1
|
Burstein ES. Relevance of 5-HT 2A Receptor Modulation of Pyramidal Cell Excitability for Dementia-Related Psychosis: Implications for Pharmacotherapy. CNS Drugs 2021; 35:727-741. [PMID: 34224112 PMCID: PMC8310514 DOI: 10.1007/s40263-021-00836-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/09/2021] [Indexed: 01/05/2023]
Abstract
Psychosis occurs across a wide variety of dementias with differing etiologies, including Alzheimer's dementia, Parkinson's dementia, Lewy body dementia, frontotemporal dementia, and vascular dementia. Pimavanserin, a selective serotonin 5-HT2A receptor (5-HT2AR) inverse agonist, has shown promising results in clinical trials by reducing the frequency and/or severity of hallucinations and delusions and the risk of relapse of these symptoms in patients with dementia-related psychosis. A literature review was conducted to identify mechanisms that explain the role of 5-HT2ARs in both the etiology and treatment of dementia-related psychosis. This review revealed that most pathological changes commonly associated with neurodegenerative diseases cause one or more of the following events to occur: reduced synaptic contact of gamma aminobutyric acid (GABA)-ergic interneurons with glutamatergic pyramidal cells, reduced cortical innervation from subcortical structures, and altered 5-HT2AR expression levels. Each of these events promotes increased pyramidal cell hyperexcitability and disruption of excitatory/inhibitory balance, facilitating emergence of psychotic behaviors. The brain regions affected by these pathological changes largely coincide with areas expressing high levels of 5-HT2ARs. At the cellular level, 5-HT2ARs are most highly expressed on cortical glutamatergic pyramidal cells, where they regulate pyramidal cell excitability. The common effects of different neurodegenerative diseases on pyramidal cell excitability together with the close anatomical and functional connection of 5-HT2ARs to pyramidal cell excitability may explain why suppressing 5-HT2AR activity could be an effective strategy to treat dementia-related psychosis.
Collapse
Affiliation(s)
- Ethan S. Burstein
- Acadia Pharmaceuticals Inc, 12830 El Camino Real, Suite 400, San Diego, CA 92130 USA
| |
Collapse
|
2
|
Activation and blockade of 5-HT 6 receptor in the medial septum-diagonal band recover working memory in the hemiparkinsonian rats. Brain Res 2020; 1748:147072. [PMID: 32853642 DOI: 10.1016/j.brainres.2020.147072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 08/17/2020] [Accepted: 08/18/2020] [Indexed: 01/01/2023]
Abstract
Working memory impairment is a common symptom occurred in Parkinson's disease (PD). The medial septum-diagonal band (MS-DB) complex and 5-HT6 receptor are involved in modulation of cognition. However, their roles in working memory in PD are still unknown. Here, we used behavioral, neurochemical and immunohistochemical approaches to assess the role of MS-DB 5-HT6 receptor in working memory in unilateral 6-hydroxydopamie (6-OHDA)-induced PD rats. Intra-MS-DB injection of 5-HT6 receptor agonist WAY208466 (3, 6 and 12 μg/rat) enhanced working memory and increased dopamine (DA) and noradrenaline (NA) levels in the medial prefrontal cortex (mPFC) and hippocampus in sham and 6-OHDA-lesioned rats. The dose that produced significant effect on working memory in 6-OHDA-lesioned rats was lower than that in sham rats, indicating hypersensitivity of 5-HT6 receptor after lesioning. Intra-MS-DB injection of 5-HT6 receptor antagonist SB258585 (2, 4 and 8 μg/rat) alleviated working memory deficits and increased DA level in the mPFC and hippocampus and NA level in the mPFC in 6-OHDA-lesioned rats while having no effect in sham rats, suggesting that SB258585 did not change normal cognitive status. These results suggest that activation and blockade of MS-DB 5-HT6 receptor recovered working memory in 6-OHDA-lesioned rats, which is probably related to changes in monoamine levels in the mPFC and hippocampus.
Collapse
|
3
|
Liu Y, Liu J, Jiao SR, Liu X, Guo Y, Zhang J, Yang J, Xie W, Wang HS, Zhang L. Serotonin1A receptors in the dorsal hippocampus regulate working memory and long-term habituation in the hemiparkinsonian rats. Behav Brain Res 2019; 376:112207. [DOI: 10.1016/j.bbr.2019.112207] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 08/30/2019] [Accepted: 08/30/2019] [Indexed: 12/12/2022]
|
4
|
Liu KC, Guo Y, Zhang J, Chen L, Liu YW, Lv SX, Xie W, Wang HS, Zhang YM, Zhang L. Activation and blockade of dorsal hippocampal Serotonin6 receptors regulate anxiety-like behaviors in a unilateral 6-hydroxydopamine rat model of Parkinson’s disease. Neurol Res 2019; 41:791-801. [PMID: 31056008 DOI: 10.1080/01616412.2019.1611204] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Kun Cheng Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
- Department of Neurology, West China Hospital, SiChuan University, Chengdu, China
| | - Yuan Guo
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Jin Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Li Chen
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Yi Wei Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Shu Xuan Lv
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Wen Xie
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Hui Sheng Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Yu Ming Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
- Department of Anesthesiology, Shaanxi Provincial People’s Hospital, Xi’an, China
| | - Li Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
| |
Collapse
|
5
|
Dopamine D 1 receptor in the medial prefrontal cortex mediates anxiety-like behaviors induced by blocking glutamatergic activity of the ventral hippocampus in rats. Brain Res 2018; 1704:59-67. [PMID: 30244112 DOI: 10.1016/j.brainres.2018.09.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 09/03/2018] [Accepted: 09/19/2018] [Indexed: 12/11/2022]
Abstract
The medial prefrontal cortex (mPFC) receives direct and indirect projections from the ventral hippocampus (VH) and plays an important role in the regulation of anxiety. However, the effect of the mPFC dopamine D1 receptor on anxiety-like behaviors induced by inhibition of glutamatergic activity in the VH has not been described. Here, we examined the effects of SKF38393, a selective dopamine D1 receptor agonist, on anxiety-like behaviors induced by NMDA receptor inhibition in the VH and neuron firing activity of mPFC. Injection of MK-801 (6 μg/0.5 μl) into the VH produced anxiety-like behaviors in the elevated plus maze and open field tests, increased the firing activity of pyramidal neurons in the mPFC, and decreased the level of dopamine in the mPFC. Injection of SKF38393 (0.5 μg/0.5 μl) into the mPFC produced anxiolytic effects, and normalized the hyperactive firing activity of mPFC pyramidal neurons induced by MK-801, whereas in both normal and anxiety-like rats caused by MK-801, injection of SKF38393 into the mPFC decreased the firing activity of mPFC interneurons but did not affect the dopamine content in the mPFC. The present data demonstrate that decreased D1 receptor activation in the mPFC may mediate anxiety-like behaviors induced by inhibition of glutamatergic activity in the VH. The balance of D1 receptor activity between pyramidal neurons and interneurons is a crucial factor in maintaining normal conditions, and inhibitory glutamatergic activity in the VH induces hyperactivity of mPFC pyramidal neurons through decreases in dopamine release and in the amount of D1 receptor activation on mPFC pyramidal neurons, which may be a critical factor for anxiety disorders.
Collapse
|
6
|
Du CX, Guo Y, Zhang QJ, Zhang J, Lv SX, Liu J. Involvement of prelimbic 5-HT 7 receptors in the regulation of anxiety-like behaviors in hemiparkinsonian rats. Neurol Res 2018; 40:847-855. [PMID: 29989483 DOI: 10.1080/01616412.2018.1493962] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
OBJECTIVE At present, little is known about the role of serotonin7 (5-HT7) receptor in anxiety, particularly in Parkinson's disease-related anxiety. Here, we tested whether 5-HT7 receptors in the prelimbic (PrL) cortex are involved in the regulation of anxiety-like behaviors in sham-operated rats and rats with unilateral 6-hydroxydopamine lesions of the medial forebrain bundle (MFB). METHODS The open field and elevated plus maze (EPM) tests were performed to study the influence of MFB lesion and intra-PrL injection of 5-HT7 agonist AS19 (0.5, 1 or 2 μg/rat) and antagonist SB269970 (1.5, 3 or 6 μg/rat) on anxiety-like behaviors. Additionally, changes in monoamine levels in limbic and limbic-related brain regions were observed after intra-PrL injection of AS19 (2 μg/rat) and SB269970 (6 μg/rat). RESULTS The MFB lesion induced anxiety-like behaviors compared to sham-operated rats. Intra-PrL injection of AS19 showed anxiolytic effects by the open field and EPM tests in two groups of rats, and administration of SB269970 showed anxiogenic responses. However, the doses producing these effects in the lesioned rats were higher than those in sham-operated rats. Neurochemical results showed that intra-PrL injection of AS19 increased dopamine, 5-HT and noradrenaline (NA) levels in the medial prefrontal cortex, ventral hippocampus and amygdala in two groups of rats, whereas SB269970 decreased 5-HT and NA levels in these brain regions. DISCUSSION 5-HT7 receptors in the PrL are involved in the regulation of anxiety-like behaviors, which is attributable to changes in dopamine, 5-HT and NA levels in the limbic and limbic-related brain regions after activation and blockade of 5-HT7 receptors. ABBREVIATIONS 6-OHDA: 6-hydroxydopamine; DMSO: dimethyl sulfoxide; DA: dopamine; EPM: elevated plus maze; MFB: medial forebrain bundlem; PFC: medial prefrontal cortex; NA: noradrenaline; PD: Pakinson's disease; PrL: prelimbic; 5-HT: serotonin; vHip: ventral hippocampus.
Collapse
Affiliation(s)
- Cheng Xue Du
- a Department of Physiology and Pathophysiology, School of Basic Medical Sciences , Xi'an Jiaotong University Health Science Center , Xi'an , China
| | - Yuan Guo
- a Department of Physiology and Pathophysiology, School of Basic Medical Sciences , Xi'an Jiaotong University Health Science Center , Xi'an , China
| | - Qiao Jun Zhang
- b Department of Rehabilitation Medicine , The Second Hospital, Xi'an Jiaotong University , Xi'an , China
| | - Jin Zhang
- a Department of Physiology and Pathophysiology, School of Basic Medical Sciences , Xi'an Jiaotong University Health Science Center , Xi'an , China
| | - Shu Xuan Lv
- a Department of Physiology and Pathophysiology, School of Basic Medical Sciences , Xi'an Jiaotong University Health Science Center , Xi'an , China
| | - Jian Liu
- a Department of Physiology and Pathophysiology, School of Basic Medical Sciences , Xi'an Jiaotong University Health Science Center , Xi'an , China.,c Key Laboratory of Environment and Genes Related to Diseases , Ministry of Education of China , Xi'an , China
| |
Collapse
|
7
|
Nishijima H, Ueno T, Funamizu Y, Ueno S, Tomiyama M. Levodopa treatment and dendritic spine pathology. Mov Disord 2017; 33:877-888. [PMID: 28880414 PMCID: PMC6667906 DOI: 10.1002/mds.27172] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 08/13/2017] [Accepted: 08/14/2017] [Indexed: 12/20/2022] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder associated with the progressive loss of nigrostriatal dopaminergic neurons. Levodopa is the most effective treatment for the motor symptoms of PD. However, chronic oral levodopa treatment can lead to various motor and nonmotor complications because of nonphysiological pulsatile dopaminergic stimulation in the brain. Examinations of autopsy cases with PD have revealed a decreased number of dendritic spines of striatal neurons. Animal models of PD have revealed altered density and morphology of dendritic spines of neurons in various brain regions after dopaminergic denervation or dopaminergic denervation plus levodopa treatment, indicating altered synaptic transmission. Recent studies using rodent models have reported dendritic spine head enlargement in the caudate‐putamen, nucleus accumbens, primary motor cortex, and prefrontal cortex in cases where chronic levodopa treatment following dopaminergic denervation induced dyskinesia‐like abnormal involuntary movement. Hypertrophy of spines results from insertion of alpha‐amino‐2,3‐dihydro‐5‐methyl‐3‐oxo‐4‐isoxazolepropanoic acid receptors into the postsynaptic membrane. Such spine enlargement indicates hypersensitivity of the synapse to excitatory inputs and is compatible with a lack of depotentiation, which is an electrophysiological hallmark of levodopa‐induced dyskinesia found in the corticostriatal synapses of dyskinetic animals and the motor cortex of dyskinetic PD patients. This synaptic plasticity may be one of the mechanisms underlying the priming of levodopa‐induced complications such as levodopa‐induced dyskinesia and dopamine dysregulation syndrome. Drugs that could potentially prevent spine enlargement, such as calcium channel blockers, N‐methyl‐D‐aspartate receptor antagonists, alpha‐amino‐2,3‐dihydro‐5‐methyl‐3‐oxo‐4‐isoxazolepropanoic acid receptor antagonists, and metabotropic glutamate receptor antagonists, are candidates for treatment of levodopa‐induced complications in PD. © 2017 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Haruo Nishijima
- Department of Neurology, Aomori Prefectural Central Hospital, Aomori, Japan.,Department of Neurophysiology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| | - Tatsuya Ueno
- Department of Neurology, Aomori Prefectural Central Hospital, Aomori, Japan.,Department of Neurophysiology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| | - Yukihisa Funamizu
- Department of Neurology, Aomori Prefectural Central Hospital, Aomori, Japan
| | - Shinya Ueno
- Department of Neurophysiology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| | - Masahiko Tomiyama
- Department of Neurology, Aomori Prefectural Central Hospital, Aomori, Japan.,Department of Neurophysiology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| |
Collapse
|
8
|
Wu ZH, Zhang QJ, Du CX, Xi Y, Li WJ, Guo FY, Yu SQ, Yang YX, Liu J. Prelimbic α1-adrenoceptors are involved in the regulation of depressive-like behaviors in the hemiparkinsonian rats. Brain Res Bull 2017; 134:99-108. [DOI: 10.1016/j.brainresbull.2017.07.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Revised: 07/04/2017] [Accepted: 07/10/2017] [Indexed: 01/21/2023]
|
9
|
Wang S, Zhao Y, Gao J, Guo Y, Wang X, Huo J, Wei P, Cao J. In Vivo Effect of a 5-HT 7 Receptor Agonist on 5-HT Neurons and GABA Interneurons in the Dorsal Raphe Nuclei of Sham and PD Rats. Am J Alzheimers Dis Other Demen 2017; 32:73-81. [PMID: 28084087 PMCID: PMC10852805 DOI: 10.1177/1533317516685425] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2024]
Abstract
The 5-hydroxytryptamine (5-HT; serotonin) neurotransmission is severely affected by the degeneration of nigrostriatal dopaminergic neurons. Here, we report the effects of the systemic administration of the 5-HT7 receptor agonist AS-19. In sham rats, the mean response of the 5-HT neurons in the dorsal raphe nucleus (DRN) to systemic AS-19 was excitatory and the mean response of the γ-aminobutyric acid (GABA) interneurons was inhibitory. In Parkinson disease (PD) rats, the same dose did not affect the 5-HT neurons and only high doses (640 μg/kg intravenous) were able to the increase GABA interneuron activity. These results indicate that DRN 5-HT neurons and GABA interneurons are regulated by the activation of 5-HT7 receptors and that the degeneration of the nigrostriatal pathway leads to decreased responses of these neurons to AS-19, which in turn suggests that the 5-HT7 receptors on 5-HT neurons and GABA interneurons in PD rats are dysfunctional and downregulated.
Collapse
Affiliation(s)
- Shuang Wang
- Department of Pathophysiology, Institute of Basic Medical Science, Xi’an Medical University, Xi’an, China
| | - Yan Zhao
- Department of Pathophysiology, Institute of Basic Medical Science, Xi’an Medical University, Xi’an, China
| | - Jie Gao
- Department of Pathophysiology, Institute of Basic Medical Science, Xi’an Medical University, Xi’an, China
| | - Yufang Guo
- Department of Pathophysiology, Institute of Basic Medical Science, Xi’an Medical University, Xi’an, China
| | - Xiang Wang
- Department of Pathophysiology, Institute of Basic Medical Science, Xi’an Medical University, Xi’an, China
| | - Jian Huo
- Department of Pathophysiology, Institute of Basic Medical Science, Xi’an Medical University, Xi’an, China
| | - Ping Wei
- Department of Immunology, Institute of Basic Medical Science, Xi’an Medical University, Xi’an, China
| | - Jian Cao
- Department of Physiology, Institute of Basic Medical Science, Xi’an Medical University, Xi’an, China
| |
Collapse
|
10
|
Activation and blockade of prelimbic 5-HT6 receptors produce different effects on depressive-like behaviors in unilateral 6-hydroxydopamine-induced Parkinson's rats. Neuropharmacology 2016; 110:25-36. [DOI: 10.1016/j.neuropharm.2016.07.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 07/10/2016] [Accepted: 07/12/2016] [Indexed: 11/15/2022]
|
11
|
O'Connor KA, Feustel PJ, Ramirez-Zamora A, Molho E, Pilitsis JG, Shin DS. Investigation of diazepam efficacy on anxiety-like behavior in hemiparkinsonian rats. Behav Brain Res 2015; 301:226-37. [PMID: 26748254 DOI: 10.1016/j.bbr.2015.12.045] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 12/23/2015] [Accepted: 12/27/2015] [Indexed: 12/22/2022]
Abstract
There is growing recognition that anxiety disorders have a greater impact on quality of life in Parkinson's disease than motor symptoms. Yet, little is known about the pathophysiology underlying this non-motor symptom in Parkinson's disease which poses a considerable barrier in developing effective treatment strategies. Here, we administered diazepam to hemiparkinsonian and non-parkinsonian rats and assessed its efficacy in three anxiety behavioral tests. At present, no information about this exists in preclinical research with sparse data in the clinical literature. Moreover, diazepam is an acute anxiolytic which makes this drug a suitable research tool to unmask differences in anxiety-like behavior. Using the unilateral, medial forebrain bundle 6-hydroxydopamine rat model of Parkinson's disease, we noted that hemiparkinsonian rats had more baseline anxiety-like behavior with 60% of them exhibiting high anxiety (HA) behavior in the elevated plus maze. In contrast, 41% of sham-lesioned rats and 8% of naïve rats exhibited HA behavior. Next, we employed the elevated plus maze and noted that diazepam (1.5mg/kg) was anxiolytic in low anxiety (LA) sham-lesioned (p=0.006) and HA sham-lesioned rats (p=0.016). Interestingly, diazepam was anxiolytic for LA hemiparkinsonian rats (p=0.017), but not for HA hemiparkinsonian rats (p=0.174) despite both groups having similar motor impairment and parkinsonian phenotype. Overall, diazepam administration unmasked differences in anxiolytic efficacy between HA hemiparkinsonian rats, LA hemiparkinsonian rats and non-parkinsonian rats. Our data suggests that neuro-circuits involved in anxiety-like behavior may differ within these groups and posits that diazepam may have reduced efficacy in certain individuals with PD anxiety disorders.
Collapse
Affiliation(s)
- Katherine A O'Connor
- Center for Neuropharmacology and Neuroscience, Albany Medical College, 47 New Scotland Ave, Albany, NY 12208, USA
| | - Paul J Feustel
- Center for Neuropharmacology and Neuroscience, Albany Medical College, 47 New Scotland Ave, Albany, NY 12208, USA
| | - Adolfo Ramirez-Zamora
- Department of Neurology, Movement Disorders Clinic, Albany Medical Center, 47 New Scotland Ave, Albany, NY 12208, USA
| | - Eric Molho
- Department of Neurology, Movement Disorders Clinic, Albany Medical Center, 47 New Scotland Ave, Albany, NY 12208, USA
| | - Julie G Pilitsis
- Center for Neuropharmacology and Neuroscience, Albany Medical College, 47 New Scotland Ave, Albany, NY 12208, USA; Department of Neurosurgery, Albany Medical Center, 47 New Scotland Ave, Albany, NY 12208, USA
| | - Damian S Shin
- Center for Neuropharmacology and Neuroscience, Albany Medical College, 47 New Scotland Ave, Albany, NY 12208, USA.
| |
Collapse
|
12
|
Zhang QJ, Du CX, Tan HH, Zhang L, Li LB, Zhang J, Niu XL, Liu J. Activation and blockade of serotonin7 receptors in the prelimbic cortex regulate depressive-like behaviors in a 6-hydroxydopamine-induced Parkinson's disease rat model. Neuroscience 2015; 311:45-55. [PMID: 26470809 DOI: 10.1016/j.neuroscience.2015.10.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 09/16/2015] [Accepted: 10/08/2015] [Indexed: 01/27/2023]
Abstract
The role of serotonin7 (5-HT7) receptors in the regulation of depression is poorly understood, particularly in Parkinson's disease-associated depression. Here we examined whether 5-HT7 receptors in the prelimbic (PrL) sub-region of the ventral medial prefrontal cortex (mPFC) involve in the regulation of depressive-like behaviors in sham-operated rats and rats with unilateral 6-hydroxydopamine lesions of the medial forebrain bundle. The lesion induced depressive-like responses as measured by the sucrose preference and forced swim tests when compared to sham-operated rats. Intra-PrL injection of 5-HT7 receptor agonist AS19 (0.5, 1 and 2 μg/rat) increased sucrose consumption, and decreased immobility time in sham-operated and the lesioned rats, indicating the induction of antidepressant-like effects. Further, intra-PrL injection of 5-HT7 receptor antagonist SB269970 (1.5, 3 and 6 μg/rat) decreased sucrose consumption, and increased immobility time, indicating the induction of depressive-like responses. However, the doses producing these effects in the lesioned rats were higher than those in sham-operated rats. Neurochemical results showed that intra-PrL injection of AS19 (2 μg/rat) increased dopamine, 5-hydroxytryptamine (5-HT) and noradrenaline (NA) levels in the mPFC, habenula and ventral hippocampus (vHip) in sham-operated and the lesioned rats; whereas SB269970 (6 μg/rat) decreased 5-HT levels in the habenula and vHip, and the levels of NA in the mPFC, habenula and vHip in the two groups of rats. The results suggest that 5-HT7 receptors in the PrL play an important role in the regulation of these behaviors, which attribute to changes in monoamine levels in the limbic and limbic-related brain regions after activation and blockade of 5-HT7 receptors.
Collapse
Affiliation(s)
- Q J Zhang
- Department of Rehabilitation Medicine, The Second Hospital, Xi'an Jiaotong University, Xi'an 710004, China
| | - C X Du
- Department of Rehabilitation Medicine, The Second Hospital, Xi'an Jiaotong University, Xi'an 710004, China
| | - H H Tan
- Department of Rehabilitation Medicine, The Second Hospital, Xi'an Jiaotong University, Xi'an 710004, China
| | - L Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - L B Li
- Department of Rehabilitation Medicine, The Second Hospital, Xi'an Jiaotong University, Xi'an 710004, China
| | - J Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - X L Niu
- Department of Medicine, The Second Hospital, Xi'an Jiaotong University, Xi'an 710004, China
| | - J Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China.
| |
Collapse
|
13
|
Nocjar C, Alex KD, Sonneborn A, Abbas AI, Roth BL, Pehek EA. Serotonin-2C and -2a receptor co-expression on cells in the rat medial prefrontal cortex. Neuroscience 2015; 297:22-37. [PMID: 25818050 PMCID: PMC4595040 DOI: 10.1016/j.neuroscience.2015.03.050] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Revised: 03/20/2015] [Accepted: 03/20/2015] [Indexed: 11/28/2022]
Abstract
Neural function within the medial prefrontal cortex (mPFC) regulates normal cognition, attention and impulse control, implicating neuroregulatory abnormalities within this region in mental dysfunction related to schizophrenia, depression and drug abuse. Both serotonin-2A (5-HT2A) and -2C (5-HT2C) receptors are known to be important in neuropsychiatric drug action and are distributed throughout the mPFC. However, their interactive role in serotonergic cortical regulation is poorly understood. While the main signal transduction mechanism for both receptors is stimulation of phosphoinositide production, they can have opposite effects downstream. 5-HT2A versus 5-HT2C receptor activation oppositely regulates behavior and can oppositely affect neurochemical release within the mPFC. These distinct receptor effects could be caused by their differential cellular distribution within the cortex and/or other areas. It is known that both receptors are located on GABAergic and pyramidal cells within the mPFC, but it is not clear whether they are expressed on the same or different cells. The present work employed immunofluorescence with confocal microscopy to examine this in layers V-VI of the prelimbic mPFC. The majority of GABA cells in the deep prelimbic mPFC expressed 5-HT2C receptor immunoreactivity. Furthermore, most cells expressing 5-HT2C receptor immunoreactivity notably co-expressed 5-HT2A receptors. However, 27% of 5-HT2C receptor immunoreactive cells were not GABAergic, indicating that a population of prelimbic pyramidal projection cells could express the 5-HT2C receptor. Indeed, some cells with 5-HT2C and 5-HT2A receptor co-labeling had a pyramidal shape and were expressed in the typical layered fashion of pyramidal cells. This indirectly demonstrates that 5-HT2C and 5-HT2A receptors may be commonly co-expressed on GABAergic cells within the deep layers of the prelimbic mPFC and perhaps co-localized on a small population of local pyramidal projection cells. Thus a complex interplay of cortical 5-HT2A and 5-HT2C receptor mechanisms exists, which if altered, could modulate efferent brain systems implicated in mental illness.
Collapse
Affiliation(s)
- C Nocjar
- Louis Stokes Cleveland VA Medical Center, 10701 East Boulevard, Cleveland, OH 44106, USA; Department of Psychiatry, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA.
| | - K D Alex
- Louis Stokes Cleveland VA Medical Center, 10701 East Boulevard, Cleveland, OH 44106, USA; Department of Neurosciences, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA.
| | - A Sonneborn
- Louis Stokes Cleveland VA Medical Center, 10701 East Boulevard, Cleveland, OH 44106, USA.
| | - A I Abbas
- Department of Psychiatry, Columbia University, New York, NY 10032, USA; Division of Integrative Neuroscience, New York State Psychiatric Institute, New York, NY 10032, USA.
| | - B L Roth
- Department of Pharmacology, University of North Carolina-Chapel Hill School of Medicine, 120 Mason Farm Road, 4072 Genetic Medicine Building, Campus Box 7365, Chapel Hill, NC 27599-7365, USA.
| | - E A Pehek
- Louis Stokes Cleveland VA Medical Center, 10701 East Boulevard, Cleveland, OH 44106, USA; Department of Neurosciences, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA; Department of Psychiatry, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA.
| |
Collapse
|
14
|
Halberstadt AL. Recent advances in the neuropsychopharmacology of serotonergic hallucinogens. Behav Brain Res 2015; 277:99-120. [PMID: 25036425 PMCID: PMC4642895 DOI: 10.1016/j.bbr.2014.07.016] [Citation(s) in RCA: 201] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 07/07/2014] [Accepted: 07/08/2014] [Indexed: 12/12/2022]
Abstract
Serotonergic hallucinogens, such as (+)-lysergic acid diethylamide, psilocybin, and mescaline, are somewhat enigmatic substances. Although these drugs are derived from multiple chemical families, they all produce remarkably similar effects in animals and humans, and they show cross-tolerance. This article reviews the evidence demonstrating the serotonin 5-HT2A receptor is the primary site of hallucinogen action. The 5-HT2A receptor is responsible for mediating the effects of hallucinogens in human subjects, as well as in animal behavioral paradigms such as drug discrimination, head twitch response, prepulse inhibition of startle, exploratory behavior, and interval timing. Many recent clinical trials have yielded important new findings regarding the psychopharmacology of these substances. Furthermore, the use of modern imaging and electrophysiological techniques is beginning to help unravel how hallucinogens work in the brain. Evidence is also emerging that hallucinogens may possess therapeutic efficacy.
Collapse
Affiliation(s)
- Adam L Halberstadt
- Department of Psychiatry, University of California San Diego, La Jolla, CA, United States.
| |
Collapse
|
15
|
Hui YP, Wang T, Han LN, Li LB, Sun YN, Liu J, Qiao HF, Zhang QJ. Anxiolytic effects of prelimbic 5-HT1A receptor activation in the hemiparkinsonian rat. Behav Brain Res 2015; 277:211-20. [DOI: 10.1016/j.bbr.2014.04.053] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Revised: 03/28/2014] [Accepted: 04/07/2014] [Indexed: 10/25/2022]
|
16
|
Li LB, Zhang L, Sun YN, Han LN, Wu ZH, Zhang QJ, Liu J. Activation of serotonin2A receptors in the medial septum-diagonal band of Broca complex enhanced working memory in the hemiparkinsonian rats. Neuropharmacology 2014; 91:23-33. [PMID: 25486618 DOI: 10.1016/j.neuropharm.2014.11.025] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 11/11/2014] [Accepted: 11/28/2014] [Indexed: 12/12/2022]
Abstract
Serotonin2A (5-HT2A) receptors are highly expressed in the medial septum-diagonal band of Broca complex (MS-DB), especially in parvalbumin (PV)-positive neurons linked to hippocampal theta rhythm, which is involved in cognition. Cognitive impairments commonly occur in Parkinson's disease. Here we performed behavioral, electrophysiological, neurochemical and immunohistochemical studies in rats with complete unilateral 6-hydroxydopamine lesions of the medial forebrain bundle (MFB) to assess the importance of dopamine (DA) depletion and MS-DB 5-HT2A receptors for working memory. The MFB lesions resulted in working memory impairment and decreases in firing rate and density of MS-DB PV-positive neurons, peak frequency of hippocampal theta rhythm, and DA levels in septohippocampal system and medial prefrontal cortex (mPFC) compared to control rats. Intra-MS-DB injection of high affinity 5-HT2A receptor agonist TCB-2 enhanced working memory, increased firing rate of PV-positive neurons and peak frequency of hippocampal theta rhythm, elevated DA levels in the hippocampus and mPFC, and decreased 5-HT level in the hippocampus in control and lesioned rats. Compared to control rats, the duration of the excitatory effect produced by TCB-2 on the firing rate of PV-positive neurons was markedly shortened in lesioned rats, indicating dysfunction of 5-HT2A receptors. These findings suggest that unilateral lesions of the MFB in rats induced working memory deficit, and activation of MS-DB 5-HT2A receptors enhanced working memory, which may be due to changes in the activity of septohippocampal network and monoamine levels in the hippocampus and mPFC.
Collapse
Affiliation(s)
- Li-Bo Li
- Department of Physiology and Pathophysiology, School of Medicine, Xi'an Jiaotong University, Xi'an 710061, China
| | - Li Zhang
- Department of Physiology and Pathophysiology, School of Medicine, Xi'an Jiaotong University, Xi'an 710061, China
| | - Yi-Na Sun
- Department of Physiology and Pathophysiology, School of Medicine, Xi'an Jiaotong University, Xi'an 710061, China
| | - Ling-Na Han
- Department of Physiology and Pathophysiology, School of Medicine, Xi'an Jiaotong University, Xi'an 710061, China
| | - Zhong-Heng Wu
- Department of Rehabilitation Medicine, the Second Hospital, Xi'an Jiaotong University, Xi'an 710004, China
| | - Qiao-Jun Zhang
- Department of Rehabilitation Medicine, the Second Hospital, Xi'an Jiaotong University, Xi'an 710004, China
| | - Jian Liu
- Department of Physiology and Pathophysiology, School of Medicine, Xi'an Jiaotong University, Xi'an 710061, China.
| |
Collapse
|
17
|
Guo F, Zhang Q, Zhang B, Fu Z, Wu B, Huang C, Li Y. Burst-firing patterns in the prefrontal cortex underlying the neuronal mechanisms of depression probed by antidepressants. Eur J Neurosci 2014; 40:3538-47. [DOI: 10.1111/ejn.12725] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 08/15/2014] [Accepted: 08/15/2014] [Indexed: 01/26/2023]
Affiliation(s)
- Fei Guo
- Key Laboratory of Receptor Research; Shanghai Institute of Materia Medical; Chinese Academy of Sciences; Shanghai 201203 China
| | - Qi Zhang
- Key Laboratory of Receptor Research; Shanghai Institute of Materia Medical; Chinese Academy of Sciences; Shanghai 201203 China
| | - Bing Zhang
- Key Laboratory of Receptor Research; Shanghai Institute of Materia Medical; Chinese Academy of Sciences; Shanghai 201203 China
| | - Zhiwen Fu
- Key Laboratory of Receptor Research; Shanghai Institute of Materia Medical; Chinese Academy of Sciences; Shanghai 201203 China
| | - Bin Wu
- Key Laboratory of Receptor Research; Shanghai Institute of Materia Medical; Chinese Academy of Sciences; Shanghai 201203 China
| | - Chenggang Huang
- Key Laboratory of Receptor Research; Shanghai Institute of Materia Medical; Chinese Academy of Sciences; Shanghai 201203 China
| | - Yang Li
- Key Laboratory of Receptor Research; Shanghai Institute of Materia Medical; Chinese Academy of Sciences; Shanghai 201203 China
| |
Collapse
|
18
|
The response of juxtacellular labeled GABA interneurons in the basolateral amygdaloid nucleus anterior part to 5-HT2A/2C receptor activation is decreased in rats with 6-hydroxydopamine lesions. Neuropharmacology 2013; 73:404-14. [DOI: 10.1016/j.neuropharm.2013.06.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 06/17/2013] [Accepted: 06/19/2013] [Indexed: 11/19/2022]
|
19
|
Han M, Liu XH, Sun N, Du JQ, Zhu JX, Li Q, Tang JS. Lateral reticular nucleus modulates the cardiosomatic reflex evoked by intrapericardial capsaicin in the rat. Eur J Neurosci 2013; 37:1511-8. [DOI: 10.1111/ejn.12170] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Revised: 01/14/2013] [Accepted: 01/28/2013] [Indexed: 11/30/2022]
Affiliation(s)
| | | | - Na Sun
- Department of Physiology and Pathophysiology; Xi'an Jiaotong University College of Medicine; Yanta Road W. 76# Xi'an; Shaanxi; 710061; PR China
| | - Jian-Qing Du
- Department of Physiology and Pathophysiology; Xi'an Jiaotong University College of Medicine; Yanta Road W. 76# Xi'an; Shaanxi; 710061; PR China
| | - Juan-Xia Zhu
- Department of Physiology and Pathophysiology; Xi'an Jiaotong University College of Medicine; Yanta Road W. 76# Xi'an; Shaanxi; 710061; PR China
| | - Qiang Li
- Department of Physiology and Pathophysiology; Xi'an Jiaotong University College of Medicine; Yanta Road W. 76# Xi'an; Shaanxi; 710061; PR China
| | - Jing-Shi Tang
- Department of Physiology and Pathophysiology; Xi'an Jiaotong University College of Medicine; Yanta Road W. 76# Xi'an; Shaanxi; 710061; PR China
| |
Collapse
|
20
|
Hou C, Xue L, Feng J, Zhang L, Wang Y, Chen L, Wang T, Zhang QJ, Liu J. Unilateral lesion of the nigrostriatal pathway decreases the response of GABA interneurons in the dorsal raphe nucleus to 5-HT(1A) receptor stimulation in the rat. Neurochem Int 2012; 61:1344-56. [PMID: 23032407 DOI: 10.1016/j.neuint.2012.09.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2012] [Revised: 09/11/2012] [Accepted: 09/21/2012] [Indexed: 11/17/2022]
Abstract
This study examined the firing rate and pattern of electrophysiologically and chemically identified GABA interneurons in the dorsal raphe nucleus (DRN), and role of 5-HT(1A) receptor agonist 8-OH-DPAT and the medial prefrontal cortex (mPFC) in the firing activity in rats with 6-hydroxydopamine lesions of the substantia nigra pars compacta (SNc). The interneurons in rats with lesions of the SNc showed a more burst-firing, while having no change in the firing rate; the mPFC and combined mPFC and SNc lesions in rats decreased the firing rate of the interneurons and firing pattern shifted towards a more burst-firing compared to rats with sham lesions of the SNc, respectively. In rats with sham lesions of the SNc, administration of 8-OH-DPAT (1-243 μg/kg, i.v.) produced excitatory-inhibitory, excitatory and inhibitory effects in the firing rate of individual interneurons. However, when these effects were averaged over the group, 8-OH-DPAT had no significant effect on firing rate. In rats with lesions of the SNc, mPFC and the paired lesions, 8-OH-DPAT, at the same doses, inhibited all interneurons tested, respectively. Cumulative doses producing inhibition in rats with the paired lesions were higher than that of rats with lesions of the mPFC. In contrast to rats with sham lesions of the SNc, SNc lesion reduced expression of 5-HT(1A) receptor on parvalbumin positive neurons in the DRN, a subpopulation of GABA interneurons. Our results indicate that the SNc and mPFC regulate the firing activity of GABA interneurons in the DRN. Furthermore, response of likely GABA interneurons to systemic administration of 8-OH-DPAT is altered by lesion of the SNc and mPFC.
Collapse
Affiliation(s)
- C Hou
- Department of Physiology and Pathophysiology, School of Medicine, Xi'an Jiaotong University, Xi'an 710061, China
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Liu XH, Han M, Zhu JX, Sun N, Tang JS, Huo FQ, Li J, Xu FY, Du JQ. Metabotropic glutamate subtype 7 and 8 receptors oppositely modulate cardiac nociception in the rat nucleus tractus solitarius. Neuroscience 2012; 220:322-9. [PMID: 22617702 DOI: 10.1016/j.neuroscience.2012.05.024] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Revised: 04/27/2012] [Accepted: 05/09/2012] [Indexed: 01/08/2023]
Abstract
Recent study from our laboratory has indicated that microinjection of glutamate into the nucleus tractus solitarius (NTS) facilitates the cardiac-somatic reflex induced by pericardial capsaicin. Further, N-methyl-d-aspartate (NMDA) receptors and metabotropic glutamate receptors (mGluRs) mediate this function. However, the roles of the individual receptor subtypes or subunits in modulating cardiac nociception are unknown. Among the three groups of mGluRs, group III mGluRs are the primary mGluR subtype expressed in visceral afferent neurons in the NTS. The present study examined the roles of group III mGluRs and their subtype 7 and 8 receptors (mGluR7 and mGluR8) in modulating the cardiac-somatic reflex induced by pericardial capsaicin, which was monitored by recording electromyogram (EMG) activity from the spinotrapezius muscle in anesthetized rats. Intra-NTS microinjection of a group III mGluR agonist, l-(+)-2-Amino-4-phosphonobutyric acid (l-AP4, at 1, 10, and 20 nmol) or a selective mGluR7 agonist, N,N'-diphenylmethyl-1,2-ethanediamine dihydrochloride (AMN082, at 1, 2, and 4 nmol) both decreased the EMG response in a dose-dependent manner. This decrease was inhibited by the group III mGluR antagonist (RS)-α-Methylserine-O-phosphate (MSOP, at 20 nmol). In contrast, intra-NTS microinjection of a selective mGluR8 agonist, (S)-3, 4-dicarboxyphenylglycine (DCPG, at 6 and 8 nmol), significantly increased the EMG response above control levels. This effect was eliminated by intra-NTS MSOP and by vagal deafferentation. These data suggest that group III mGluRs and mGluR7 in the NTS display an inhibitory effect, while mGluR8 displays a facilitatory effect in modulating cardiac nociception, and this facilitatory effect is dependent on vagal afferents.
Collapse
Affiliation(s)
- X H Liu
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University College of Medicine, Yanta Road W. 76#, Xi'an, Shaanxi 710061, China
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Contribution of Serotonergic Transmission to the Motor and Cognitive Effects of High-Frequency Stimulation of the Subthalamic Nucleus or Levodopa in Parkinson’s Disease. Mol Neurobiol 2012; 45:173-85. [DOI: 10.1007/s12035-011-8230-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Accepted: 12/20/2011] [Indexed: 10/14/2022]
|
23
|
Puig MV, Gulledge AT. Serotonin and prefrontal cortex function: neurons, networks, and circuits. Mol Neurobiol 2011; 44:449-64. [PMID: 22076606 DOI: 10.1007/s12035-011-8214-0] [Citation(s) in RCA: 286] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Accepted: 10/17/2011] [Indexed: 02/06/2023]
Abstract
Higher-order executive tasks such as learning, working memory, and behavioral flexibility depend on the prefrontal cortex (PFC), the brain region most elaborated in primates. The prominent innervation by serotonin neurons and the dense expression of serotonergic receptors in the PFC suggest that serotonin is a major modulator of its function. The most abundant serotonin receptors in the PFC, 5-HT1A, 5-HT2A and 5-HT3A receptors, are selectively expressed in distinct populations of pyramidal neurons and inhibitory interneurons, and play a critical role in modulating cortical activity and neural oscillations (brain waves). Serotonergic signaling is altered in many psychiatric disorders such as schizophrenia and depression, where parallel changes in receptor expression and brain waves have been observed. Furthermore, many psychiatric drug treatments target serotonergic receptors in the PFC. Thus, understanding the role of serotonergic neurotransmission in PFC function is of major clinical importance. Here, we review recent findings concerning the powerful influences of serotonin on single neurons, neural networks, and cortical circuits in the PFC of the rat, where the effects of serotonin have been most thoroughly studied.
Collapse
Affiliation(s)
- M Victoria Puig
- The Picower Institute for Learning and Memory and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | | |
Collapse
|
24
|
Fan LL, Zhang QJ, Liu J, Feng J, Gui ZH, Ali U, Zhang L, Hou C, Wang T, Hui YP, Sun YN, Wu ZH. In vivo effect of 5-HT₇ receptor agonist on pyramidal neurons in medial frontal cortex of normal and 6-hydroxydopamine-lesioned rats: an electrophysiological study. Neuroscience 2011; 190:328-38. [PMID: 21684321 DOI: 10.1016/j.neuroscience.2011.06.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2011] [Revised: 05/30/2011] [Accepted: 06/04/2011] [Indexed: 11/28/2022]
Abstract
The 5-hydroxytryptamine (5-HT)-7 receptor began to be cloned and pharmacologically characterized close to 20 years ago. It couples positively via G-proteins to adenylyl cyclase and activation of this receptor increases neuronal excitability, and several studies have shown that degeneration of the nigrostriatal pathway leads to an impairment of 5-HT system. Here we reported that systemic and local administration of 5-HT₇ receptor agonist AS 19 produced excitation, inhibition and no change in the firing rate of pyramidal neurons in medial prefrontal cortex (mPFC) of normal and 6-hydroxydopamine-lesioned rats. In normal rats, the mean response of the pyramidal neurons to AS 19 by systemic and local administration in mPFC was excitatory. The inhibitory effect by systemic administration of AS 19 was reversed by GABA(A) receptor antagonist picrotoxinin. Systemic administration of picrotoxinin excited all the neurons examined in normal rats, and after treatment with picrotoxinin, the local administration of AS 19 further increased the firing rate of the neurons. In the lesioned rats, systemic administration of AS 19, at the same doses, also increased the mean firing rate of the pyramidal neurons. However, cumulative dose producing excitation in the lesioned rats was higher than that of normal rats. Systemic administration of AS 19 produced inhibitory effect in the lesioned rats, which was partially reversed by picrotoxinin. The local administration of AS 19, at the same dose, did not change the firing rate of the neurons in the lesioned rats. Systemic administration of picrotoxinin and the local administration of AS 19 did not affect the firing rate of the neurons in the lesioned rats. These results indicate that activity of mPFC pyramidal neurons is regulated through activation of 5-HT₇ receptor by direct or indirect action, and degeneration of the nigrostriatal pathway leads to decreased response of these neurons to AS 19, suggesting dysfunction and/or down-regulation of 5-HT₇ receptor on the pyramidal neurons and GABA interneurons in the lesioned rats.
Collapse
Affiliation(s)
- L L Fan
- Department of Physiology and Pathophysiology, School of Medicine, Xi'an Jiaotong University, Xi'an 710061, PR China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Gui ZH, Zhang QJ, Liu J, Zhang L, Ali U, Hou C, Fan LL, Sun YN, Wu ZH, Hui YP. Unilateral lesion of the nigrostriatal pathway decreases the response of fast-spiking interneurons in the medial prefrontal cortex to 5-HT1A receptor agonist and expression of the receptor in parvalbumin-positive neurons in the rat. Neurochem Int 2011; 59:618-27. [PMID: 21693147 DOI: 10.1016/j.neuint.2011.05.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Revised: 04/24/2011] [Accepted: 05/10/2011] [Indexed: 11/29/2022]
Abstract
5-Hydroxytryptamine(1A) (5-HT(1A)) receptors are expressed in the prefrontal cortical interneurons. Among these interneurons, calcium-binding protein parvalbumin (PV)-positive fast spiking (FS) interneurons play an important role in regulatory function of the prefrontal cortex. In the present study, the response of medial prefrontal cortex (mPFC) FS interneurons to the selective 5-HT(1A) receptor agonist 8-OH-DPAT and change in expression of 5-HT(1A) receptor on PV-positive neurons were examined in rats with 6-hydroxydopamine (6-OHDA) lesions of the substantia nigra pars compacta (SNc) by using extracellular recording and double-labeling immunofluorescence histochemistry. Systemic administration of 8-OH-DPAT (1-243 μg/kg, i.v.) dose-dependently inhibited the mean firing rate of the FS interneurons in sham-operated and the lesioned rats, respectively. The cumulative doses producing inhibition in the lesioned rats (243 μg/kg) was significantly higher than that of sham-operated rats (27 μg/kg). Furthermore, the local application of 8-OH-DPAT (0.01 μg) in the mPFC inhibited the FS interneurons in sham-operated rats, while having no effect on firing rate of the FS interneurons in the lesioned rats. In contrast to sham-operated rats, the lesion of the SNc in rats did not cause the change of PV-positive neurons in the prelimbic prefrontal cortex, a subregion of the mPFC, whereas the lesion of the SNc markedly reduced in percentage of PV-positive neurons expressing 5-HT(1A) receptors. Our results indicate that degeneration of the nigrostriatal pathway results in the decreased response of FS interneurons in the mPFC to 5-HT(1A) receptor stimulation, which attributes to down-regulation of 5-HT(1A) receptor expression in these interneurons.
Collapse
Affiliation(s)
- Z H Gui
- Department of Physiology and Pathophysiology, School of Medicine, Xi'an Jiaotong University, Xi'an 710061, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
The pyramidal neurons in the medial prefrontal cortex show decreased response to 5-hydroxytryptamine-3 receptor stimulation in a rodent model of Parkinson's disease. Brain Res 2011; 1384:69-79. [PMID: 21291871 DOI: 10.1016/j.brainres.2011.01.086] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Revised: 01/22/2011] [Accepted: 01/24/2011] [Indexed: 10/18/2022]
Abstract
In the present study, effect of SR 57227A, a selective 5-hydroxytryptamine-3 (5-HT(3)) receptor agonist, on the firing activity of pyramidal neurons in the medial prefrontal cortex (mPFC) was studied in normal rats and rats with 6-hydroxydopamine lesions of the substantia nigra pars compacta by using extracellular recording. Systemic administration of SR 57227A (40-640 μg/kg, i.v.) decreased the mean firing rate of pyramidal neurons in normal and the lesioned rats. This inhibition was significant only at doses higher than 320 μg/kg and 640 μg/kg in normal and the lesioned rats, respectively, and was reversed by i.v. administration of 5-HT(3) receptor antagonist tropisetron or GABA(A) receptor antagonist bicuculline. Furthermore, local application of SR 57227A (0.01 μg) in the mPFC inhibited the firing rate of pyramidal neurons in normal rats while having no effect on firing rate in the lesioned rats. The i.v. administration of bicuculline excited the pyramidal neurons in normal rats, and then local application of SR 57227A did not alter the mean firing rate of these neurons. However, these two drugs did not affect the activity of the pyramidal neurons in the lesioned rats. We conclude that activation of 5-HT(3) receptors inhibited pyramidal neurons in the mPFC of normal rats via GABAergic interneurons, and degeneration of the nigrostriatal pathway decreased response of the pyramidal neurons to SR 57227A, suggesting the dysfunction of 5-HT(3) receptors and/or down-regulation of the expression on GABAergic interneurons in the lesioned rats.
Collapse
|
27
|
Gui Z, Zhang Q, Liu J, Ali U, Li L, Wang Y, Wang T, Chen L, Hou C, Fan L. In vivo modulation of the firing activity of putative slow- and fast-spiking interneurons in the medial prefrontal cortex by 5-HT3 receptors in 6-hydroxydopamine-induced Parkinsonian rats. Neuroscience 2010; 169:1315-25. [DOI: 10.1016/j.neuroscience.2010.05.059] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Revised: 05/17/2010] [Accepted: 05/24/2010] [Indexed: 10/19/2022]
|
28
|
Unilateral lesion of the nigrostriatal pathway decreases the response of interneurons in medial prefrontal cortex to 5-HT 2A/2C receptor stimulation in the rat. Brain Res 2009; 1312:127-37. [PMID: 19948151 DOI: 10.1016/j.brainres.2009.11.052] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2009] [Revised: 11/18/2009] [Accepted: 11/20/2009] [Indexed: 11/23/2022]
Abstract
The aim of the present study was to investigate changes in the firing rate and pattern of interneurons in the medial prefrontal cortex (mPFC), and effects of 5-HT(2A/2C) receptor agonist DOI and antagonist ritanserin, and the selective 5-HT(2C) receptor antagonist SB 242084 on the neuronal firing in rats with 6-hydroxydopamine (6-OHDA) lesions of the substantia nigra pars compacta (SNc) by extracellular recording in vivo. The lesion of the SNc decreased the firing rate of the interneurons compared to sham-lesioned rats, and firing pattern of these interneurons changed toward a more burst-firing. Administration of DOI (20-320 microg/kg, i.v.) dose-dependently increased the firing rate of all interneurons examined in sham-lesioned and the 6-OHDA-lesioned rats. The excitation was significant at doses higher than 40 microg/kg and 320 microg/kg in sham-lesioned and the 6-OHDA-lesioned rats, respectively. This dose, which produced marked effect in the 6-OHDA-lesioned rats, was much higher than that of sham-lesioned rats. The local application of DOI (5 microg) in mPFC increased the firing rate of the interneurons in sham-lesioned rats, while having no effect on the firing rate in the 6-OHDA-lesioned rats. The excitatory effect of DOI in sham-lesioned and the 6-OHDA-lesioned rats was completely or partially reversed by ritanserin or SB 242084. The results of our study show that lesion of the SNc leads to a decrease in the firing rate of interneurons in mPFC and fire with a more burst pattern, and decreased response of the interneurons to DOI in rat.
Collapse
|