research Oxford Biomedical Research Centre Hematology Theme, University of Oxford, Oxford, United Kingdom
| | - Claus Meyer
- Diagnostic Center of Acute Leukemia-Institute of Pharmaceutical Biology, Goethe-University, Frankfurt/Main, Germany
| | - Rolf Marschalek
- Diagnostic Center of Acute Leukemia-Institute of Pharmaceutical Biology, Goethe-University, Frankfurt/Main, Germany
| | - Alastair L Smith
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, Oxford Biomedical Research Center Hematology Theme, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Thomas A Milne
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, Oxford Biomedical Research Center Hematology Theme, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Mario F Fraga
- Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid, Spain
- Cancer Epigenetics and Nanomedicine Laboratory, Nanomaterials and Nanotechnology Research Center, El Entrego, Spain
- Health Research Institute of Asturias, Institute of Oncology of Asturias and Department of Organisms and Systems Biology, University of Oviedo, Oviedo, Spain
| | - Juan Ramón Tejedor
- Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid, Spain
- Cancer Epigenetics and Nanomedicine Laboratory, Nanomaterials and Nanotechnology Research Center, El Entrego, Spain
- Health Research Institute of Asturias, Institute of Oncology of Asturias and Department of Organisms and Systems Biology, University of Oviedo, Oviedo, Spain
| | - Pablo Menéndez
- Stem Cell Biology, Immunotherapy and Developmental Leukemia Laboratory. Josep Carreras Leukemia Research Institute, Barcelona, Spain
- Spanish Network for Advanced Therapies, Carlos III Health Institute, Barcelona, Spain
- Spanish Collaborative Cancer Network, Carlos III Health Institute, Barcelona, Spain
- Department of Biomedicine, University of Barcelona, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| |
Collapse
|
6
|
Zhu H, Xu Y, Xia J, Guo X, Fang Y, Fan J, Li F, Wu J, Zheng G, Liu Y. Identification and analysis of methylation signature genes and association with immune infiltration in pediatric acute myeloid leukemia. J Cancer Res Clin Oncol 2023; 149:14965-14982. [PMID: 37606761 DOI: 10.1007/s00432-023-05284-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 08/11/2023] [Indexed: 08/23/2023]
Abstract
BACKGROUND Acute myeloid leukemia (AML) is a common leukemia with low cure rate and poor prognosis among pediatric patients. The regulation of AML immune microenvironment and methylation remains to be explored. Pediatric and adult AML patients differ significantly in epigenetic factors, and the efficiency of treatment modalities varies between the two groups of patients. METHODS We collected mRNA, miRNA and DNA methylation data from pediatric AML patients across multiple databases. Differentially expression genes were identified, and a gene-miRNA regulatory network was constructed. Prognostic risk models were established by integrating LASSO and Cox regression, and a nomogram was generated. Based on this model, we investigated tumor-infiltrating immune cells and cell communication, analyzing the biological functions and pathways associated with prognostic factors. Furthermore, the relationships between all prognostic factors and gene modules were explored, and the impact of these factors on treatment modalities was determined. RESULTS We developed an efficient prognostic risk model and identified HOXA9, SORT1, SH3BP5, mir-224 and mir-335 as biomarkers. We validated these findings in an external dataset and observed a correlation between age and risk in pediatric patients. AML samples with lower risk scores have a better prognosis and higher expression of immune-upregulated biomarkers, and have lower immune scores. Furthermore, we detected discrepancies in immune cell infiltration and interactions between high- and low-risk group samples, which affected the efficacy of immunotherapy. We evaluated all prognostic factors and predicted the effect of immunotherapy and medicine. CONCLUSION This study comprehensively investigated the role of methylation signature genes in pediatric AML at the level of genomes and transcriptomes. The research aims to enhance the risk stratification, prognosis evaluation and assessment of treatment effectiveness of AML patients. This study also highlight the uniqueness of pediatric AML and foster the development of new immunotherapy and targeted therapy strategies.
Collapse
Affiliation(s)
- Huawei Zhu
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, 124221, China
| | - Yanbo Xu
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, 124221, China
| | - Jun Xia
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, 124221, China
| | - Xu Guo
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, 124221, China
| | - Yujie Fang
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, 124221, China
| | - Jingzhi Fan
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, 124221, China
| | - Fangjun Li
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, 124221, China
| | - Jinhong Wu
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, 124221, China
| | - Guoliang Zheng
- Liaoning Cancer Hospital, China Medical University, Shenyang, 110042, China.
| | - Yubo Liu
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, 124221, China.
| |
Collapse
|
7
|
Nagel S. The Role of IRX Homeobox Genes in Hematopoietic Progenitors and Leukemia. Genes (Basel) 2023; 14:genes14020297. [PMID: 36833225 PMCID: PMC9957183 DOI: 10.3390/genes14020297] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/17/2023] [Accepted: 01/20/2023] [Indexed: 01/24/2023] Open
Abstract
IRX genes are members of the TALE homeobox gene class and encode six related transcription factors (IRX1-IRX6) controlling development and cell differentiation of several tissues in humans. Classification of TALE homeobox gene expression patterns for the hematopoietic compartment, termed TALE-code, has revealed exclusive IRX1 activity in pro-B-cells and megakaryocyte erythroid progenitors (MEPs), highlighting its specific contribution to developmental processes at these early stages of hematopoietic lineage differentiation. Moreover, aberrant expression of IRX homeobox genes IRX1, IRX2, IRX3 and IRX5 has been detected in hematopoietic malignancies, including B-cell precursor acute lymphoblastic leukemia (BCP-ALL), T-cell ALL, and some subtypes of acute myeloid leukemia (AML). Expression analyses of patient samples and experimental studies using cell lines and mouse models have revealed oncogenic functions in cell differentiation arrest and upstream and downstream genes, thus, revealing normal and aberrant regulatory networks. These studies have shown how IRX genes play key roles in the development of both normal blood and immune cells, and hematopoietic malignancies. Understanding their biology serves to illuminate developmental gene regulation in the hematopoietic compartment, and may improve diagnostic classification of leukemias in the clinic and reveal new therapeutic targets and strategies.
Collapse
Affiliation(s)
- Stefan Nagel
- Department of Human and Animal Cell Cultures, Leibniz-Institute DSMZ, 38124 Braunschweig, Germany
| |
Collapse
|
8
|
Liu Z, Elcheva I. A six-gene prognostic signature for both adult and pediatric acute myeloid leukemia identified with machine learning. Am J Transl Res 2022; 14:6210-6221. [PMID: 36247279 PMCID: PMC9556437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 07/19/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Although it is well-known that adult and pediatric acute myeloid leukemias (AMLs) are genetically distinct diseases, they still share certain gene expression profiles. The age-related genetic heterogeneities of AMLs have been well-studied, but the common prognostic signatures and molecular mechanisms of adult and pediatric AMLs are less investigated. AIM To identify genes and pathways that are associated with both pediatric and adult AMLs and discover a gene signature for overall survival (OS) prediction. METHODS Through mining the transcriptome profiles of The Cancer Genome Atlas (TCGA) data sets of adult cancers and The Therapeutically Applicable Research to Generate Effective Treatments (TARGET) data of pediatric cancers, we identified genes that are commonly dysregulated in both pediatric and adult AMLs, further discovered a common gene signature, and built two risk score models for TCGA and TARGET cohorts, respectively with L 0 regularized global AUC (area under the receiver operating characteristic curve) summary maximization. RESULTS We identified 57 genes that are differentially expressed and prognostically significant in both adult and childhood AMLs. The top 4 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways enriched with those 57 genes include transcriptional misregulation, focal adhesion, PI3K-Akt signaling pathway, and signaling pathways regulating pluripotency of stem cells. We further identified a 6-gene signature including genes of ADAMTS3, DNMT3B, NYNRIN, SORT1, ZFHX3, and ZG16B for risk prediction. We constructed a risk score model with one dataset (either TCGA or TARGET) and evaluated its performance with the other. The test AUCs for the risk prediction of TCGA data with a 2-year and 5-year OS cutoffs are 0.762 (P = 2.33e-13, 95% CI: 0.69-0.83) and 0.759 (P = 7.26e-08, 95% CI: 0.66-0.85), respectively, while the test AUCs of TARGET data with the same cutoffs are 0.71 (P = 3.3e-07, 95% CI: 0.62-0.79) and 0.72 (P= 5.25e-09, 95% CI: 0.65-0.80), respectively. We further stratified patients into 3 equal sized prognostic subtypes with the 6-gene risk scores. The P-values of the tertile partitions are 1.74e-07 and 3.28e-08 for the TARGET and TCGA cohorts, respectively, which are significantly better than the standard cytogenetic risk stratification of both cohorts (TARGET: P = 1.64e-06; TCGA: P = 1.79e-05). When validated with two other independent cohorts, the 6-gene risk score models remain a significant predictor for OS. Investigating the common gene expression program is significant in that we may extrapolate the findings from adults to children and avoid unnecessary pediatric clinical trials.
Collapse
Affiliation(s)
- Zhenqiu Liu
- Department of Public Health Sciences, Pennsylvania State University College of Medicine500 University Drive, Hershey, PA 17033, USA
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Penn State College of Medicine500 University Drive, Hershey, PA 17033, USA
| | - Irina Elcheva
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Penn State College of Medicine500 University Drive, Hershey, PA 17033, USA
| |
Collapse
|
9
|
Külp M, Siemund AL, Larghero P, Dietz A, Alten J, Cario G, Eckert C, Caye-Eude A, Cavé H, Bardini M, Cazzaniga G, De Lorenzo P, Valsecchi MG, Diehl L, Bonig H, Meyer C, Marschalek R. The immune checkpoint ICOSLG is a relapse-predicting biomarker and therapeutic target in infant t(4;11) acute lymphoblastic leukemia. iScience 2022; 25:104613. [PMID: 35800767 PMCID: PMC9253708 DOI: 10.1016/j.isci.2022.104613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/14/2022] [Accepted: 06/01/2022] [Indexed: 11/23/2022] Open
Abstract
The most frequent genetic aberration leading to infant ALL (iALL) is the chromosomal translocation t(4;11), generating the fusion oncogenes KMT2A:AFF1 and AFF1:KMT2A, respectively. KMT2A-r iALL displays a dismal prognosis through high relapse rates and relapse-associated mortality. Relapse occurs frequently despite ongoing chemotherapy and without the accumulation of secondary mutations. A rational explanation for the observed chemo-resistance and satisfactory treatment options remain to be elucidated. We found that elevated ICOSLG expression level at diagnosis was associated with inferior event free survival (EFS) in a cohort of 43 patients with t(4;-11) iALL and that a cohort of 18 patients with iALL at relapse displayed strongly increased ICOSLG expression. Furthermore, co-culturing t(4;11) ALL cells (ICOSLGhi) with primary T-cells resulted in the development of Tregs. This was impaired through treatment with a neutralizing ICOSLG antibody. These findings imply ICOSLG (1) as a relapse-predicting biomarker, and (2) as a therapeutic target involved in a potential immune evasion relapse-mechanism of infant t(4;11) ALL. Early growth response 3 (EGR3) is a direct transactivator of the immune checkpoint gene ICOSLG high ICOSLG expression at diagnosis is predictive for ALL relapse EGR3 and ICOSLG expressions are relapse-associated expression of ICOSLG on t(4;11) ALL cells leads to the rapid expansion of Tregs
Collapse
|
10
|
The Hematopoietic TALE-Code Shows Normal Activity of IRX1 in Myeloid Progenitors and Reveals Ectopic Expression of IRX3 and IRX5 in Acute Myeloid Leukemia. Int J Mol Sci 2022; 23:ijms23063192. [PMID: 35328612 PMCID: PMC8952210 DOI: 10.3390/ijms23063192] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/11/2022] [Accepted: 03/14/2022] [Indexed: 12/10/2022] Open
Abstract
Homeobox genes encode transcription factors that control basic developmental decisions. Knowledge of their hematopoietic activities casts light on normal and malignant immune cell development. Recently, we constructed the so-called lymphoid TALE-code that codifies expression patterns of all active TALE class homeobox genes in early hematopoiesis and lymphopoiesis. Here, we present the corresponding myeloid TALE-code to extend this gene signature, covering the entire hematopoietic system. The collective data showed expression patterns for eleven TALE homeobox genes and highlighted the exclusive expression of IRX1 in megakaryocyte-erythroid progenitors (MEPs), implicating this TALE class member in a specific myeloid differentiation process. Analysis of public profiling data from acute myeloid leukemia (AML) patients revealed aberrant activity of IRX1 in addition to IRX3 and IRX5, indicating an oncogenic role for these TALE homeobox genes when deregulated. Screening of RNA-seq data from 100 leukemia/lymphoma cell lines showed overexpression of IRX1, IRX3, and IRX5 in megakaryoblastic and myelomonocytic AML cell lines, chosen as suitable models for studying the regulation and function of these homeo-oncogenes. Genomic copy number analysis of IRX-positive cell lines demonstrated chromosomal amplification of the neighboring IRX3 and IRX5 genes at position 16q12 in MEGAL, underlying their overexpression in this cell line model. Comparative gene expression analysis of these cell lines revealed candidate upstream factors and target genes, namely the co-expression of GATA1 and GATA2 together with IRX1, and of BMP2 and HOXA10 with IRX3/IRX5. Subsequent knockdown and stimulation experiments in AML cell lines confirmed their activating impact in the corresponding IRX gene expression. Furthermore, we demonstrated that IRX1 activated KLF1 and TAL1, while IRX3 inhibited GATA1, GATA2, and FST. Accordingly, we propose that these regulatory relationships may represent major physiological and oncogenic activities of IRX factors in normal and malignant myeloid differentiation, respectively. Finally, the established myeloid TALE-code is a useful tool for evaluating TALE homeobox gene activities in AML.
Collapse
|
11
|
Rice S, Jackson T, Crump NT, Fordham N, Elliott N, O'Byrne S, Fanego MDML, Addy D, Crabb T, Dryden C, Inglott S, Ladon D, Wright G, Bartram J, Ancliff P, Mead AJ, Halsey C, Roberts I, Milne TA, Roy A. A human fetal liver-derived infant MLL-AF4 acute lymphoblastic leukemia model reveals a distinct fetal gene expression program. Nat Commun 2021; 12:6905. [PMID: 34824279 PMCID: PMC8616957 DOI: 10.1038/s41467-021-27270-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 11/08/2021] [Indexed: 11/24/2022] Open
Abstract
Although 90% of children with acute lymphoblastic leukemia (ALL) are now cured, the prognosis for infant-ALL remains dismal. Infant-ALL is usually caused by a single genetic hit that arises in utero: an MLL/KMT2A gene rearrangement (MLL-r). This is sufficient to induce a uniquely aggressive and treatment-refractory leukemia compared to older children. The reasons for disparate outcomes in patients of different ages with identical driver mutations are unknown. Using the most common MLL-r in infant-ALL, MLL-AF4, as a disease model, we show that fetal-specific gene expression programs are maintained in MLL-AF4 infant-ALL but not in MLL-AF4 childhood-ALL. We use CRISPR-Cas9 gene editing of primary human fetal liver hematopoietic cells to produce a t(4;11)/MLL-AF4 translocation, which replicates the clinical features of infant-ALL and drives infant-ALL-specific and fetal-specific gene expression programs. These data support the hypothesis that fetal-specific gene expression programs cooperate with MLL-AF4 to initiate and maintain the distinct biology of infant-ALL.
Collapse
Affiliation(s)
- Siobhan Rice
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, NIHR Oxford Biomedical Research Centre Haematology Theme, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Thomas Jackson
- Department of Paediatrics and NIHR Oxford Biomedical Research Centre Haematology Theme, University of Oxford, Oxford, UK
| | - Nicholas T Crump
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, NIHR Oxford Biomedical Research Centre Haematology Theme, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Nicholas Fordham
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, NIHR Oxford Biomedical Research Centre Haematology Theme, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Natalina Elliott
- Department of Paediatrics and NIHR Oxford Biomedical Research Centre Haematology Theme, University of Oxford, Oxford, UK
| | - Sorcha O'Byrne
- Department of Paediatrics and NIHR Oxford Biomedical Research Centre Haematology Theme, University of Oxford, Oxford, UK
| | | | - Dilys Addy
- Department of Haematology, Great Ormond Street Hospital for Children, London, UK
| | - Trisevgeni Crabb
- Department of Haematology, Great Ormond Street Hospital for Children, London, UK
| | - Carryl Dryden
- Department of Haematology, Great Ormond Street Hospital for Children, London, UK
| | - Sarah Inglott
- Department of Haematology, Great Ormond Street Hospital for Children, London, UK
| | - Dariusz Ladon
- Department of Haematology, Great Ormond Street Hospital for Children, London, UK
| | - Gary Wright
- Department of Haematology, Great Ormond Street Hospital for Children, London, UK
| | - Jack Bartram
- Department of Haematology, Great Ormond Street Hospital for Children, London, UK
| | - Philip Ancliff
- Department of Haematology, Great Ormond Street Hospital for Children, London, UK
| | - Adam J Mead
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, NIHR Oxford Biomedical Research Centre Haematology Theme, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Christina Halsey
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
- Department of Paediatric Haematology, Royal Hospital for Children, Glasgow, UK
| | - Irene Roberts
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, NIHR Oxford Biomedical Research Centre Haematology Theme, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Department of Paediatrics and NIHR Oxford Biomedical Research Centre Haematology Theme, University of Oxford, Oxford, UK
| | - Thomas A Milne
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, NIHR Oxford Biomedical Research Centre Haematology Theme, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.
| | - Anindita Roy
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, NIHR Oxford Biomedical Research Centre Haematology Theme, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.
- Department of Paediatrics and NIHR Oxford Biomedical Research Centre Haematology Theme, University of Oxford, Oxford, UK.
| |
Collapse
|
12
|
Symeonidou V, Jakobczyk H, Bashanfer S, Malouf C, Fotopoulou F, Kotecha RS, Anderson RA, Finch AJ, Ottersbach K. Defining the fetal origin of MLL-AF4 infant leukemia highlights specific fatty acid requirements. Cell Rep 2021; 37:109900. [PMID: 34706236 PMCID: PMC8567312 DOI: 10.1016/j.celrep.2021.109900] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 09/01/2021] [Accepted: 10/06/2021] [Indexed: 11/28/2022] Open
Abstract
Infant MLL-AF4-driven acute lymphoblastic leukemia (ALL) is a devastating disease with dismal prognosis. A lack of understanding of the unique biology of this disease, particularly its prenatal origin, has hindered improvement of survival. We perform multiple RNA sequencing experiments on fetal, neonatal, and adult hematopoietic stem and progenitor cells from human and mouse. This allows definition of a conserved fetal transcriptional signature characterized by a prominent proliferative and oncogenic nature that persists in infant ALL blasts. From this signature, we identify a number of genes in functional validation studies that are critical for survival of MLL-AF4+ ALL cells. Of particular interest are PLK1 because of the readily available inhibitor and ELOVL1, which highlights altered fatty acid metabolism as a feature of infant ALL. We identify which aspects of the disease are residues of its fetal origin and potential disease vulnerabilities.
Collapse
Affiliation(s)
- Vasiliki Symeonidou
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, EH16 4UU, UK
| | - Hélène Jakobczyk
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, EH16 4UU, UK
| | - Salem Bashanfer
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, EH16 4UU, UK
| | - Camille Malouf
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, EH16 4UU, UK
| | - Foteini Fotopoulou
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, EH16 4UU, UK
| | - Rishi S Kotecha
- Leukaemia Translational Research Laboratory, Telethon Kids Cancer Centre, Telethon Kids Institute, University of Western Australia, Perth, WA 6009, Australia
| | - Richard A Anderson
- MRC Centre for Reproductive Health, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Andrew J Finch
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Katrin Ottersbach
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, EH16 4UU, UK.
| |
Collapse
|