1
|
Massri AJ, Fitzpatrick M, Cunny H, Li JL, Harry GJ. Differential gene expression profiling implicates altered network development in rat postnatal day 4 cortex following 4-Methylimidazole (4-MeI) induced maternal seizures. Neurotoxicol Teratol 2023; 100:107301. [PMID: 37783441 PMCID: PMC10843020 DOI: 10.1016/j.ntt.2023.107301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/31/2023] [Accepted: 09/19/2023] [Indexed: 10/04/2023]
Abstract
Compromised maternal health leading to maternal seizures can have adverse effects on the healthy development of offspring. This may be the result of inflammation, hypoxia-ischemia, and altered GABA signaling. The current study examined cortical tissue from F2b (2nd litter of the 2nd generation) postnatal day 4 (PND4) offspring of female Harlan SD rats chronically exposed to the seizuregenic compound, 4-Methylimidazole (0, 750, or 2500 ppm 4-MeI). Maternal seizures were evident only at 2500 ppm 4-MeI. GABA related gene expression as examined by qRT-PCR and whole genome microarray showed no indication of disrupted GABA or glutamatergic signaling. Canonical pathway hierarchical clustering and multi-omics combinatory genomic (CNet) plots of differentially expressed genes (DEG) showed alterations in genes associated with regulatory processes of cell development including neuronal differentiation and synaptogenesis. Functional enrichment analysis showed a similarity of cellular processes across the two exposure groups however, the genes comprising each cluster were primarily unique rather than shared and often showed different directionality. A dose-related induction of cytokine signaling was indicated however, pathways associated with individual cytokine signaling were not elevated, suggesting an alternative involvement of cytokine signaling. Pathways related to growth process and cell signaling showed a negative activation supporting an interpretation of disruption or delay in developmental processes at the 2500 ppm 4-MeI exposure level with maternal seizures. Thus, while GABA signaling was not altered as has been observed with maternal seizures, the pattern of DEG suggested a potential for alteration in neuronal network formation.
Collapse
Affiliation(s)
- Abdull J Massri
- Integrative Bioinformatics, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Mackenzie Fitzpatrick
- Mechanistic Toxicology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Helen Cunny
- Office of the Scientific Director, Division of Translational Toxicology, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Jian-Liang Li
- Integrative Bioinformatics, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - G Jean Harry
- Mechanistic Toxicology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
2
|
Dai YJ, Wu DC, Feng B, Chen B, Tang YS, Jin MM, Zhao HW, Dai HB, Wang Y, Chen Z. Prolonged febrile seizures induce inheritable memory deficits in rats through DNA methylation. CNS Neurosci Ther 2019; 25:601-611. [PMID: 30666786 PMCID: PMC6488897 DOI: 10.1111/cns.13088] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 11/08/2018] [Accepted: 11/10/2018] [Indexed: 01/08/2023] Open
Abstract
Aims Febrile seizures (FSs) are the most common types of seizures in young children. However, little is known whether the memory deficits induced by early‐life FSs could transmit across generations or not. Methods The memory functions of different generations of FS rats were behaviorally evaluated by morris water maze, inhibitory avoidance task, and contextual fear conditioning task. Meanwhile, molecular biology and pharmacological methods were used to investigate the role of DNA methylation in transgenerational transmission of memory defects. Results Prolonged FSs in infant rats resulted in memory deficits in adult and transgenerationally transmitted to next generation, which was mainly through mothers. For these two generations, DNA methyltransferase (DNMT) 1 was upregulated, leading to transcriptional inhibition of the synaptic plasticity protein reelin but not the memory suppressor protein phosphatase 1. DNMT inhibitors prevented the high expression of DNMT1 and hypermethylation of reelin gene and reversed the transgenerationally memory deficits. In addition, enriched environment in juvenile rats rescued memory deficits induced by prolonged FSs. Conclusions Our study demonstrated early experience of prolonged FSs led to memory deficits in adult rats and their unaffected offspring, which involved epigenetic mechanisms, suggesting early environmental experiences had a significant impact on the transgenerational transmission of neurological diseases.
Collapse
Affiliation(s)
- Yun-Jian Dai
- Institute of Pharmacology & Toxicology, NHC and CAMS Key Laboratory of Medical Neurobiology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.,Department of Pharmacy, Second Affiliated hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Deng-Chang Wu
- Institute of Pharmacology & Toxicology, NHC and CAMS Key Laboratory of Medical Neurobiology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Bo Feng
- Institute of Pharmacology & Toxicology, NHC and CAMS Key Laboratory of Medical Neurobiology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Bin Chen
- Institute of Pharmacology & Toxicology, NHC and CAMS Key Laboratory of Medical Neurobiology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yang-Shun Tang
- Institute of Pharmacology & Toxicology, NHC and CAMS Key Laboratory of Medical Neurobiology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Miao-Miao Jin
- Institute of Pharmacology & Toxicology, NHC and CAMS Key Laboratory of Medical Neurobiology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Hua-Wei Zhao
- Institute of Pharmacology & Toxicology, NHC and CAMS Key Laboratory of Medical Neurobiology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.,Department of Pharmacy, School of Medicine, Children's hospital, Zhejiang University, Hangzhou, China
| | - Hai-Bin Dai
- Department of Pharmacy, Second Affiliated hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Epilepsy Center, Department of Neurology, School of Medicine, Second Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Yi Wang
- Institute of Pharmacology & Toxicology, NHC and CAMS Key Laboratory of Medical Neurobiology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Zhong Chen
- Institute of Pharmacology & Toxicology, NHC and CAMS Key Laboratory of Medical Neurobiology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.,Epilepsy Center, Department of Neurology, School of Medicine, Second Affiliated Hospital, Zhejiang University, Hangzhou, China
| |
Collapse
|
3
|
Ni H, Chen SH, Li LL, Jin MF. Alterations in the Neurobehavioral Phenotype and ZnT3/CB-D28k Expression in the Cerebral Cortex Following Lithium-Pilocarpine-Induced Status Epilepticus: the Ameliorative Effect of Leptin. Biol Trace Elem Res 2019; 187:100-106. [PMID: 29687372 DOI: 10.1007/s12011-018-1343-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 04/10/2018] [Indexed: 12/31/2022]
Abstract
Zinc transporter 3 (ZnT3)-dependent "zincergic" vesicular zinc accounts for approximately 20% of the total zinc content of the mammalian telencephalon. Elevated hippocampal ZnT3 expression is acknowledged to be associated with mossy fiber sprouting and cognitive deficits. However, no studies have compared the long-term neurobehavioral phenotype with the expression of ZnT3 in the cerebral cortex following status epilepticus (SE). The aim of this study was to investigate changes in the long-term neurobehavioral phenotype as well as the expression of ZnT3 and calcium homeostasis-related CB-D28k in the cerebral cortex of rats subjected to neonatal SE and to determine the effects of leptin treatment immediately after neonatal SE. Fifty Sprague-Dawley rats (postnatal day 6, P6) were randomly assigned to two groups: the pilocarpine hydrochloride-induced status epilepticus group (RS, n = 30) and control group (n = 20). Rats were further divided into the control group without leptin (Control), control-plus-leptin treatment group (Leptin), RS group without leptin treatment (RS), and RS-plus-leptin treatment group (RS + Leptin). On P6, all rats in the RS group and RS + Leptin group were injected intraperitoneally (i.p.) with lithium chloride (5 mEq/kg). Pilocarpine (320 mg/kg, i.p.) was administered 30 min after the scopolamine methyl chloride (1 mg/kg) injection on P7. From P8 to P14, animals of the Leptin group and RS + Leptin group were given leptin (4 mg/kg/day, i.p.). The neurological behavioral parameters (negative geotaxis reaction reflex, righting reflex, cliff avoidance reflex, forelimb suspension reflex, and open field test) were observed from P23 to P30. The protein levels of ZnT3 and CB-D28k in the cerebral cortex were detected subsequently by the western blot method. Pilocarpine-treated neonatal rats showed long-term abnormal neurobehavioral parameters. In parallel, there was a significantly downregulated protein level of CB-D28k and upregulated protein level of ZnT3 in the cerebral cortex of the RS group. Leptin treatment soon after epilepticus for 7 consecutive days counteracted these abnormal changes. Taken together with the results from our previous reports on another neonatal seizure model, which showed a significant positive inter-relationship between ZnT3 and calcium/calmodulin-dependent protein kinase IIα (CaMKIIα), the data here suggest that ZnT3/CB-D28k-associated Zn (2+)/Ca(2+) signaling might be involved in neonatal SE-induced long-term brain damage in the aspects of neurobehavioral impairment. Moreover, consecutive leptin treatment is effect at counteracting these hyperexcitability-related changes, suggesting a potential clinical significance.
Collapse
Affiliation(s)
- Hong Ni
- Neurology Laboratory, Institute of Pediatric Research, Children's Hospital of Soochow University, No.303, Jingde Road, 215003, Suzhou, People's Republic of China.
| | - Su-Hong Chen
- Neurology Laboratory, Institute of Pediatric Research, Children's Hospital of Soochow University, No.303, Jingde Road, 215003, Suzhou, People's Republic of China
| | - Li-Li Li
- Neurology Laboratory, Institute of Pediatric Research, Children's Hospital of Soochow University, No.303, Jingde Road, 215003, Suzhou, People's Republic of China
| | - Mei-Fang Jin
- Neurology Laboratory, Institute of Pediatric Research, Children's Hospital of Soochow University, No.303, Jingde Road, 215003, Suzhou, People's Republic of China
| |
Collapse
|
4
|
Mazarati A, Jones NC, Galanopoulou AS, Harte‐Hargrove LC, Kalynchuk LE, Lenck‐Santini P, Medel‐Matus J, Nehlig A, de la Prida LM, Sarkisova K, Veliskova J. A companion to the preclinical common data elements on neurobehavioral comorbidities of epilepsy: a report of the TASK3 behavior working group of the ILAE/AES Joint Translational Task Force. Epilepsia Open 2018; 3:24-52. [PMID: 30450484 PMCID: PMC6210046 DOI: 10.1002/epi4.12236] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/13/2018] [Indexed: 12/13/2022] Open
Abstract
The provided companion has been developed by the Behavioral Working Group of the Joint Translational Task Force of the International League Against Epilepsy (ILAE) and the American Epilepsy Society (AES) with the purpose of assisting the implementation of Preclinical Common Data Elements (CDE) for studying and for reporting neurobehavioral comorbidities in rodent models of epilepsy. Case Report Forms (CRFs) are provided, which should be completed on a per animal/per test basis, whereas the CDEs are a compiled list of the elements that should be reported. This companion is not designed as a list of recommendations, or guidelines for how the tests should be run-rather, it describes the different types of assessments, and highlights the importance of rigorous data collection and transparency in this regard. The tests are divided into 7 categories for examining behavioral dysfunction on the syndrome level: deficits in learning and memory; depression; anxiety; autism; attention deficit/hyperactivity disorder; psychosis; and aggression. Correspondence and integration of these categories into the National Institute of Mental Health (NIMH) Research Domain Criteria (RDoC) is introduced. Developmental aspects are addressed through the introduction of developmental milestones. Discussion includes complexities, limitations, and biases associated with neurobehavioral testing, especially when performed in animals with epilepsy, as well as the importance of rigorous data collection and of transparent reporting. This represents, to our knowledge, the first such resource dedicated to preclinical CDEs for behavioral testing of rodents.
Collapse
Affiliation(s)
- Andrey Mazarati
- Department of PediatricsDavid Geffen School of Medicine at UCLALos AngelesCaliforniaU.S.A.
- UCLA Children's Discovery and Innovation InstituteLos AngelesCaliforniaU.S.A.
| | - Nigel C. Jones
- Department of NeuroscienceCentral Clinical SchoolMonash University MelbourneMelbourneVictoriaAustralia
| | - Aristea S. Galanopoulou
- Saul R. Korey Department of Neurology and Dominick P. Purpura Department of NeuroscienceLaboratory of Developmental EpilepsyAlbert Einstein College of MedicineBronxNew YorkU.S.A.
| | - Lauren C. Harte‐Hargrove
- Joint Translational Task Force of the International League Against Epilepsy (ILAE) and American Epilepsy Society (AES)
| | - Lisa E. Kalynchuk
- Division of Medical SciencesUniversity of VictoriaVictoriaBritish ColumbiaCanada
| | - Pierre‐Pascal Lenck‐Santini
- INMEDAix‐Marseille University, INSERMMarseille France
- Department of Neurological SciencesUniversity of VermontBurlingtonVermontU.S.A.
| | | | - Astrid Nehlig
- Pediatric NeurologyNecker‐Enfants Malades HospitalUniversity of Paris Descartes, INSERM U1129ParisFrance
| | | | - Karine Sarkisova
- Institute of Higher Nervous Activity and NeurophysiologyRussian Academy of SciencesMoscowRussia
| | - Jana Veliskova
- Departments of Cell Biology & AnatomyNew York Medical CollegeValhallaNew YorkU.S.A.
| |
Collapse
|
5
|
Leptin-regulated autophagy plays a role in long-term neurobehavioral injury after neonatal seizures and the regulation of zinc/cPLA2 and CaMK II signaling in cerebral cortex. Epilepsy Res 2018; 146:103-111. [PMID: 30092488 DOI: 10.1016/j.eplepsyres.2018.07.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Revised: 07/20/2018] [Accepted: 07/27/2018] [Indexed: 01/03/2023]
Abstract
Metabolic disorders play an important role in the pathogenesis of many neurological diseases. Recent evidence suggests that leptin levels in peripheral blood and brain are lower in patients with epilepsy. Leptin is an energy-regulating hormone that plays a neuroprotective role in neurodegenerative diseases and brain trauma. However, little is known about the effects and molecular mechanisms of leptin treatment on long-term neurobehavioral impairment caused by developmental seizures. The present study evaluated whether chronic leptin treatment protected against neurobehavioral impairments induced by recurrent seizures in newborns treated with flurothyl. We also examined the effect of leptin on the expression of zinc/cPLA2-related autophagy signaling molecules and CaMKII in the cerebral cortex. Twenty Sprague-Dawley rats (6 days after birth, P6) were randomly divided into two groups, a neonatal seizure group and control group. Rats were subdivided on P13 into control, control + leptin (leptin, 2 mg/kg/day, continuous 10 days), seizure (RS), and seizure + leptin group (RS + leptin, 2 mg/kg/day for 10 consecutive days). Neurological behavioral parameters (negative geotaxis reaction reflex, righting reflex, cliff avoidance reflex, forelimb suspension reflex and open field test) were observed from P23 to P30. mRNA and protein levels in the cerebral cortex were detected using real-time RT-PCR and Western blotting, respectively. Flurothyl-induced seizures (RS group) produced long-term abnormal neurobehavior, which was improved with leptin treatment. Chronic leptin treatment restored several expression parameters affected by neonatal seizures, including seizure-induced up-regulated zinc transporter ZnT1/ZIP7, lipid membrane injury-related cPLA2, autophagy marker beclin-1/bcl2, LC3II/LC3I, and its execution molecule cathepsin-E, and down-regulated memory marker CaMK II alpha. Our results suggest that the early use of leptin after neonatal recurrent seizures may exert neuroprotective effects and antagonize the long-term neurobehavioral impairment caused by seizures. Autophagy-mediated Zn/cPLA2 and CaMK II signaling in the cerebral cortex may be involved in the neuroprotective effect of leptin. Our results provide new clues for anti-epileptogenetic treatment.
Collapse
|
6
|
Bath KG, Scharfman HE. Impact of early life exposure to antiepileptic drugs on neurobehavioral outcomes based on laboratory animal and clinical research. Epilepsy Behav 2013; 26:427-39. [PMID: 23305780 PMCID: PMC3925312 DOI: 10.1016/j.yebeh.2012.10.031] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2012] [Accepted: 10/30/2012] [Indexed: 12/13/2022]
Abstract
Epilepsy affects approximately 1% of children under the age of 15, making it a very common neurological disorder in the pediatric population (Russ et al., 2012). In addition, ~0.4-0.8% of all pregnant women have some form of epilepsy (Hauser et al., 1996a,b; Borthen et al., 2009; Krishnamurthy, 2012). Despite the potential deleterious effects of antiepileptic drugs (AEDs) on the developing brain, their use is still required for seizure control in pregnant women (Krishnamurthy, 2012), and they represent the standard approach for treating children with epilepsy (Chu-Shore and Thiele, 2010; Quach et al., 2010; Verrotti et al., 2011). Even when AEDs are effective, there are potential side effects, including cognitive and affective changes or altered sleep and appetite. The consequences of AED exposure in development have been studied extensively (Canger et al., 1999; Modi et al., 2011a,b; Oguni, 2011). Despite intensive study, there is still debate about the long-term consequences of early life AED exposure. Here, we consider the evidence to date that AED exposure, either prenatally or in early postnatal life, has significant adverse effects on the developing brain and incorporate studies of laboratory animals as well as those of patients. We also note the areas of research where greater clarity seems critical in order to make significant advances. A greater understanding of the impact of AEDs on somatic, cognitive and behavioral development has substantial value because it has the potential to inform clinical practice and guide studies aimed at understanding the genetic and molecular bases of comorbid pathologies associated with common treatment regimens. Understanding these effects has the potential to lead to AEDs with fewer side effects. Such advances would expand treatment options, diminish the risk associated with AED exposure in susceptible populations, and improve the quality of life and health outcomes of children with epilepsy and children born to women who took AEDs during pregnancy.
Collapse
Affiliation(s)
- Kevin G. Bath
- Department of Neuroscience, Brown University, Box GL-N, 185 Meeting St., Providence, RI 02912, USA,Corresponding author. (K.G. Bath)
| | - Helen E. Scharfman
- The Nathan Kline Institute for Psychiatric Research, 140 Old Orangeburg Rd., Bldg. 35, Orangeburg, NY 10962, USA,New York University Langone Medical Center, 550 First Ave., New York, NY 10016, USA
| |
Collapse
|
7
|
Velíšková J, Desantis KA. Sex and hormonal influences on seizures and epilepsy. Horm Behav 2013; 63:267-77. [PMID: 22504305 PMCID: PMC3424285 DOI: 10.1016/j.yhbeh.2012.03.018] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Revised: 03/28/2012] [Accepted: 03/29/2012] [Indexed: 11/20/2022]
Abstract
Epilepsy is the third most common chronic neurological disorder. Clinical and experimental evidence supports the role of sex and influence of sex hormones on seizures and epilepsy as well as alterations of the endocrine system and levels of sex hormones by epileptiform activity. Conversely, seizures are sensitive to changes in sex hormone levels, which in turn may affect the seizure-induced neuronal damage. The effects of reproductive hormones on neuronal excitability and seizure-induced damage are complex to contradictory and depend on different mechanisms, which have to be accounted for in data interpretation. Both estradiol and progesterone/allopregnanolone may have beneficial effects for patients with epilepsy. Individualized hormonal therapy should be considered as adjunctive treatment in patients with epilepsy to improve seizure control as well as quality of life.
Collapse
Affiliation(s)
- Jana Velíšková
- Department of Cell Biology & Anatomy, New York Medical College, Valhalla, NY, USA.
| | | |
Collapse
|
8
|
Novaes GF, Amado D, Scorza FA, Cysneiros RM. Social behavior impairment in offspring exposed to maternal seizures in utero. J Neural Transm (Vienna) 2012; 119:639-44. [PMID: 22358065 DOI: 10.1007/s00702-011-0751-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2011] [Accepted: 12/02/2011] [Indexed: 02/04/2023]
Abstract
Human and animal models have demonstrated that maternal seizures in utero could be deleterious to the development of the offspring. This study focused on the social behavior of offspring exposed to seizures in utero. A pilocarpine model of temporal lobe epilepsy was induced in female Wistar rats that were mated after the first spontaneous seizure. Early after birth, pups from an epileptic mother were reared by a control mother. To evaluate the influence of the adoption process, two other groups were added: rat pups from control mothers cross-fostered with other control mothers, and rat pups reared by their birth mother. Animals exposed to seizures in utero showed impaired social behavior with no signs of anxiety-like behavior. This study demonstrated that epileptic seizures during pregnancy could be harmful to brain development and may increase the risk of developing neurodevelopmental disorders. The mechanisms underlying the abnormalities of social behavior are not well understood, and further studies in this field are warranted.
Collapse
Affiliation(s)
- Gisane Faria Novaes
- Programa de Pós-graduação em Distúrbios do Desenvolvimento, Laboratório de Neurobiologia, Universidade Presbiteriana Mackenzie, Rua da Consolação, 930. Prédio 38, CEP 01302-907 São Paulo, Brazil
| | | | | | | |
Collapse
|
9
|
Lecourtier L, Antal MC, Cosquer B, Schumacher A, Samama B, Angst MJ, Ferrandon A, Koning E, Cassel JC, Nehlig A. Intact neurobehavioral development and dramatic impairments of procedural-like memory following neonatal ventral hippocampal lesion in rats. Neuroscience 2012; 207:110-23. [PMID: 22322113 DOI: 10.1016/j.neuroscience.2012.01.040] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Revised: 12/26/2011] [Accepted: 01/23/2012] [Indexed: 01/22/2023]
Abstract
Neonatal ventral hippocampal lesions (NVHL) in rats are considered a potent developmental model of schizophrenia. After NVHL, rats appear normal during their preadolescent time, whereas in early adulthood, they develop behavioral deficits paralleling symptomatic aspects of schizophrenia, including hyperactivity, hypersensitivity to amphetamine (AMPH), prepulse and latent inhibition deficits, reduced social interactions, and spatial working and reference memory alterations. Surprisingly, the question of the consequences of NVHL on postnatal neurobehavioral development has not been addressed. This is of particular importance, as a defective neurobehavioral development could contribute to impairments seen in adult rats. Therefore, at several time points of the early postsurgical life of NVHL rats, we assessed behaviors accounting for neurobehavioral development, including negative geotaxis and grip strength (PD11), locomotor coordination (PD21), and open-field (PD25). At adulthood, the rats were tested for anxiety levels, locomotor activity, as well as spatial reference memory performance. Using a novel task, we also investigated the consequences of the lesions on procedural-like memory, which had never been tested following NVHL. Our results point to preserved neurobehavioral development. They also confirm the already documented locomotor hyperactivity, spatial reference memory impairment, and hyperresponsiveness to AMPH. Finally, our rseults show for the first time that NVHL disabled the development of behavioral routines, suggesting dramatic procedural memory deficits. The presence of procedural memory deficits in adult rats subjected to NHVL suggests that the lesions lead to a wider range of cognitive deficits than previously shown. Interestingly, procedural or implicit memory impairments have also been reported in schizophrenic patients.
Collapse
Affiliation(s)
- L Lecourtier
- Laboratoire d'Imagerie et de Neurosciences Cognitives, UMR, 7237 Université de Strasbourg/CNRS, Strasbourg, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Effect of prenatal pentylenetetrazol-induced kindling on learning and memory of male offspring. Neuroscience 2011; 172:205-11. [DOI: 10.1016/j.neuroscience.2010.11.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Revised: 11/01/2010] [Accepted: 11/02/2010] [Indexed: 11/18/2022]
|
11
|
Behavioral evaluation of adult rats exposed in utero to maternal epileptic seizures. Epilepsy Behav 2010; 18:45-9. [PMID: 20460194 DOI: 10.1016/j.yebeh.2010.02.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Revised: 02/22/2010] [Accepted: 02/24/2010] [Indexed: 11/21/2022]
Abstract
We investigated the effects of exposure to maternal convulsive seizures in utero on the behavior of offspring. An epilepsy model was induced in female rats by administration of pilocarpine. Seizure frequency was evaluated for 60 days. The rats were then allowed to mate, and seizure frequency during pregnancy was recorded and compared with prepregnancy frequency. After birth, placentas of mothers were submitted for histopathological analysis. The behavior of the offspring was evaluated 3 months after birth. There was a decline in seizure frequency even though the placentas from epileptic mothers showed areas of ischemic infarction indicative of fetal hypoxia. Offspring of epileptic mothers manifested deficits in motor coordination in the rotarod test and increased immobility in the open-field test. No changes in anxiety and depression-like behaviors were observed. These results suggest that "in utero" exposure to maternal seizures can produce motor deficits in adult life, perhaps as a result of fetal hypoxia.
Collapse
|
12
|
Orozco-Barrios CE, Battaglia-Hsu SF, Arango-Rodriguez ML, Ayala-Davila J, Chery C, Alberto JM, Schroeder H, Daval JL, Martinez-Fong D, Gueant JL. Vitamin B12-impaired metabolism produces apoptosis and Parkinson phenotype in rats expressing the transcobalamin-oleosin chimera in substantia nigra. PLoS One 2009; 4:e8268. [PMID: 20027219 PMCID: PMC2791211 DOI: 10.1371/journal.pone.0008268] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Accepted: 11/19/2009] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Vitamin B12 is indispensable for proper brain functioning and cytosolic synthesis of S-adenosylmethionine. Whether its deficiency produces effects on viability and apoptosis of neurons remains unknown. There is a particular interest in investigating these effects in Parkinson disease where Levodopa treatment is known to increase the consumption of S-adenosylmethionine. To cause deprivation of vitamin B12, we have recently developed a cell model that produces decreased synthesis of S-adenosylmethionine by anchoring transcobalamin (TCII) to the reticulum through its fusion with Oleosin (OLEO). METHODOLOGY Gene constructs including transcobalamin-oleosin (TCII-OLEO) and control constructs, green fluorescent protein-transcobalamin-oleosin (GFP-TCII-OLEO), oleosin-transcobalamin (OLEO-TCII), TCII and OLEO were used for expression in N1E-115 cells (mouse neuroblastoma) and in substantia nigra of adult rats, using a targeted transfection with a Neurotensin polyplex system. We studied the viability and the apoptosis in the transfected cells and targeted tissue. The turning behavior was evaluated in the rats transfected with the different plasmids. PRINCIPAL FINDINGS The transfection of N1E-115 cells by the TCII-OLEO-expressing plasmid significantly affected cell viability and increased immunoreactivity of cleaved Caspase-3. No change in propidium iodide uptake (used as a necrosis marker) was observed. The transfected rats lost neurons immunoreactive to tyrosine hydroxylase. The expression of TCII-OLEO was observed in cells immunoreactive to tyrosine hydroxylase of the substantia nigra, with a superimposed expression of cleaved Caspase-3. These cellular and tissular effects were not observed with the control plasmids. Rats transfected with TCII-OLEO expressing plasmid presented with a significantly higher number of turns, compared with those transfected with the other plasmids. CONCLUSIONS/SIGNIFICANCE In conclusion, the TCII-OLEO transfection was responsible for apoptosis in N1E-115 cells and rat substantia nigra and for Parkinson-like phenotype. This suggests evaluating whether vitamin B12 deficit could aggravate the PD in patients under Levodopa therapy by impairing S-adenosylmethionine synthesis in substantia nigra.
Collapse
Affiliation(s)
- Carlos Enrique Orozco-Barrios
- Department of Physiology, Biophysics and Neuroscience, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), Mexico City, Mexico
- Inserm U954, Faculté de Médecine, Nancy-Université, Nancy, France
| | | | - Martha Ligia Arango-Rodriguez
- Department of Physiology, Biophysics and Neuroscience, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), Mexico City, Mexico
| | - Jose Ayala-Davila
- Department of Physiology, Biophysics and Neuroscience, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), Mexico City, Mexico
| | - Celine Chery
- Inserm U954, Faculté de Médecine, Nancy-Université, Nancy, France
| | | | - Henry Schroeder
- Institut national de la recherche agronomique (INRA), URAFPA, Nancy-Université, Nancy, France
| | - Jean-Luc Daval
- Inserm U954, Faculté de Médecine, Nancy-Université, Nancy, France
| | - Daniel Martinez-Fong
- Department of Physiology, Biophysics and Neuroscience, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), Mexico City, Mexico
| | | |
Collapse
|