1
|
Kim HJ, Ko EA, Kwon OB, Jung SC. Prenatal treatment with corticosterone via maternal injection induces learning and memory impairments via delaying postsynaptic development in hippocampal CA1 neurons of rats. J Neurosci Res 2024; 102:e25323. [PMID: 38553948 DOI: 10.1002/jnr.25323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/16/2024] [Accepted: 03/10/2024] [Indexed: 04/02/2024]
Abstract
Previously, we reported that prenatal exposure to high corticosterone induced attention-deficit hyperactivity disorder (ADHD)-like behaviors with cognitive deficits after weaning. In the present study, cellular mechanisms underlying cortisol-induced cognitive dysfunction were investigated using rat pups (Corti.Pups) born from rat mothers that were repetitively injected with corticosterone during pregnancy. In results, Corti.Pups exhibited the failure of behavioral memory formation in the Morris water maze (MWM) test and the incomplete long-term potentiation (LTP) of hippocampal CA1 neurons. Additionally, glutamatergic excitatory postsynaptic currents (EPSCs) were remarkably suppressed in Corti.Pups compared to normal rat pups. Incomplete LTP and weaker EPSCs in Corti.Pups were attributed to the delayed postsynaptic development of CA1 neurons, showing a higher expression of NR2B subunits and lower expression of PSD-95 and BDNF. These results indicated that the prenatal treatment with corticosterone to elevate cortisol level might potently downregulate the BDNF-mediated signaling critical for the synaptic development of hippocampal CA1 neurons during brain development, and subsequently, induce learning and memory impairment. Our findings suggest a possibility that the prenatal dysregulation of cortisol triggers the epigenetic pathogenesis of neurodevelopmental psychiatric disorders, such as ADHD and autism.
Collapse
Affiliation(s)
- Hye-Ji Kim
- Department of Physiology, College of Medicine, Jeju National University, Jeju, Republic of Korea
| | - Eun-A Ko
- Department of Physiology, College of Medicine, Jeju National University, Jeju, Republic of Korea
| | - Oh-Bin Kwon
- New Drug Development Center, Kmedihub, Daegu, Republic of Korea
| | - Sung-Cherl Jung
- Department of Physiology, College of Medicine, Jeju National University, Jeju, Republic of Korea
- Institute of Medical Science, Jeju National University, Jeju, Republic of Korea
| |
Collapse
|
2
|
Shim SS, Berglund K, Yu SP. Lithium: An Old Drug for New Therapeutic Strategy for Alzheimer's Disease and Related Dementia. NEURODEGENER DIS 2023; 23:1-12. [PMID: 37666228 DOI: 10.1159/000533797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 08/23/2023] [Indexed: 09/06/2023] Open
Abstract
BACKGROUND Although Alzheimer's disease (AD) is the most common form of dementia, the effective treatment of AD is not available currently. Multiple trials of drugs, which were developed based on the amyloid hypothesis of AD, have not been highly successful to improve cognitive and other symptoms in AD patients, suggesting that it is necessary to explore additional and alternative approaches for the disease-modifying treatment of AD. The diverse lines of evidence have revealed that lithium reduces amyloid and tau pathology, attenuates neuronal loss, enhances synaptic plasticity, and improves cognitive function. Clinical studies have shown that lithium reduces the risk of AD and deters the progress of mild cognitive impairment and early AD. SUMMARY Our recent study has revealed that lithium stabilizes disruptive calcium homeostasis, and subsequently, attenuates the downstream neuropathogenic processes of AD. Through these therapeutic actions, lithium produces therapeutic effects on AD with potential to modify the disease process. This review critically analyzed the preclinical and clinical studies for the therapeutic effects of lithium on AD. We suggest that disruptive calcium homeostasis is likely to be the early neuropathological mechanism of AD, and the stabilization of disruptive calcium homeostasis by lithium would be associated with its therapeutic effects on neuropathology and cognitive deficits in AD. KEY MESSAGES Lithium is likely to be efficacious for AD as a disease-modifying drug by acting on multiple neuropathological targets including disruptive calcium homeostasis.
Collapse
Affiliation(s)
- Seong Sool Shim
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia, USA
- Mental Health Service Line, Department of Veteran's Affair, Atlanta VA Medical Center, Decatur, Georgia, USA
- Department of Veteran's Affair, Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Medical Center, Decatur, Georgia, USA
| | - Ken Berglund
- Department of Veteran's Affair, Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Medical Center, Decatur, Georgia, USA
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Shan Ping Yu
- Department of Veteran's Affair, Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Medical Center, Decatur, Georgia, USA
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
3
|
Rodriguez-Ortiz CJ, Thorwald MA, Rodriguez R, Mejias-Ortega M, Kieu Z, Maitra N, Hawkins C, Valenzuela J, Peng M, Nishiyama A, Ortiz RM, Kitazawa M. Angiotensin receptor blockade with olmesartan alleviates brain pathology in obese OLETF rats. Clin Exp Pharmacol Physiol 2023; 50:228-237. [PMID: 36398458 PMCID: PMC9898104 DOI: 10.1111/1440-1681.13738] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 10/18/2022] [Accepted: 11/14/2022] [Indexed: 11/21/2022]
Abstract
Metabolic syndrome (MetS) is a rapidly increasing health concern during midlife and is an emerging risk factor for the development of neurodegenerative diseases, such as Alzheimer's disease (AD). While angiotensin receptor blockers (ARB) are widely used for MetS-associated hypertension and kidney disease, its therapeutic potential in the brain during MetS are not well-described. Here, we tested whether treatment with ARB could alleviate the brain pathology and inflammation associated with MetS using the Otsuka Long-Evans Tokushima Fatty (OLETF) rat. Here, we report that chronic ARB treatment with olmesartan (10 mg/kg/day by oral gavage for 6 weeks) partially but significantly ameliorated accumulation of oxidized and ubiquitinated proteins, astrogliosis and transformation to neurotoxic astrocytes in the brain of old OLETF rats, which otherwise exhibit the progression of these pathological hallmarks associated with MetS. Additionally, olmesartan treatment restored claudin-5 and ZO-1, markers of the structural integrity of the blood-brain barrier as well as synaptic protein PSD-95, which were otherwise decreased in old OLETF rats, particularly in the hippocampus, a critical region in cognition, memory and AD. These data demonstrate that the progression of MetS in OLETF rats is associated with deterioration of various aspects of neuronal integrity that may manifest neurodegenerative conditions and that overactivation of angiotensin receptor directly or indirectly contributes to these detriments. Thus, olmesartan treatment may slow or delay the onset of degenerative process in the brain and subsequent neurological disorders associated with MetS.
Collapse
Affiliation(s)
- Carlos J. Rodriguez-Ortiz
- Center for Occupational and Environmental Health, Department of Environmental and Occupational Health, Department of Medicine, University of California, Irvine
| | - Max A. Thorwald
- Department of Molecular & Cell Biology, University of California, Merced
| | - Ruben Rodriguez
- Department of Molecular & Cell Biology, University of California, Merced
| | - Marina Mejias-Ortega
- Center for Occupational and Environmental Health, Department of Environmental and Occupational Health, Department of Medicine, University of California, Irvine
- Department of Cell Biology, Genetics and Physiology, Instituto de Investigacion Biomedica de Malaga-IBIMA, Facultad de Ciencias, Universidad de Malaga, Spain
- Centro de Investigación Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Zanett Kieu
- Department of Molecular & Cell Biology, University of California, Merced
| | - Neilabjo Maitra
- Center for Occupational and Environmental Health, Department of Environmental and Occupational Health, Department of Medicine, University of California, Irvine
| | - Charlesice Hawkins
- Department of Molecular & Cell Biology, University of California, Merced
| | - Joanna Valenzuela
- Department of Molecular & Cell Biology, University of California, Merced
| | - Marcus Peng
- Center for Occupational and Environmental Health, Department of Environmental and Occupational Health, Department of Medicine, University of California, Irvine
| | - Akira Nishiyama
- Department of Pharmacology, Kagawa Medical University, Japan
| | - Rudy M. Ortiz
- Department of Molecular & Cell Biology, University of California, Merced
| | - Masashi Kitazawa
- Center for Occupational and Environmental Health, Department of Environmental and Occupational Health, Department of Medicine, University of California, Irvine
| |
Collapse
|
4
|
Wang M, Feng LR, Li ZL, Ma KG, Chang KW, Chen XL, Yang PB, Ji SF, Ma YB, Han H, Ruganzua JB, Yang WN, Qian YH. Thymosin β4 reverses phenotypic polarization of glial cells and cognitive impairment via negative regulation of NF-κB signaling axis in APP/PS1 mice. J Neuroinflammation 2021; 18:146. [PMID: 34183019 PMCID: PMC8240373 DOI: 10.1186/s12974-021-02166-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 05/04/2021] [Indexed: 01/15/2023] Open
Abstract
Background Thymosin β4 (Tβ4) is the most abundant member of the β-thymosins and plays an important role in the control of actin polymerization in eukaryotic cells. While its effects in multiple organs and diseases are being widely investigated, the safety profile has been established in animals and humans, currently, little is known about its influence on Alzheimer’s disease (AD) and the possible mechanisms. Thus, we aimed to evaluate the effects and mechanisms of Tβ4 on glial polarization and cognitive performance in APP/PS1 transgenic mice. Methods Behavior tests were conducted to assess the learning and memory, anxiety and depression in APP/PS1 mice. Thioflavin S staining, Nissl staining, immunohistochemistry/immunofluorescence, ELISA, qRT-PCR, and immunoblotting were performed to explore Aβ accumulation, phenotypic polarization of glial cells, neuronal loss and function, and TLR4/NF-κB axis in APP/PS1 mice. Results We demonstrated that Tβ4 protein level elevated in all APP/PS1 mice. Over-expression of Tβ4 alone alleviated AD-like phenotypes of APP/PS1 mice, showed less brain Aβ accumulation and more Insulin-degrading enzyme (IDE), reversed phenotypic polarization of microglia and astrocyte to a healthy state, improved neuronal function and cognitive behavior performance, and accidentally displayed antidepressant-like effect. Besides, Tβ4 could downregulate both TLR4/MyD88/NF-κB p65 and p52-dependent inflammatory pathways in the APP/PS1 mice. While combination drug of TLR4 antagonist TAK242 or NF-κB p65 inhibitor PDTC exerted no further effects. Conclusions These results suggest that Tβ4 may exert its function by regulating both classical and non-canonical NF-κB signaling and is restoring its function as a potential therapeutic target against AD. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-021-02166-3.
Collapse
Affiliation(s)
- Meng Wang
- Department of Human Anatomy and Histology-Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, 710061, Shaanxi, China.,Institute of Neuroscience, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Li-Rong Feng
- Department of Human Anatomy and Histology-Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, 710061, Shaanxi, China.,Institute of Neuroscience, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Zi-Long Li
- Department of Human Anatomy and Histology-Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, 710061, Shaanxi, China.,Institute of Neuroscience, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Kai-Ge Ma
- Institute of Neuroscience, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, 710061, Shaanxi, China.,Institute of Neurobiology, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Ke-Wei Chang
- Department of Human Anatomy and Histology-Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, 710061, Shaanxi, China.,Institute of Neuroscience, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Xin-Lin Chen
- Institute of Neuroscience, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, 710061, Shaanxi, China.,Institute of Neurobiology, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Peng-Bo Yang
- Department of Human Anatomy and Histology-Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, 710061, Shaanxi, China.,Institute of Neuroscience, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Sheng-Feng Ji
- Department of Human Anatomy and Histology-Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, 710061, Shaanxi, China.,Institute of Neuroscience, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Yan-Bing Ma
- Department of Human Anatomy and Histology-Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, 710061, Shaanxi, China.,Institute of Neuroscience, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Hua Han
- Department of Human Anatomy and Histology-Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, 710061, Shaanxi, China.,Institute of Neuroscience, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - John Bosco Ruganzua
- Department of Human Anatomy and Histology-Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, 710061, Shaanxi, China.,Institute of Neuroscience, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Wei-Na Yang
- Department of Human Anatomy and Histology-Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, 710061, Shaanxi, China.,Institute of Neuroscience, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Yi-Hua Qian
- Department of Human Anatomy and Histology-Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, 710061, Shaanxi, China. .,Institute of Neuroscience, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China. .,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
5
|
Zuena AR, Casolini P, Venerosi A, Alemà GS, Nicoletti F, Calamandrei G. Selective reduction in the expression of type-1 metabotropic glutamate receptors in the hippocampus of adult rats born by caesarean section. Int J Dev Neurosci 2021; 81:333-341. [PMID: 33759234 DOI: 10.1002/jdn.10105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 02/23/2021] [Accepted: 03/18/2021] [Indexed: 11/12/2022] Open
Abstract
Perinatal hypoxia causes long-term neurobiological consequences, including alterations in mechanisms of activity-dependent synaptic plasticity and cognitive dysfunction. Changes in neurotransmitter receptors have been associated with these alterations, but little is known on how early hypoxia influences the expression and function of metabotropic glutamate (mGlu) receptors in adult life. This is an important issue because mGlu receptors are implicated in mechanisms of synaptic plasticity. Here, we examined the expression of mGlu1, mGlu5, and mGlu2/3 receptor subtypes in the hippocampus, nucleus accumbens, prefrontal cortex, and dorsal striatum in 6-month old Wistar rats (a) born by vaginal delivery; (b) born by caesarean section; and (c) born by caesarean section followed by 20 min of asphyxia. Unexpectedly, we found a large reduction of mGlu1α protein levels in the hippocampus of rats born by caesarean section regardless of the presence of asphyxia. No changes in mGlu1α receptor protein levels were found in the other brain regions. Levels of mGlu5 and mGlu2/3 receptors and levels of GluA2/3 and GluN1 subunits of AMPA and NMDA receptors did not differ among the three groups of rats in any brain region. These results are consistent with previous findings showing that changes in mGlu1 receptors occur within the epigenetic programming caused by early-life events.
Collapse
Affiliation(s)
- Anna Rita Zuena
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Paola Casolini
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Aldina Venerosi
- Centre for Behavioural Science and Mental Health, Istituto Superiore di Sanita, Roma, Italy
| | | | - Ferdinando Nicoletti
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy.,I.R.C.C.S. Neuromed, Pozzilli, Italy
| | - Gemma Calamandrei
- Centre for Behavioural Science and Mental Health, Istituto Superiore di Sanita, Roma, Italy
| |
Collapse
|
6
|
Hypoxia-inducible factor-2α is crucial for proper brain development. Sci Rep 2020; 10:19146. [PMID: 33154420 PMCID: PMC7644612 DOI: 10.1038/s41598-020-75838-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 10/21/2020] [Indexed: 11/09/2022] Open
Abstract
Sufficient tissue oxygenation is required for regular brain function; thus oxygen supply must be tightly regulated to avoid hypoxia and irreversible cell damage. If hypoxia occurs the transcription factor complex hypoxia-inducible factor (HIF) will accumulate and coordinate adaptation of cells to hypoxia. However, even under atmospheric O2 conditions stabilized HIF-2α protein was found in brains of adult mice. Mice with a neuro-specific knockout of Hif-2α showed a reduction of pyramidal neurons in the retrosplenial cortex (RSC), a brain region responsible for a range of cognitive functions, including memory and navigation. Accordingly, behavioral studies showed disturbed cognitive abilities in these mice. In search of the underlying mechanisms for the specific loss of pyramidal cells in the RSC, we found deficits in migration in neural stem cells from Hif-2α knockout mice due to altered expression patterns of genes highly associated with neuronal migration and positioning.
Collapse
|
7
|
Kumar AJ, Motta‐Teixeira LC, Takada SH, Yonamine‐Lee V, Machado‐Nils AV, Xavier GF, Nogueira MI. Behavioral, cognitive and histological changes following neonatal anoxia: Male and female rats' differences at adolescent age. Int J Dev Neurosci 2018; 73:50-58. [DOI: 10.1016/j.ijdevneu.2018.12.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 11/07/2018] [Accepted: 12/12/2018] [Indexed: 01/14/2023] Open
Affiliation(s)
- Amrita Jha Kumar
- Neurosciences LaboratoryDepartment of AnatomyInstitute of Biomedical Sciences, University of São PauloAv. Professor Lineu Prestes, 241505508‐900São PauloSPBrazil
| | - Lívia Clemente Motta‐Teixeira
- Department of PhysiologyInstitute of Biosciences, University of São PauloRua do Matão 1405508‐900São PauloSPBrazil
- Neurobiology lab.Department of PhysiologyInstitute of Biomedical Sciences, University of São PauloAv. Prof. Lineu Prestes, 152405508‐900São PauloSPBrazil
| | - Silvia Honda Takada
- Neurogenetics Laboratory, Federal University of ABCBloco Delta. R. Arcturus 309606‐070São Bernardo do CampoSPBrazil
| | - Vitor Yonamine‐Lee
- Neurosciences LaboratoryDepartment of AnatomyInstitute of Biomedical Sciences, University of São PauloAv. Professor Lineu Prestes, 241505508‐900São PauloSPBrazil
| | - Aline Vilar Machado‐Nils
- Department of PhysiologyInstitute of Biosciences, University of São PauloRua do Matão 1405508‐900São PauloSPBrazil
| | - Gilberto Fernando Xavier
- Department of PhysiologyInstitute of Biosciences, University of São PauloRua do Matão 1405508‐900São PauloSPBrazil
| | - Maria Inês Nogueira
- Neurosciences LaboratoryDepartment of AnatomyInstitute of Biomedical Sciences, University of São PauloAv. Professor Lineu Prestes, 241505508‐900São PauloSPBrazil
| |
Collapse
|
8
|
Granulocyte Colony-Stimulating Factor Alleviates Bacterial-Induced Neuronal Apoptotic Damage in the Neonatal Rat Brain through Epigenetic Histone Modification. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:9797146. [PMID: 29484107 PMCID: PMC5816840 DOI: 10.1155/2018/9797146] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 11/07/2017] [Accepted: 11/23/2017] [Indexed: 12/17/2022]
Abstract
Bacterial meningitis during the perinatal period may cause long-term neurological deficits. The study investigated whether bacterial lipopolysaccharide (LPS) derived from E. coli. led to neuronal apoptosis with an impaired performance of long-term cognitive function involving the activation of histone modification in the TNF-α gene promoter. Further, we looked into the therapeutic efficacy of granulocyte colony-stimulating factor (G-CSF) in a neonatal brain suffering from perinatal bacterial meningitis. We applied the following research techniques: neurobehavioral tasks, confocal laser microscopy, chromatin immunoprecipitation, and Western blotting. At postnatal day 10, the animals were subjected to LPS and/or G-CSF. The target brain tissues were then collected at P17. Some animals (P45) were studied using neurobehavioral tasks. The LPS-injected group revealed significantly increased expression of NF-κB phosphorylation and trimethylated H3K4 in the TNFA gene promoter locus. Furthermore, the caspase-3, neuronal apoptosis expression, and an impaired performance in cognitive functions were also found in our study. Such deleterious outcomes described above were markedly alleviated by G-CSF therapy. This study suggests that selective therapeutic action sites of G-CSF through epigenetic regulation in the TNFA gene promoter locus may exert a potentially beneficial role for the neonatal brain suffering from perinatal bacterial-induced meningitis.
Collapse
|
9
|
Influence of catch up growth on spatial learning and memory in a mouse model of intrauterine growth restriction. PLoS One 2017; 12:e0177468. [PMID: 28542302 PMCID: PMC5443512 DOI: 10.1371/journal.pone.0177468] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 04/27/2017] [Indexed: 01/21/2023] Open
Abstract
Background Intrauterine growth restriction (IUGR) and rapid postnatal weight gain or catch up growth (CUG) increase the susceptibility to metabolic syndrome during adult life. Longitudinal studies have also revealed a high incidence of learning difficulties in children with IUGR. The aim of the present study was to investigate the effect of nutrition and CUG on learning memory in an IUGR animal model. We hypothesized that synaptic protein expression and transcription, an essential mechanism for memory consolidation, might be affected by intrauterine undernutrition. Methods IUGR was induced by 50% maternal caloric undernutrition throughout late gestation. During the suckling period, dams were either fed ad libitum or food restricted. The pups were divided into: Normal prenatal diet-Normal postnatal diet (NN), Restricted prenatal diet- Normal postnatal diet + catch up growth (RN+), Normal prenatal diet-Restricted postnatal diet (NR) and Restricted prenatal diet-Restricted postnatal diet (RR). At 4 weeks of age, memory was assessed via a water maze test. To evaluate synaptic function, 2 specific synaptic proteins (postsynaptic density-95 [PSD95], synaptophysin) as well as insulin receptors (IR) were tested by Western Blot and quantitative polymerase chain reaction (qPCR). Brain-derived neurotrophic factor and serum insulin levels were also studied. Results and conclusions The RN+ group presented a learning curve similar to the NN animals. The RR animals without CUG showed learning disabilities. PSD95 was lower in the RR group than in the NN and RN+ mice. In contrast, synaptophysin was similar in all groups. IR showed an inverse expression pattern to that of the PSD95. In conclusion, perinatal nutrition plays an important role in learning. CUG after a period of prenatal malnutrition seems to improve learning skills. The functional alterations observed might be related to lower PSD95 activity and a possible dysfunction in the hormone regulation of synaptic plasticity.
Collapse
|
10
|
Camprubí Camprubí M, Balada Caballé R, Ortega Cano JA, Ortega de la Torre MDLA, Duran Fernández-Feijoo C, Girabent-Farrés M, Figueras-Aloy J, Krauel X, Alcántara S. Learning and memory disabilities in IUGR babies: Functional and molecular analysis in a rat model. Brain Behav 2017; 7:e00631. [PMID: 28293472 PMCID: PMC5346519 DOI: 10.1002/brb3.631] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Revised: 07/22/2016] [Accepted: 11/30/2016] [Indexed: 01/12/2023] Open
Abstract
INTRODUCTION 1Intrauterine growth restriction (IUGR) is the failure of the fetus to achieve its inherent growth potential, and it has frequently been associated with neurodevelopmental problems in childhood. Neurological disorders are mostly associated with IUGR babies with an abnormally high cephalization index (CI) and a brain sparing effect. However, a similar correlation has never been demonstrated in an animal model. The aim of this study was to determine the correlations between CI, functional deficits in learning and memory and alterations in synaptic proteins in a rat model of IUGR. METHODS 2Utero-placental insufficiency was induced by meso-ovarian vessel cauterization (CMO) in pregnant rats at embryonic day 17 (E17). Learning performance in an aquatic learning test was evaluated 25 days after birth and during 10 days. Some synaptic proteins were analyzed (PSD95, Synaptophysin) by Western blot and immunohistochemistry. RESULTS 3Placental insufficiency in CMO pups was associated with spatial memory deficits, which are correlated with a CI above the normal range. CMO pups presented altered levels of synaptic proteins PSD95 and synaptophysin in the hippocampus. CONCLUSIONS 4The results of this study suggest that learning disabilities may be associated with altered development of excitatory neurotransmission and synaptic plasticity. Although interspecific differences in fetal response to placental insufficiency should be taken into account, the translation of these data to humans suggest that both IUGR babies and babies with a normal birth weight but with intrauterine Doppler alterations and abnormal CI should be closely followed to detect neurodevelopmental alterations during the postnatal period.
Collapse
Affiliation(s)
- Marta Camprubí Camprubí
- Neonatology Service Sant Joan de Déu BCNatal Hospital Sant Joan de Déu i Clínic University of Barcelona Barcelona Spain
| | - Rafel Balada Caballé
- Department of Pathology and Experimental Therapeutics School of Medicine University of Barcelona Barcelona Spain
| | - Juan A Ortega Cano
- Department of Pathology and Experimental Therapeutics School of Medicine University of Barcelona Barcelona Spain; Present address: Department of Neurology Feinberg School of Medicine Northwestern University Chicago IL 60611 USA
| | | | | | | | - Josep Figueras-Aloy
- Neonatology Service Sant Joan de Déu BCNatal Hospital Sant Joan de Déu i Clínic University of Barcelona Barcelona Spain
| | - Xavier Krauel
- Neonatology Service Sant Joan de Déu BCNatal Hospital Sant Joan de Déu i Clínic University of Barcelona Barcelona Spain
| | - Soledad Alcántara
- Department of Pathology and Experimental Therapeutics School of Medicine University of Barcelona Barcelona Spain
| |
Collapse
|
11
|
Hippocampal NMDAR-Wnt-Catenin signaling disrupted with cognitive deficits in adolescent offspring exposed to prenatal hypoxia. Brain Res 2016; 1631:157-64. [DOI: 10.1016/j.brainres.2015.11.041] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 11/23/2015] [Accepted: 11/25/2015] [Indexed: 11/17/2022]
|
12
|
Lecointre M, Vézier C, Bénard M, Ramdani Y, Dupré N, Brasse-Lagnel C, Henry VJ, Roy V, Marret S, Gonzalez BJ, Jégou S, Leroux-Nicollet I. Age-dependent alterations of the NMDA receptor developmental profile and adult behavior in postnatally ketamine-treated mice. Dev Neurobiol 2014; 75:315-33. [PMID: 25220981 DOI: 10.1002/dneu.22232] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 08/22/2014] [Accepted: 09/11/2014] [Indexed: 01/13/2023]
Abstract
Ketamine is a NMDA receptor (NMDAR) antagonist used in pediatric anesthesia. Given the role of glutamatergic signaling during brain maturation, we studied the effects of a single ketamine injection (40 mg/kg s.c) in mouse neonates depending on postnatal age at injection (P2, P5, or P10) on cortical NMDAR subunits expression and association with Membrane-Associated Guanylate Kinases PSD95 and SAP102. The effects of ketamine injection at P2, P5, or P10 on motor activity were compared in adulthood. Ketamine increased GluN2A and GluN2B mRNA levels in P2-treated mice without change in proteins, while it decreased GluN2B protein in P10-treated mice without change in mRNA. Ketamine reduced GluN2A mRNA and protein levels in P5-treated mice without change in GluN2B and GluN1. Ketamine affected the GluN2A/PSD95 association regardless of the age at injection, while GluN2B/PSD95 association was enhanced only in P5-treated mice. Microdissection of ketamine-treated mouse cortex showed a decrease in GluN2A mRNA level in superficial layers (I-IV) and an increase in all subunit expressions in deep layers (V-VI) in P5- and P10-treated mice, respectively. Our data suggest that ketamine impairs cortical NMDAR subunit developmental profile and delays the synaptic targeting of GluN2A-enriched NMDAR. Ketamine injection at P2 or P10 resulted in hyperlocomotion in adult male mice in an open field, without change in females. Voluntary running-wheel exercise showed age- and sex-dependent alterations of the mouse activity, especially during the dark phase. Overall, a single neonatal ketamine exposure led to short-term NMDAR cortical developmental profile impairments and long-term motor activity alterations persisting in adulthood.
Collapse
Affiliation(s)
- Maryline Lecointre
- ERI28 "Neovasc", Laboratory of Microvascular Endothelium and Neonate Brain Lesions, Faculty of Medicine and Pharmacy, Normandy University, Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
He W, Xu X, Lv Q, Guo L. Low dose ZD7288 attenuates the ischemia/reperfusion-induced impairment of long-term potentiation induction at hippocampal Schaffer collateral-CA1 synapses. Cell Mol Neurobiol 2014; 34:611-7. [PMID: 24659082 PMCID: PMC11488967 DOI: 10.1007/s10571-014-0047-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Accepted: 03/11/2014] [Indexed: 10/25/2022]
Abstract
Focal cerebral ischemia can impair the induction of activity-dependent long-term potentiation (LTP) in the hippocampus. This impairment of hippocampal synaptic plasticity can be caused by excitotoxicity and subsequent perturbation of hippocampal LTP-relevant transmitter systems, which include NR2B and PSD-95. It has been suggested that hyperpolarization-activated cyclic-nucleotide-gated (HCN) channels may play an important role in the control of membrane excitability and rhythmic neuronal activity. Our previous study has indicated that the selective HCN channel blocker ZD7288 can produce a dose-dependent inhibition of the induction of LTP at the Schaffer collateral-CA1 synapse of hippocampus by reducing the amount of glutamate released. It has also been demonstrated that ZD7288 can protect against neuronal injury caused by oxygen glucose deprivation. In the present study, we investigated the effect of ZD7288 on the induction of activity-dependent LTP and the expression of NR2B and PSD-95 after focal cerebral ischemia/reperfusion injury. The results showed that the induction of LTP was significantly impaired and the levels of NR2B and PSD-95 mRNA and protein were markedly decreased in the CA1 region of hippocampus following focal cerebral ischemia/reperfusion injury. Administration of low dose ZD7288 (0.25 μg) at 30 min and 3 h after the onset of ischemia attenuated the impairment of LTP induction and alleviated the NR2B and PSD-95 mRNA and protein down-regulation commonly induced by cerebral ischemia/reperfusion injury. These results suggest that low dose ZD7288 can ameliorate the ischemia/reperfusion-induced impairment of synaptic plasticity in the hippocampal CA1 region.
Collapse
Affiliation(s)
- Wei He
- Department of Pharmacology, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, 430030 People’s Republic of China
- Department of Pharmacology, Gannan Medical College, Ganzhou, 341000 People’s Republic of China
| | - Xulin Xu
- Department of Pharmacology, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, 430030 People’s Republic of China
| | - Qing Lv
- Department of Pharmacology, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, 430030 People’s Republic of China
| | - Lianjun Guo
- Department of Pharmacology, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, 430030 People’s Republic of China
| |
Collapse
|
14
|
Neurogenesis recovery induced by granulocyte-colony stimulating factor in neonatal rat brain after perinatal hypoxia. Pediatr Neonatol 2013; 54:380-8. [PMID: 23791015 DOI: 10.1016/j.pedneo.2013.04.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2012] [Revised: 03/14/2013] [Accepted: 05/14/2013] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Perinatal hypoxia can lead to a wide range of neurological deficits depending on the differential vulnerability of the involved brain regions to oxygen deprivation. It remains unclear whether the differential vulnerability to oxygen deprivation leads to altered neurogenesis in the neonatal brain after perinatal hypoxia. The primary objective was to investigate whether perinatal hypoxia induces deleterious changes in neurogenesis within three representative brain regions (dentate gyrus of the hippocampus, midbrain, and temporal cortex), with regards to common pathological areas clinically. The secondary objective was to investigate whether granulocyte-colony stimulating factor (G-CSF) therapy exerts beneficial effects in neurogenesis in neonatal rat brains subjected to experimental perinatal hypoxia. MATERIALS AND METHODS Rat pups were subjected to experimental perinatal hypoxia on the tenth day of life (P10). They were then given G-CSF (30 μg/kg, single injection/day, intraperitoneal injection, P11-16). The neurogenesis efficacy was analyzed on P17 and the radial-arm maze task, a memory task for higher cognitive functions such as problem-solving abilities, was evaluated on P37-58. RESULTS Perinatal hypoxia caused a significant decrease in neurogenesis within the three representative brain regions, and this deleterious outcome was alleviated by G-CSF (p < 0.05). In addition, the G-CSF therapy markedly improved the decreased performance of long-term cognitive functions induced by perinatal hypoxia (p < 0.05). CONCLUSION This study suggests that G-CSF may be a potentially beneficial therapy, at least in part, through universal recovery of neurogenesis effects in the neonatal brain after perinatal hypoxia insult.
Collapse
|
15
|
Wang Q, Li J, Wei X, Liao J, Xu Y, Lu T, Qin B, Xie J, Deng C, Huang X. Alterations of NMDA receptor binding in various brain regions among 6-hydroxydopamine-induced Parkinsonian rats. Int J Neurosci 2013; 124:457-65. [PMID: 24102195 DOI: 10.3109/00207454.2013.853058] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The N-methyl-d-aspartate (NMDA) system closely interacts with the dopaminergic system and is strongly implicated in the pathophysiological mechanisms and therapeutic paradigms of Parkinson's disease. This study aims to systematically investigate the changes of NMDA receptors in a wide range of brain structures 3 weeks after unilateral medial forebrain bundle lesion by 6-hydroxydopamine (6-OHDA). NMDA receptor distributions and alterations in the post-mortem rat brain were detected by [(3)H] MK-801 binding autoradiography. In the 6-OHDA-induced Parkinsonian rat model, nigrostriatal dopaminergic neuron loss significantly mediated the decreased [(3)H] MK-801 binding, predominantly in the hippocampus (-22.4%, p < 0.001), caudate putamen (-14.1%, p < 0.01), accumbens nucleus (-13.8%, p < 0.05), cingulate cortex (-13.4%, p < 0.001), posteromedial cortical amygdala (-14.5%, p < 0.01) and piriform cortex (-9%, p < 0.05) compared to the controls, while there was a profound reduction of tyrosine hydroxylase (TH) immunohistochemistry in the substantia nigra pars compacta. Alterations in [(3)H] MK-801 in the specific brain regions related to cognitive functions may indicate that cognitive dysfunctions caused by 6-OHDA lesion were via the NMDA system. The downregulation of NMDA receptor binding in the present study provides indirect evidence for plasticity in the NMDA system in the rat brain. The present study improves our understanding of the critical roles of the NMDA receptors in treating neurodegenerative disorders, and implicates NMDA receptors as a novel therapeutic target in the treatment of Parkinson's disease.
Collapse
|
16
|
Long-Term Consequences of Hypoxia During the Perinatal Period of Development on the Structural-Functional Characteristics of the Brain in Rats. ACTA ACUST UNITED AC 2013. [DOI: 10.1007/s11055-013-9783-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
17
|
Mammalian target of rapamycin complex 1 activation negatively regulates Polo-like kinase 2-mediated homeostatic compensation following neonatal seizures. Proc Natl Acad Sci U S A 2013; 110:5199-204. [PMID: 23479645 DOI: 10.1073/pnas.1208010110] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Homeostatic plasticity is characterized by compensatory changes in synaptic strength and intrinsic membrane properties in response to chronic changes in neuronal activity. Neonatal seizures are a naturally occurring source of neuronal overactivation and can lead to long-term epilepsy and cognitive deficits. Using a rodent model of hypoxia-induced neonatal seizures that results in a persistent increase in AMPA receptor (AMPAR) function in hippocampal CA1 pyramidal neurons, we aimed to determine whether there was any evidence of an opposing endogenous homeostatic antiepileptic response. Given that this model results in long-term epilepsy, we also examined mechanisms whereby this homeostasis fails. Whole-cell patch-clamp recordings from neurons in slices removed at intervals following seizure onset revealed an initial up-regulation of AMPAR function that was followed by a transient dynamic attenuation of this enhancement by 48-72 h, although AMPAR function was still increased compared with nonseizure control baseline. This secondary down-regulation of enhanced AMPAR function was coincident with a marked transient increase in expression and function of the Polo-like kinase 2 (PLK2), which has previously been implicated in homeostatic down-regulation of neuronal excitability in cell/slice culture models. The effects were transient and at 1 wk AMPAR function once again became up-regulated, simultaneous with a decrease in PLK2 expression and function. This negative regulation was mediated by subacute postseizure increases in mammalian target of rapamycin (mTOR). Application of the mTOR inhibitor rapamycin prevented post-hypoxic seizure impairment of homeostasis, suggesting that homeostatic plasticity mechanisms may be potentially modifiable therapeutic targets in epileptogenesis.
Collapse
|
18
|
Jung YJ, Suh EC, Lee KE. Oxygen/Glucose Deprivation and Reperfusion Cause Modifications of Postsynaptic Morphology and Activity in the CA3 Area of Organotypic Hippocampal Slice Cultures. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2012; 16:423-9. [PMID: 23269905 PMCID: PMC3526747 DOI: 10.4196/kjpp.2012.16.6.423] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 10/08/2012] [Accepted: 10/20/2012] [Indexed: 12/25/2022]
Abstract
Brain ischemia leads to overstimulation of N-methyl-D-aspartate (NMDA) receptors, referred as excitotoxicity, which mediates neuronal cell death. However, less attention has been paid to changes in synaptic activity and morphology that could have an important impact on cell function and survival following ischemic insult. In this study, we investigated the effects of reperfusion after oxygen/glucose deprivation (OGD) not only upon neuronal cell death, but also on ultrastructural and biochemical characteristics of postsynaptic density (PSD) protein, in the stratum lucidum of the CA3 area in organotypic hippocampal slice cultures. After OGD/reperfusion, neurons were found to be damaged; the organelles such as mitochondria, endoplasmic reticulum, dendrites, and synaptic terminals were swollen; and the PSD became thicker and irregular. Ethanolic phosphotungstic acid staining showed that the density of PSD was significantly decreased, and the thickness and length of the PSD were significantly increased in the OGD/reperfusion group compared to the control. The levels of PSD proteins, including PSD-95, NMDA receptor 1, NMDA receptor 2B, and calcium/calmodulin-dependent protein kinase II, were significantly decreased following OGD/reperfusion. These results suggest that OGD/reperfusion induces significant modifications to PSDs in the CA3 area of organotypic hippocampal slice cultures, both morphologically and biochemically, and this may contribute to neuronal cell death and synaptic dysfunction after OGD/reperfusion.
Collapse
Affiliation(s)
- Yeon Joo Jung
- Department of Pharmacology and Ewha Medical Research Institute, Ewha Womans University School of Medicine, Seoul 158-710, Korea
| | | | | |
Collapse
|
19
|
Effects of skilled and unskilled training on functional recovery and brain plasticity after focal ischemia in adult rats. Brain Res 2012; 1486:53-61. [DOI: 10.1016/j.brainres.2012.09.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2012] [Revised: 09/08/2012] [Accepted: 09/11/2012] [Indexed: 11/23/2022]
|
20
|
Ko IG, Cho H, Kim SE, Kim JE, Sung YH, Kim BK, Shin MS, Cho S, Pak YK, Kim CJ. Hypothermia alleviates hypoxic ischemia-induced dopamine dysfunction and memory impairment in rats. Anim Cells Syst (Seoul) 2011. [DOI: 10.1080/19768354.2011.607514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
|
21
|
Chen WF, Hsu JH, Lin CS, Jong YJ, Yang CH, Huang LT, Yang SN. Granulocyte-colony stimulating factor alleviates perinatal hypoxia-induced decreases in hippocampal synaptic efficacy and neurogenesis in the neonatal rat brain. Pediatr Res 2011; 70:589-95. [PMID: 21857381 DOI: 10.1203/pdr.0b013e3182324424] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Using various animal models, studies have greatly expanded our understanding of perinatal hypoxia-induced neuronal injury in the newborn at the cellular/molecular levels. However, the synapse-basis pathogenesis and therapeutic strategy for such detrimental alterations in the neonatal brain remain to be addressed. We investigated whether the damaged synaptic efficacy and neurogenesis within hippocampal CA1 region (an essential integration area for mammalian learning and memory) of the neonatal rat brain after perinatal hypoxia were restored by granulocyte-colony stimulating factor (G-CSF) therapy. Ten-day-old (P10) rat pups were subjected to experimentally perinatal hypoxia. G-CSF (10, 30, or 50 μg/kg, single injection/d, P11-16) was s.c. administered to neonatal rats which were analyzed on P17. Perinatal hypoxia reduced the expression in pRaf-pERK1/2-pCREB(Ser-133) signaling, the synaptic complex of postsynaptic density protein-95 (PSD-95) with N-methyl-D-aspartate receptor (NMDAR) subunits (NR1, NR2A, and NR2B), synaptic efficacy, and neurogenesis. A representatively effective dosage of G-CSF (30 μg/kg) alleviated the perinatal hypoxia-induced detrimental changes and improved the performance in long-term cognitive function. In summary, our results suggest a novel concept that synaptic efficacy defects exist in the neonatal brain previously exposed to perinatal hypoxia and that G-CSF could be a clinical potential for the synapse-basis recovery in the perinatal hypoxia suffers.
Collapse
Affiliation(s)
- Wu-Fu Chen
- Department of Neurosurgery, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 807, Taiwan
| | | | | | | | | | | | | |
Collapse
|
22
|
Piskunov AK, Yakovlev AA, Stepanichev MY, Onufriev MV, Gulyaeva NV. Selective vulnerability of the hippocampus to interoceptive stress: Effects on interleukin-1β and erythropoietin. NEUROCHEM J+ 2011. [DOI: 10.1134/s1819712411020061] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
23
|
Takada S, Sampaio C, Allemandi W, Ito P, Takase L, Nogueira M. A modified rat model of neonatal anoxia: Development and evaluation by pulseoximetry, arterial gasometry and Fos immunoreactivity. J Neurosci Methods 2011; 198:62-9. [DOI: 10.1016/j.jneumeth.2011.03.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Revised: 03/08/2011] [Accepted: 03/09/2011] [Indexed: 11/30/2022]
|
24
|
An enriched environment restores normal behavior while providing cytoskeletal restoration and synaptic changes in the hippocampus of rats exposed to an experimental model of depression. Neuroscience 2009; 164:929-40. [PMID: 19729049 DOI: 10.1016/j.neuroscience.2009.08.059] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2008] [Revised: 08/23/2009] [Accepted: 08/25/2009] [Indexed: 11/21/2022]
Abstract
The exposure of rats to an enriched environment (EE) has several effects in common with the administration of antidepressants. However, there is still little information about the molecular underpinnings of these effects on rats subjected to experimental models of depression. The aim of this research was to evaluate the effects of EE on rats exposed to the learned helplessness paradigm (LH), a well-known model of the disease. We found that a 21 day exposure to EE reverts helplessness behavior to normal in LH animals. Inmunohistochemical labeling showed that this effect was accompanied by normalization of two structural proteins of hippocampal neurons to control values: the light neurofilament subunit (NFL) and the postsynaptic density 95 (PSD-95) protein, which were decreased in LH animals housed in standard cages. The decrease in the presynaptic protein synaptophysin (SYN) observed in LH animals remained unchanged after exposure to EE. There was no increase in neurogenesis as measured by quantification of double-labeled cells with 5-bromo-2'-deoxyuridine (BrdU) and the neuronal marker beta-tubulin class III. These results show that EE may have behavioral and synaptic effects on animals exposed to an experimental model of depression, and that such actions seem to be independent from neurogenesis.
Collapse
|
25
|
Lu XJ, Chen XQ, Weng J, Zhang HY, Pak DT, Luo JH, Du JZ. Hippocampal spine-associated Rap-specific GTPase-activating protein induces enhancement of learning and memory in postnatally hypoxia-exposed mice. Neuroscience 2009; 162:404-14. [PMID: 19442707 DOI: 10.1016/j.neuroscience.2009.05.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2009] [Revised: 05/05/2009] [Accepted: 05/05/2009] [Indexed: 12/22/2022]
Abstract
Spine-associated Rap-specific GTPase-activating protein (SPAR) is a postsynaptic protein that forms a complex with postsynaptic density (PSD)-95 and N-methyl-d-aspartate receptors (NMDARs), and morphologically regulates dendritic spines. Mild intermittent hypoxia (IH, 16.0% O(2), 4 h/day for 4 weeks) is known to markedly enhance spatial learning and memory in postnatal developing mice. Here, we report that this effect is correlated with persistent increases in SPAR expression as well as long-term potentiation (LTP) in the hippocampus of IH-exposed mice. Furthermore, an infusion of SPAR antisense oligonucleotides into the dorsal hippocampus disrupted elevation of SPAR expression, preventing enhanced hippocampal LTP in IH-exposed developing mice and also reducing LTP in normoxic mice, without altering basal synaptic transmission. In SPAR antisense-treated mice, acquisition of the Morris water maze spatial learning task was impaired, as was memory retention in probe trails following training. This study provides the first evidence that SPAR is functionally required for synaptic plasticity and contributes to the IH-induced enhancement of spatial learning and memory in postnatal developing mice.
Collapse
Affiliation(s)
- X-J Lu
- Division of Neurobiology and Physiology, Department of Physiology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | | | | | | | | | | | | |
Collapse
|
26
|
Environmental Enrichment Induces Synaptic Structural Modification After Transient Focal Cerebral Ischemia in Rats. Exp Biol Med (Maywood) 2009; 234:296-305. [DOI: 10.3181/0804-rm-128] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Environmental enrichment (EE), where animals are exposed to a complex novel environment, has been shown to induce synaptic plasticity in both intact and injured animals. The purpose of this study was to investigate the effects of EE on spatial memory and structural modifications of synaptic junctions in rats following transient focal cerebral ischemia. Adult male Sprague-Dawley rats underwent right middle cerebral artery occlusion (MCAO) for 40 min and reperfusion. On day 3 after MCAO or sham surgery, rats were randomly assigned for 14 days to enriched or standard environmental housing. Spatial memory was then tested by the Morris water maze. Parietal cortex and the CA1 region of hippocampus were processed for electron microscopy and stereological techniques were used to evaluate plasticity of synaptic junctions. EE after MCAO improved spatial memory, with shortened escape length, increased frequency of crossings at the location of the platform, and increased percentage of time spent in the quadrant where the platform was previously located. Synaptic ultrastructural analysis showed that EE after MCAO increased numeric synaptic density in parietal cortex, and induced structural changes in synaptic junctions, with a decreased width of synaptic clefts and increased thickness of postsynaptic densities (PSD) in parietal cortex and hippocampus, accompanying improved performance on the spatial memory task. Using Western blot analysis, we determined the expression of glutamate receptor NMDAR1, and PSD-95, the best characterized protein member of the PSD-95 family, that was abundantly expressed in the PSD of excitatory synapses. The results showed that the content of NMDAR1 was not altered in MCAO rats of EE; however, the phosphorylated NMDAR1 increased significantly when compared with the standard environment housing MCAO rats. In addition, EE inhibited the impaired expression of PSD-95 induced by MCAO in parietal cortex and hippocampus. These data suggest that improved spatial memory of cerebral ischemic rats by EE is associated with structural modifications of synaptic junctions in several brain regions.
Collapse
|
27
|
Lin C, Tao P, Jong Y, Chen W, Yang C, Huang L, Chao C, Yang S. Prenatal morphine alters the synaptic complex of postsynaptic density 95 with N-methyl-d-aspartate receptor subunit in hippocampal CA1 subregion of rat offspring leading to long-term cognitive deficits. Neuroscience 2009; 158:1326-37. [DOI: 10.1016/j.neuroscience.2008.11.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2008] [Revised: 11/02/2008] [Accepted: 11/04/2008] [Indexed: 11/28/2022]
|
28
|
Roberson R, Cameroni I, Toso L, Abebe D, Bissel S, Spong CY. Alterations in phosphorylated cyclic adenosine monophosphate response element of binding protein activity: a pathway for fetal alcohol syndrome-related neurotoxicity. Am J Obstet Gynecol 2009; 200:193.e1-5. [PMID: 19110231 DOI: 10.1016/j.ajog.2008.08.054] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2008] [Revised: 07/18/2008] [Accepted: 08/30/2008] [Indexed: 01/06/2023]
Abstract
OBJECTIVE Fetal alcohol syndrome (FAS) is the leading cause of a spectrum of preventable nongenetic learning and behavioral disorders. In adult (FAS) mice, we measured phosphorylated cyclic adenosine monophosphate response element of binding protein (pCREB) staining in hippocampal subregions to evaluate a possible mechanism underlying FAS learning deficits. STUDY DESIGN Pregnant C57BL6/J mice were treated on gestational day 8 with alcohol or control (saline). After learning assessment, the offspring were perfused for immunohistochemistry and brain sections probed using SER 133 pCREB antibody. Relative staining density was assessed using National Institutes of Health Image software. Statistical analysis included analysis of variance with P < .05 considered significant. RESULTS In all hippocampal subregions, pCREB staining was greater in the control animals than in the alcohol-treated group (P < or = .0001). CONCLUSION In utero alcohol exposure decreased pCREB activity in hippocampal subregions of adult mice. The dentate gyrus had the most robust cumulative decrease in pCREB staining, suggesting FAS adult learning deficits may correlate to enhanced dentate gyrus neurodegeneration.
Collapse
|
29
|
The Effects of Enriched Environment on Structural Modification of Synaptic Interface and PSD-95 mRNA of Rats after Transient Focal Cerebral Ischemia. ACTA PSYCHOLOGICA SINICA 2008. [DOI: 10.3724/sp.j.1041.2008.00709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
30
|
Nocjar C, Hammonds M, Shim S. Chronic lithium treatment magnifies learning in rats. Neuroscience 2007; 150:774-88. [DOI: 10.1016/j.neuroscience.2007.09.063] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2007] [Revised: 09/26/2007] [Accepted: 09/27/2007] [Indexed: 01/05/2023]
|