1
|
Pignat JM, Patelli A, Herrmann FR, Kaarna E, Joutsen A, Hallett M, Benninger DH. 50 Hz-Repetitive transcranial magnetic stimulation modulates brain connectivity in Parkinson's disease. Clin Neurophysiol 2025; 174:96-104. [PMID: 40239551 DOI: 10.1016/j.clinph.2025.02.368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 01/19/2025] [Accepted: 02/17/2025] [Indexed: 04/18/2025]
Abstract
OBJECTIVES High-frequency repetitive transcranial magnetic stimulation (rTMS) may modulate neuronal excitability and promote the presumed "pro-kinetic" gamma frequency, while attenuating the "anti-kinetic" beta frequency. This study explores whether 50 Hz-rTMS and intermittent Theta Burst Stimulation (iTBS), of the primary motor (M1) and dorsolateral prefrontal cortex (DLPFC) enhance the gamma activity and functional connectivity within the motor circuit in Parkinson's disease (PD). METHODS We investigated pre- and post-rTMS interventional EEG in 62 PD patients following 50 Hz-rTMS and iTBS. Power spectral analysis, along with coherence and mutual information embedded in metrics of graph theory, was applied to assess the functional connectivity across the whole brain. RESULTS We found changes in the cluster coefficient and local efficiency of gamma activity in the left M1 following iTBS, and wider-spread changes within the sensorimotor circuit following 50 Hz-rTMS. We found no changes in the power spectrum or entrainment of the gamma activity in the motor cortex or beyond. CONCLUSION The current 50 Hz-rTMS protocols modulate functional connectivity in PD patients, but not the power spectrum. These topological changes do not translate into clinical effects. These stimulation protocols may lack the specificity to be clinically effective. SIGNIFICANCE High frequency rTMS provides new insights in brain connectivity in the gamma bandwidth.
Collapse
Affiliation(s)
- J M Pignat
- Department of Neurology, University Hospital of Lausanne, Switzerland
| | - A Patelli
- Department of Neurology, University Hospital of Lausanne, Switzerland
| | - F R Herrmann
- Division of Geriatrics, Department of Internal Medicine, Rehabilitation and Geriatrics, University Hospitals and University of Geneva, Geneva, Switzerland
| | - E Kaarna
- Tampere University, Faculty of Medicine and Health Technology, Tampere, Finland
| | - A Joutsen
- Tampere University, Faculty of Medicine and Health Technology, Tampere, Finland
| | - M Hallett
- Medical Neurology Branch, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD, USA
| | - D H Benninger
- Department of Neurology, University Hospital of Lausanne, Switzerland; Department of Neurology, University of Basel, Reha Rheinfelden, Rheinfelden, Switzerland.
| |
Collapse
|
2
|
Lamoš M, Bočková M, Missey F, Lubrano C, de Araújo E Silva M, Trajlínek J, Studnička O, Daniel P, Carron R, Jirsa V, Chrastina J, Jančálek R, Glowacki ED, Cassara A, Neufeld E, Rektorová I, Williamson A. Noninvasive Temporal Interference Stimulation of the Subthalamic Nucleus in Parkinson's Disease Reduces Beta Activity. Mov Disord 2025. [PMID: 40202094 DOI: 10.1002/mds.30134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 12/16/2024] [Accepted: 01/21/2025] [Indexed: 04/10/2025] Open
Abstract
BACKGROUND Temporal interference stimulation (TIS) is a novel noninvasive electrical stimulation technique to focally modulate deep brain regions; a minimum of two high-frequency signals (f1 and f2 > 1 kHz) interfere to create an envelope-modulated signal at a deep brain target with the frequency of modulation equal to the difference frequency: Δf = |f2 - f1|. OBJECTIVE The goals of this study were to verify the capability of TIS to modulate the subthalamic nucleus (STN) with Δf and to compare the effect of TIS and conventional deep brain stimulation (DBS) on the STN beta oscillations in patients with Parkinson's disease (PD). METHODS DBS leads remained externalized after implantation, allowing local field potentials (LFPs) recordings in eight patients with PD. TIS was performed initially by two pairs (f1 = 9.00 kHz; f2 = 9.13 kHz, 4 mA peak-peak per pair maximum) of scalp electrodes placed in temporoparietal regions to focus the envelope signal maximum (Δf = 130 Hz) at the motor part of the STN target. RESULTS The comparison between the baseline LFPs and recordings after TIS and conventional DBS sessions showed substantial suppression of high beta power peak after both types of stimulation in all patients. CONCLUSIONS TIS has the potential to effectively modulate the STN and reduce the beta oscillatory activity in a completely noninvasive manner, as is traditionally possible only with intracranial DBS. Future studies should confirm the clinical effectiveness of TIS and determine whether TIS could be used to identify optimal DBS candidates and individualize DBS targets. © 2025 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Martin Lamoš
- Brain and Mind Research Program, Central European Institute of Technology, Masaryk University, Brno, Czechia
- First Department of Neurology, Masaryk University School of Medicine, St. Anne's Hospital, Brno, Czechia
| | - Martina Bočková
- Brain and Mind Research Program, Central European Institute of Technology, Masaryk University, Brno, Czechia
- First Department of Neurology, Masaryk University School of Medicine, St. Anne's Hospital, Brno, Czechia
| | - Florian Missey
- Neuromodulation Technology Research, International Clinical Research Center, St. Anne's University Hospital, Brno, Czechia
| | - Claudia Lubrano
- Neuromodulation Technology Research, International Clinical Research Center, St. Anne's University Hospital, Brno, Czechia
| | - Mariane de Araújo E Silva
- Neuromodulation Technology Research, International Clinical Research Center, St. Anne's University Hospital, Brno, Czechia
| | - Jan Trajlínek
- Neuromodulation Technology Research, International Clinical Research Center, St. Anne's University Hospital, Brno, Czechia
| | - Ondřej Studnička
- Neuromodulation Technology Research, International Clinical Research Center, St. Anne's University Hospital, Brno, Czechia
| | - Pavel Daniel
- Brain and Mind Research Program, Central European Institute of Technology, Masaryk University, Brno, Czechia
- First Department of Neurology, Masaryk University School of Medicine, St. Anne's Hospital, Brno, Czechia
| | - Romain Carron
- Institut de Neurosciences des Systèmes, Aix-Marseille University and INSERM, Marseille, France
- Medico-Surgical Unit Epileptology, Functional and Stereotactic Neurosurgery, Timone University Hospital, Marseille, France
| | - Viktor Jirsa
- Institut de Neurosciences des Systèmes, Aix-Marseille University and INSERM, Marseille, France
| | - Jan Chrastina
- Department of Neurosurgery, Masaryk University School of Medicine, St. Anne's Hospital, Brno, Czechia
| | - Radim Jančálek
- Department of Neurosurgery, Masaryk University School of Medicine, St. Anne's Hospital, Brno, Czechia
| | - Eric Daniel Glowacki
- Bioelectronics Materials and Devices, Central European Institute of Technology, Brno University of Technology, Brno, Czechia
| | - Antonino Cassara
- Foundation for Research on Information Technologies in Society, Zurich, Switzerland
| | - Esra Neufeld
- Foundation for Research on Information Technologies in Society, Zurich, Switzerland
| | - Irena Rektorová
- Brain and Mind Research Program, Central European Institute of Technology, Masaryk University, Brno, Czechia
- First Department of Neurology, Masaryk University School of Medicine, St. Anne's Hospital, Brno, Czechia
| | - Adam Williamson
- Neuromodulation Technology Research, International Clinical Research Center, St. Anne's University Hospital, Brno, Czechia
| |
Collapse
|
3
|
Mattera A, Alfieri V, Granato G, Baldassarre G. Chaotic recurrent neural networks for brain modelling: A review. Neural Netw 2025; 184:107079. [PMID: 39756119 DOI: 10.1016/j.neunet.2024.107079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 11/25/2024] [Accepted: 12/19/2024] [Indexed: 01/07/2025]
Abstract
Even in the absence of external stimuli, the brain is spontaneously active. Indeed, most cortical activity is internally generated by recurrence. Both theoretical and experimental studies suggest that chaotic dynamics characterize this spontaneous activity. While the precise function of brain chaotic activity is still puzzling, we know that chaos confers many advantages. From a computational perspective, chaos enhances the complexity of network dynamics. From a behavioural point of view, chaotic activity could generate the variability required for exploration. Furthermore, information storage and transfer are maximized at the critical border between order and chaos. Despite these benefits, many computational brain models avoid incorporating spontaneous chaotic activity due to the challenges it poses for learning algorithms. In recent years, however, multiple approaches have been proposed to overcome this limitation. As a result, many different algorithms have been developed, initially within the reservoir computing paradigm. Over time, the field has evolved to increase the biological plausibility and performance of the algorithms, sometimes going beyond the reservoir computing framework. In this review article, we examine the computational benefits of chaos and the unique properties of chaotic recurrent neural networks, with a particular focus on those typically utilized in reservoir computing. We also provide a detailed analysis of the algorithms designed to train chaotic RNNs, tracing their historical evolution and highlighting key milestones in their development. Finally, we explore the applications and limitations of chaotic RNNs for brain modelling, consider their potential broader impacts beyond neuroscience, and outline promising directions for future research.
Collapse
Affiliation(s)
- Andrea Mattera
- Institute of Cognitive Sciences and Technology, National Research Council, Via Romagnosi 18a, I-00196, Rome, Italy.
| | - Valerio Alfieri
- Institute of Cognitive Sciences and Technology, National Research Council, Via Romagnosi 18a, I-00196, Rome, Italy; International School of Advanced Studies, Center for Neuroscience, University of Camerino, Via Gentile III Da Varano, 62032, Camerino, Italy
| | - Giovanni Granato
- Institute of Cognitive Sciences and Technology, National Research Council, Via Romagnosi 18a, I-00196, Rome, Italy
| | - Gianluca Baldassarre
- Institute of Cognitive Sciences and Technology, National Research Council, Via Romagnosi 18a, I-00196, Rome, Italy
| |
Collapse
|
4
|
Cheng Z, Li Q, Zou X, Zhong Z, Ouyang Q, Gan C, Yi F, Luo Y, Mao Y, Yao D. Cyclic Alternating Pattern of EEG Activities and Heart Rate Variability in Parkinson's Disease Patients during Deep Sleep. J Integr Neurosci 2025; 24:26397. [PMID: 40152575 DOI: 10.31083/jin26397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 12/22/2024] [Accepted: 12/25/2024] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND Sleep disturbance and autonomic dysfunction are often found in Parkinson's disease (PD) patients, but little is known about changes in cyclic alternating patterns (CAPs) of electroencephalographic (EEG) activities and heart rate variability (HRV) during deep sleep in PD patients. OBJECTIVES To investigate changes in EEG activities and HRV during CAPs and non-CAPs (NCAPs) of N3 sleep in PD patients. METHODS Polysomnographic (PSG) examinations were carried out on 18 PD patients and 18 healthy controls, and power spectral analysis of EEG activities and HRV during CAPs and NCAPs (the segment of sleep without CAPs for more than 60 seconds) of N3 sleep were carried out. RESULTS The percentages of N3 sleep with CAPs and CAP A1, as well as the CAP A1 index in the PD patients, were significantly smaller compared with the healthy controls. In addition, the power of α waves in NCAPs was significantly higher, while the powers of δ waves in Phase A and B of CAP A1 and A3, and NCAPs were significantly smaller. Furthermore, the durations of total δ waves and δ waves with an amplitude ≥75 μV were significantly shorter, and the low frequency (LF) power of HRV during CAPs and the LF/high frequency (HF) HRV ratio during both CAPs and NCAPs were significantly smaller. CONCLUSIONS The changes documented in EEG activities and HRV in PD patients during CAPs and NCAPs of N3 sleep compared with healthy controls suggest that N3 sleep quality and sympathetic function are compromised in PD patients.
Collapse
Affiliation(s)
- Zilin Cheng
- Neurological Institute of Jiangxi Province and Department of Neurology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, and Xiangya Hospital of Central South University at Jiangxi, 330038 Nanchang, Jiangxi, China
- Queen Mary College, Nanchang University, 330031 Nanchang, Jiangxi, China
| | - Qi Li
- Neurological Institute of Jiangxi Province and Department of Neurology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, and Xiangya Hospital of Central South University at Jiangxi, 330038 Nanchang, Jiangxi, China
| | - Xueliang Zou
- Department of Psychology, Jiangxi Mental Hospital, Nanchang University, 330029 Nanchang, Jiangxi, China
| | - Zhijun Zhong
- Neurological Institute of Jiangxi Province and Department of Neurology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, and Xiangya Hospital of Central South University at Jiangxi, 330038 Nanchang, Jiangxi, China
| | - Qian Ouyang
- Neurological Institute of Jiangxi Province and Department of Neurology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, and Xiangya Hospital of Central South University at Jiangxi, 330038 Nanchang, Jiangxi, China
| | - Chunmei Gan
- Neurological Institute of Jiangxi Province and Department of Neurology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, and Xiangya Hospital of Central South University at Jiangxi, 330038 Nanchang, Jiangxi, China
| | - Fang Yi
- Neurological Institute of Jiangxi Province and Department of Neurology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, and Xiangya Hospital of Central South University at Jiangxi, 330038 Nanchang, Jiangxi, China
| | - Yaxing Luo
- Neurological Institute of Jiangxi Province and Department of Neurology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, and Xiangya Hospital of Central South University at Jiangxi, 330038 Nanchang, Jiangxi, China
| | - Yuhao Mao
- Neurological Institute of Jiangxi Province and Department of Neurology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, and Xiangya Hospital of Central South University at Jiangxi, 330038 Nanchang, Jiangxi, China
- Queen Mary College, Nanchang University, 330031 Nanchang, Jiangxi, China
| | - Dongyuan Yao
- Neurological Institute of Jiangxi Province and Department of Neurology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, and Xiangya Hospital of Central South University at Jiangxi, 330038 Nanchang, Jiangxi, China
| |
Collapse
|
5
|
Nucci L, Miraglia F, Pappalettera C, Rossini PM, Vecchio F. Exploring the complexity of EEG patterns in Parkinson's disease. GeroScience 2025; 47:837-849. [PMID: 38997574 PMCID: PMC11872966 DOI: 10.1007/s11357-024-01277-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 07/02/2024] [Indexed: 07/14/2024] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder primarily associated with motor dysfunctions. By the time of definitive diagnosis, about 60% of dopaminergic neurons have already been lost; moreover, even if dopaminergic drugs are highly effective in symptoms control, they only help maintaining a near-healthy condition when started as soon as possible. Therefore, interest in identifying early biomarkers of PD has grown in recent years, especially using neurophysiological techniques such as electroencephalography (EEG). This study aims to investigate brain complexity differences in PD patients compared to healthy controls, focusing on the beta band using approximate entropy (ApEn) analysis of resting-state EEG recordings. Sixty participants were recruited, including 25 PD patients and 35 healthy elderly subjects, matched for age and gender. EEG were recorded for each participant and ApEn values were computed in the beta 1 (13-20 Hz) and beta 2 (20-30 Hz) frequency bands for each EEG-channel and for ROIs. PD patients showed statistically lower ApEn values compared to controls in both beta 1 and beta 2 bands. Regarding electrodes analysis, beta 1 band alterations were found in frontocentral areas, while beta 2 band alterations were observed in centroparietal and frontocentral areas. Considering ROIs, statistically lower ApEn values for PD patients has been reported in central and parietal ROIs in the beta 2 band. Complexity reduction in these areas may underlie beta oscillatory activity dysfunction, reflecting impaired cortical mechanisms associated with motor dysfunction in PD. The results suggest that ApEn analysis of resting EEG activity may serve as a potential tool for early PD detection. Further studies are necessary to validate this approach in PD diagnosis and rehabilitation planning.
Collapse
Affiliation(s)
- Lorenzo Nucci
- Brain Connectivity Laboratory, Department of Neuroscience and Neurorehabilitation, IRCCS San Raffaele Roma, Rome, 00166, Italy
| | - Francesca Miraglia
- Brain Connectivity Laboratory, Department of Neuroscience and Neurorehabilitation, IRCCS San Raffaele Roma, Rome, 00166, Italy.
- Department of Theoretical and Applied Sciences, eCampus University, Novedrate, Como, Italy.
| | - Chiara Pappalettera
- Brain Connectivity Laboratory, Department of Neuroscience and Neurorehabilitation, IRCCS San Raffaele Roma, Rome, 00166, Italy
- Department of Theoretical and Applied Sciences, eCampus University, Novedrate, Como, Italy
| | - Paolo Maria Rossini
- Brain Connectivity Laboratory, Department of Neuroscience and Neurorehabilitation, IRCCS San Raffaele Roma, Rome, 00166, Italy
| | - Fabrizio Vecchio
- Brain Connectivity Laboratory, Department of Neuroscience and Neurorehabilitation, IRCCS San Raffaele Roma, Rome, 00166, Italy
- Department of Theoretical and Applied Sciences, eCampus University, Novedrate, Como, Italy
| |
Collapse
|
6
|
Výtvarová E, Lamoš M, Hlinka J, Goldemundová S, Rektor I, Bočková M. Revealing connectivity patterns of deep brain stimulation efficacy in Parkinson's disease. Sci Rep 2024; 14:31652. [PMID: 39738347 PMCID: PMC11686061 DOI: 10.1038/s41598-024-80630-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 11/21/2024] [Indexed: 01/02/2025] Open
Abstract
The aim of this work was to study the effect of deep brain stimulation of the subthalamic nucleus (STN-DBS) on the subnetwork of subcortical and cortical motor regions and on the whole brain connectivity using the functional connectivity analysis in Parkinson's disease (PD). The high-density source space EEG was acquired and analyzed in 43 PD subjects in DBS on and DBS off stimulation states (off medication) during a cognitive-motor task. Increased high gamma band (50-100 Hz) connectivity within subcortical regions and between subcortical and cortical motor regions was significantly associated with the Movement Disorders Society - Unified Parkinson's Disease Rating Scale (MDS-UPDRS) III improvement after DBS. Whole brain neural correlates of cognitive performance were also detected in the high gamma (50-100 Hz) band. A whole brain multifrequency connectivity profile was found to classify optimal and suboptimal responders to DBS with a positive predictive value of 0.77, negative predictive value of 0.55, specificity of 0.73, and sensitivity of 0.60. Specific connectivity patterns related to PD, motor symptoms improvement after DBS, and therapy responsiveness predictive connectivity profiles were uncovered.
Collapse
Affiliation(s)
- Eva Výtvarová
- Brain and Mind Research Program, Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
- Faculty of Informatics, Masaryk University, Brno, Czech Republic
| | - Martin Lamoš
- Brain and Mind Research Program, Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
- First Department of Neurology, Masaryk University School of Medicine, St. Anne's Hospital, Brno, Czech Republic
| | - Jaroslav Hlinka
- Department of Complex Systems, Institute of Computer Science, Czech Academy of Sciences, Prague, Czech Republic
- National Institute of Mental Health, Klecany, Czech Republic
| | - Sabina Goldemundová
- Brain and Mind Research Program, Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
| | - Ivan Rektor
- Brain and Mind Research Program, Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
- First Department of Neurology, Masaryk University School of Medicine, St. Anne's Hospital, Brno, Czech Republic
| | - Martina Bočková
- Brain and Mind Research Program, Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic.
- First Department of Neurology, Masaryk University School of Medicine, St. Anne's Hospital, Brno, Czech Republic.
| |
Collapse
|
7
|
Saengphatrachai W, Jimenez-Shahed J. Current and future applications of local field potential-guided programming for Parkinson's disease with the Percept™ rechargeable neurostimulator. Neurodegener Dis Manag 2024; 14:131-147. [PMID: 39344591 PMCID: PMC11524207 DOI: 10.1080/17582024.2024.2404386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 09/11/2024] [Indexed: 10/01/2024] Open
Abstract
Deep brain stimulation (DBS) has been established as an effective neuromodulatory treatment for Parkinson's disease (PD) with motor complications or refractory tremor. Various DBS devices with unique technology platforms are commercially available and deliver continuous, open-loop stimulation. The Percept™ family of neurostimulators use BrainSense™ technology with five key features to sense local field potentials while stimulating, enabling integration of physiologic data into the routine practice of DBS programming. The newly approved Percept™ rechargeable RC implantable pulse generator offers a smaller, thinner design and reduced recharge time with prolonged recharge interval. In this review, we describe the application of local field potential sensing-based programming in PD and highlight the potential future clinical implementation of closed-loop stimulation using the Percept™ RC implantable pulse generator.
Collapse
Affiliation(s)
- Weerawat Saengphatrachai
- Icahn School of Medicine at Mount Sinai, Mount Sinai West, 1000 10 Avenue, Suite 10C, New York, NY10019, USA
- Division of Neurology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Bangkok, Thailand
| | - Joohi Jimenez-Shahed
- Icahn School of Medicine at Mount Sinai, Mount Sinai West, 1000 10 Avenue, Suite 10C, New York, NY10019, USA
| |
Collapse
|
8
|
Stanslaski S, Summers RLS, Tonder L, Tan Y, Case M, Raike RS, Morelli N, Herrington TM, Beudel M, Ostrem JL, Little S, Almeida L, Ramirez-Zamora A, Fasano A, Hassell T, Mitchell KT, Moro E, Gostkowski M, Sarangmat N, Bronte-Stewart H. Sensing data and methodology from the Adaptive DBS Algorithm for Personalized Therapy in Parkinson's Disease (ADAPT-PD) clinical trial. NPJ Parkinsons Dis 2024; 10:174. [PMID: 39289373 PMCID: PMC11408616 DOI: 10.1038/s41531-024-00772-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 08/05/2024] [Indexed: 09/19/2024] Open
Abstract
Adaptive deep brain stimulation (aDBS) is an emerging advancement in DBS technology; however, local field potential (LFP) signal rate detection sufficient for aDBS algorithms and the methods to set-up aDBS have yet to be defined. Here we summarize sensing data and aDBS programming steps associated with the ongoing Adaptive DBS Algorithm for Personalized Therapy in Parkinson's Disease (ADAPT-PD) pivotal trial (NCT04547712). Sixty-eight patients were enrolled with either subthalamic nucleus or globus pallidus internus DBS leads connected to a Medtronic PerceptTM PC neurostimulator. During the enrollment and screening procedures, a LFP (8-30 Hz, ≥1.2 µVp) control signal was identified by clinicians in 84.8% of patients on medication (65% bilateral signal), and in 92% of patients off medication (78% bilateral signal). The ADAPT-PD trial sensing data indicate a high LFP signal presence in both on and off medication states of these patients, with bilateral signal in the majority, regardless of PD phenotype.
Collapse
Affiliation(s)
- Scott Stanslaski
- Medtronic Neuromodulation, Medtronic, Minneapolis, Minnesota, USA.
| | | | - Lisa Tonder
- Medtronic Neuromodulation, Medtronic, Minneapolis, Minnesota, USA
| | - Ye Tan
- Medtronic Neuromodulation, Medtronic, Minneapolis, Minnesota, USA
| | - Michelle Case
- Medtronic Neuromodulation, Medtronic, Minneapolis, Minnesota, USA
| | - Robert S Raike
- Medtronic Neuromodulation, Medtronic, Minneapolis, Minnesota, USA
| | - Nathan Morelli
- Medtronic Neuromodulation, Medtronic, Minneapolis, Minnesota, USA
| | | | - Martijn Beudel
- Department of Neurology, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Jill L Ostrem
- Department of Neurology, University of California San Francisco, San Francisco, USA
| | - Simon Little
- Department of Neurology, University of California San Francisco, San Francisco, USA
| | - Leonardo Almeida
- Department of Neurology, University of Minnesota, Minneapolis, USA
| | - Adolfo Ramirez-Zamora
- Department of Neurology, Shands at University of Florida, University of Florida, Gainesville, USA
| | - Alfonso Fasano
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, UHN, University of Toronto, Toronto, ON, Canada
- Krembil Brain Institute, University of Toronto, Toronto, ON, Canada
| | - Travis Hassell
- Department of Neurology, Vanderbilt University Medical Center, Nashville, USA
| | - Kyle T Mitchell
- Duke University Movement Disorders Center, Duke University, Durham, USA
| | - Elena Moro
- Grenoble Alpes University, Division of Neurology, Grenoble Institute of Neuroscience, CHU of Grenoble, Grenoble, France
| | - Michal Gostkowski
- Center for Neurological Restoration, Cleveland Clinic Foundation, Cleveland, USA
| | | | - Helen Bronte-Stewart
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, USA
| |
Collapse
|
9
|
Kostoglou K, Michmizos KP, Stathis P, Sakas D, Nikita KS, Mitsis GD. Spiking Laguerre Volterra networks-predicting neuronal activity from local field potentials. J Neural Eng 2024; 21:046030. [PMID: 39029490 DOI: 10.1088/1741-2552/ad6594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 07/19/2024] [Indexed: 07/21/2024]
Abstract
Objective.Understanding the generative mechanism between local field potentials (LFP) and neuronal spiking activity is a crucial step for understanding information processing in the brain. Up to now, most approaches have relied on simply quantifying the coupling between LFP and spikes. However, very few have managed to predict the exact timing of spike occurrence based on LFP variations.Approach.Here, we fill this gap by proposing novel spiking Laguerre-Volterra network (sLVN) models to describe the dynamic LFP-spike relationship. Compared to conventional artificial neural networks, the sLVNs are interpretable models that provide explainable features of the underlying dynamics.Main results.The proposed networks were applied on extracellular microelectrode recordings of Parkinson's Disease patients during deep brain stimulation (DBS) surgery. Based on the predictability of the LFP-spike pairs, we detected three neuronal populations with unique signal characteristics and sLVN model features.Significance.These clusters were indirectly associated with motor score improvement following DBS surgery, warranting further investigation into the potential of spiking activity predictability as an intraoperative biomarker for optimal DBS lead placement.
Collapse
Affiliation(s)
- Kyriaki Kostoglou
- Institute of Neural Engineering, Graz University of Technology, Graz, Austria
- Department of Electrical and Computer Engineering, McGill University, Montreal, Canada
| | | | - Pantelis Stathis
- Department of Neurosurgery, National and Kapodistrian University of Athens, Athens, Greece
| | - Damianos Sakas
- Department of Neurosurgery, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantina S Nikita
- School of Electrical and Computer Engineering, National Technical University of Athens, Athens, Greece
| | | |
Collapse
|
10
|
Fang Z, Sack AT, Leunissen I. The phase of tACS-entrained pre-SMA beta oscillations modulates motor inhibition. Neuroimage 2024; 290:120572. [PMID: 38490584 DOI: 10.1016/j.neuroimage.2024.120572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 03/06/2024] [Accepted: 03/08/2024] [Indexed: 03/17/2024] Open
Abstract
Inhibitory control has been linked to beta oscillations in the fronto-basal ganglia network. Here we aim to investigate the functional role of the phase of this oscillatory beta rhythm for successful motor inhibition. We applied 20 Hz transcranial alternating current stimulation (tACS) to the pre-supplementary motor area (pre-SMA) while presenting stop signals at 4 (Experiment 1) and 8 (Experiment 2) equidistant phases of the tACS entrained beta oscillations. Participants showed better inhibitory performance when stop signals were presented at the trough of the beta oscillation whereas their inhibitory control performance decreased with stop signals being presented at the oscillatory beta peak. These results are consistent with the communication through coherence theory, in which postsynaptic effects are thought to be greater when an input arrives at an optimal phase within the oscillatory cycle of the target neuronal population. The current study provides mechanistic insights into the neural communication principles underlying successful motor inhibition and may have implications for phase-specific interventions aimed at treating inhibitory control disorders such as PD or OCD.
Collapse
Affiliation(s)
- Zhou Fang
- Section Brain Stimulation and Cognition, Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands; Maastricht Brain Imaging Centre (MBIC), Maastricht University, Oxfordlaan 55, 6229EV, Maastricht, The Netherlands
| | - Alexander T Sack
- Section Brain Stimulation and Cognition, Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands; Maastricht Brain Imaging Centre (MBIC), Maastricht University, Oxfordlaan 55, 6229EV, Maastricht, The Netherlands; Centre for Integrative Neuroscience, Faculty of Psychology and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| | - Inge Leunissen
- Section Brain Stimulation and Cognition, Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands; Maastricht Brain Imaging Centre (MBIC), Maastricht University, Oxfordlaan 55, 6229EV, Maastricht, The Netherlands.
| |
Collapse
|
11
|
Bočková M, Lamoš M, Chrastina J, Daniel P, Kupcová S, Říha I, Šmahovská L, Baláž M, Rektor I. Coupling between beta band and high frequency oscillations as a clinically useful biomarker for DBS. NPJ Parkinsons Dis 2024; 10:40. [PMID: 38383550 PMCID: PMC10882016 DOI: 10.1038/s41531-024-00656-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 02/07/2024] [Indexed: 02/23/2024] Open
Abstract
Beta hypersynchrony was recently introduced into clinical practice in Parkinson's disease (PD) to identify the best stimulation contacts and for adaptive deep brain stimulation (aDBS) sensing. However, many other oscillopathies accompany the disease, and beta power sensing may not be optimal for all patients. The aim of this work was to study the potential clinical usefulness of beta power phase-amplitude coupling (PAC) with high frequency oscillations (HFOs). Subthalamic nucleus (STN) local field potentials (LFPs) from externalized DBS electrodes were recorded and analyzed in PD patients (n = 19). Beta power and HFOs were evaluated in a resting-state condition; PAC was then studied and compared with the electrode contact positions, structural connectivity, and medication state. Beta-HFO PAC (mainly in the 200-500 Hz range) was observed in all subjects. PAC was detectable more specifically in the motor part of the STN compared to beta power and HFOs. Moreover, the presence of PAC better corresponds to the stimulation setup based on the clinical effect. PAC is also sensitive to the laterality of symptoms and dopaminergic therapy, where the greater PAC cluster reflects the more affected side and medication "off" state. Coupling between beta power and HFOs is known to be a correlate of the PD "off" state. Beta-HFO PAC seems to be more sensitive than beta power itself and could be more helpful in the selection of the best clinical stimulation contact and probably also as a potential future input signal for aDBS.
Collapse
Affiliation(s)
- Martina Bočková
- Brain and Mind Research Program, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- First Department of Neurology, Masaryk University School of Medicine, St. Anne's Hospital, Brno, Czech Republic
| | - Martin Lamoš
- Brain and Mind Research Program, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Jan Chrastina
- Department of Neurosurgery, Masaryk University School of Medicine, St. Anne's Hospital, Brno, Czech Republic
| | - Pavel Daniel
- Brain and Mind Research Program, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- First Department of Neurology, Masaryk University School of Medicine, St. Anne's Hospital, Brno, Czech Republic
| | - Silvia Kupcová
- Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Ivo Říha
- Department of Neurosurgery, Masaryk University School of Medicine, St. Anne's Hospital, Brno, Czech Republic
| | - Lucia Šmahovská
- First Department of Neurology, Masaryk University School of Medicine, St. Anne's Hospital, Brno, Czech Republic
- Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Marek Baláž
- Brain and Mind Research Program, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- First Department of Neurology, Masaryk University School of Medicine, St. Anne's Hospital, Brno, Czech Republic
| | - Ivan Rektor
- Brain and Mind Research Program, Central European Institute of Technology, Masaryk University, Brno, Czech Republic.
- First Department of Neurology, Masaryk University School of Medicine, St. Anne's Hospital, Brno, Czech Republic.
| |
Collapse
|
12
|
O'Keeffe AB, Merla A, Ashkan K. Deep brain stimulation of the subthalamic nucleus in Parkinson disease 2013-2023: where are we a further 10 years on? Br J Neurosurg 2024:1-9. [PMID: 38323603 DOI: 10.1080/02688697.2024.2311128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 01/23/2024] [Indexed: 02/08/2024]
Abstract
Deep brain stimulation has been in clinical use for 30 years and during that time it has changed markedly from a small-scale treatment employed by only a few highly specialized centers into a widespread keystone approach to the management of disorders such as Parkinson's disease. In the intervening decades, many of the broad principles of deep brain stimulation have remained unchanged, that of electrode insertion into stereotactically targeted brain nuclei, however the underlying technology and understanding around the approach have progressed markedly. Some of the most significant advances have taken place over the last decade with the advent of artificial intelligence, directional electrodes, stimulation/recording implantable pulse generators and the potential for remote programming among many other innovations. New therapeutic targets are being assessed for their potential benefits and a surge in the number of deep brain stimulation implantations has given birth to a flourishing scientific literature surrounding the pathophysiology of brain disorders such as Parkinson's disease. Here we outline the developments of the last decade and look to the future of deep brain stimulation to attempt to discern some of the most promising lines of inquiry in this fast-paced and rapidly evolving field.
Collapse
Affiliation(s)
| | - Anca Merla
- King's College Hospital Department of Neurosurgery, Kings College Hospital, Denmark
| | - Keyoumars Ashkan
- King's College Hospital Department of Neurosurgery, Kings College Hospital, Denmark
| |
Collapse
|
13
|
Gimenez-Aparisi G, Guijarro-Estelles E, Chornet-Lurbe A, Ballesta-Martinez S, Pardo-Hernandez M, Ye-Lin Y. Early detection of Parkinson's disease: Systematic analysis of the influence of the eyes on quantitative biomarkers in resting state electroencephalography. Heliyon 2023; 9:e20625. [PMID: 37829809 PMCID: PMC10565694 DOI: 10.1016/j.heliyon.2023.e20625] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 07/24/2023] [Accepted: 10/02/2023] [Indexed: 10/14/2023] Open
Abstract
While resting state electroencephalography (EEG) provides relevant information on pathological changes in Parkinson's disease, most studies focus on the eyes-closed EEG biomarkers. Recent evidence has shown that both eyes-open EEG and reactivity to eyes-opening can also differentiate Parkinson's disease from healthy aging, but no consensus has been reached on a discriminatory capability benchmark. The aim of this study was to determine the resting-state EEG biomarkers suitable for real-time application that can differentiate Parkinson's patients from healthy subjects under both eyes closed and open. For this, we analysed and compared the quantitative EEG analyses of 13 early-stage cognitively normal Parkinson's patients with an age and sex-matched healthy group. We found that Parkinson's disease exhibited abnormal excessive theta activity in eyes-closed, which was reflected by a significantly higher relative theta power, a higher time percentage with a frequency peak in the theta band and a reduced alpha/theta ratio, while Parkinson's patients showed a significantly steeper non-oscillatory spectral slope activity than that of healthy subjects. We also found considerably less alpha and beta reactivity to eyes-opening in Parkinson's disease plus a significant moderate correlation between these EEG-biomarkers and the MDS-UPDRS score, used to assesses the clinical symptoms of Parkinson's Disease. Both EEG recordings with the eyes open and reactivity to eyes-opening provided additional information to the eyes-closed condition. We thus strongly recommend that both eyes open and closed be used in clinical practice recording protocols to promote EEG as a complementary non-invasive screening method for the early detection of Parkinson's disease, which would allow clinicians to design patient-oriented treatment and improve the patient's quality of life.
Collapse
Affiliation(s)
- G. Gimenez-Aparisi
- Centro de Investigación e Innovación en Bioingeniería, Universitat Politècnica de València, 46022, València, Spain
| | - E. Guijarro-Estelles
- Centro de Investigación e Innovación en Bioingeniería, Universitat Politècnica de València, 46022, València, Spain
| | - A. Chornet-Lurbe
- Servicio de Neurofisiología Clínica, Hospital Lluís Alcanyís, departamento de salud Xàtiva-Ontinyent, 46800, Xàtiva, València, Spain
| | - S. Ballesta-Martinez
- Servicio de Neurofisiología Clínica, Hospital Lluís Alcanyís, departamento de salud Xàtiva-Ontinyent, 46800, Xàtiva, València, Spain
| | - M. Pardo-Hernandez
- Servicio de Neurofisiología Clínica, Hospital Lluís Alcanyís, departamento de salud Xàtiva-Ontinyent, 46800, Xàtiva, València, Spain
| | - Y. Ye-Lin
- Centro de Investigación e Innovación en Bioingeniería, Universitat Politècnica de València, 46022, València, Spain
| |
Collapse
|
14
|
A systematic review of local field potential physiomarkers in Parkinson's disease: from clinical correlations to adaptive deep brain stimulation algorithms. J Neurol 2023; 270:1162-1177. [PMID: 36209243 PMCID: PMC9886603 DOI: 10.1007/s00415-022-11388-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/16/2022] [Indexed: 02/03/2023]
Abstract
Deep brain stimulation (DBS) treatment has proven effective in suppressing symptoms of rigidity, bradykinesia, and tremor in Parkinson's disease. Still, patients may suffer from disabling fluctuations in motor and non-motor symptom severity during the day. Conventional DBS treatment consists of continuous stimulation but can potentially be further optimised by adapting stimulation settings to the presence or absence of symptoms through closed-loop control. This critically relies on the use of 'physiomarkers' extracted from (neuro)physiological signals. Ideal physiomarkers for adaptive DBS (aDBS) are indicative of symptom severity, detectable in every patient, and technically suitable for implementation. In the last decades, much effort has been put into the detection of local field potential (LFP) physiomarkers and in their use in clinical practice. We conducted a research synthesis of the correlations that have been reported between LFP signal features and one or more specific PD motor symptoms. Features based on the spectral beta band (~ 13 to 30 Hz) explained ~ 17% of individual variability in bradykinesia and rigidity symptom severity. Limitations of beta band oscillations as physiomarker are discussed, and strategies for further improvement of aDBS are explored.
Collapse
|
15
|
Zakaria Z, Idris Z, Abdul Halim S, Ghani ARI, Abdullah JM. Subthalamic Nucleus (STN)-Deep Brain Stimulation Reduces the Power of Mu and Beta Rhythms and Enhances Synchrony at the Motor Cortices in Parkinson's Disease: A Report of Two Cases. Cureus 2023; 15:e35057. [PMID: 36942168 PMCID: PMC10024512 DOI: 10.7759/cureus.35057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2023] [Indexed: 02/18/2023] Open
Abstract
The motor circuit in Parkinson's disease (PD) involves the basal ganglia, thalamus, motor cortex, and cerebellum. Hence, subthalamic nucleus (STN) or globus pallidus internus deep brain stimulation is commonly used in treating refractory Parkinson's patients. During the procedure, the local field potential (LPF) is commonly made along the trajectory of the STN. Two cases were assessed, where an electroencephalographic recording at the sensorimotor cortices was also performed with and without stimulation at the optimal STN electrode site. The 'on' stimulation state associated with clinical improvement correlated with a marked reduction in the late theta (7.5 Hz), alpha (10.5 Hz) (Mu wave), and beta (20 Hz) wave power. Besides, more synchronized and coherent brainwaves were noted when the stimulation was 'on'.
Collapse
Affiliation(s)
- Zaitun Zakaria
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia (USM), Kota Bharu, MYS
| | - Zamzuri Idris
- Department of Neurosciences, School of Medical Sciences, Hospital Universiti Sains Malaysia (HUSM), Kota Bharu, MYS
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia (USM), Kota Bharu, MYS
| | - Sanihah Abdul Halim
- Department of Medicine, School of Medical Sciences, Universiti Sains Malaysia (USM) Kubang Kerian, Kota Bharu, MYS
| | - Abdul Rahman Izaini Ghani
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia (USM) Kubang Kerian, Kota Bharu, MYS
| | - Jafri M Abdullah
- Department of Neurosurgery, Universiti Sains Malaysia (USM) Health Campus, Kota Bharu, MYS
| |
Collapse
|
16
|
Association between Beta Oscillations from Subthalamic Nucleus and Quantitative Susceptibility Mapping in Deep Gray Matter Structures in Parkinson's Disease. Brain Sci 2023; 13:brainsci13010081. [PMID: 36672062 PMCID: PMC9857066 DOI: 10.3390/brainsci13010081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/15/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
This study aimed to investigate the association between beta oscillations and brain iron deposition. Beta oscillations were filtered from the microelectrode recordings of local field potentials (LFP) in the subthalamic nucleus (STN), and the ratio of the power spectral density of beta oscillations (PSDXb) to that of the LFP signals was calculated. Iron deposition in the deep gray matter (DGM) structures was indirectly assessed using quantitative susceptibility mapping (QSM). The Unified Parkinson's Disease Rating Scale (UPDRS), part III, was used to assess the severity of symptoms. Spearman correlation coefficients were applied to assess the associations of PSDXb with QSM values in the DGM structures and the severity of symptoms. PSDXb showed a significant positive correlation with the average QSM values in DGM structures, including caudate and substantia nigra (SN) (p = 0.008 and 0.044). Similarly, the PSDXb showed significant negative correlations with the severity of symptoms, including axial symptoms and the gait in the medicine-off state (p = 0.006 for both). The abnormal iron metabolism in the SN and striatum pathways may be one of the underlying mechanisms for the occurrence of abnormal beta oscillations in the STN, and beta oscillations may serve as important pathophysiological biomarkers of PD.
Collapse
|
17
|
Amplitude and frequency modulation of subthalamic beta oscillations jointly encode the dopaminergic state in Parkinson's disease. NPJ Parkinsons Dis 2022; 8:131. [PMID: 36241667 PMCID: PMC9568523 DOI: 10.1038/s41531-022-00399-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 09/22/2022] [Indexed: 11/13/2022] Open
Abstract
Brain states in health and disease are classically defined by the power or the spontaneous amplitude modulation (AM) of neuronal oscillations in specific frequency bands. Conversely, the possible role of the spontaneous frequency modulation (FM) in defining pathophysiological brain states remains unclear. As a paradigmatic example of pathophysiological resting states, here we assessed the spontaneous AM and FM dynamics of subthalamic beta oscillations recorded in patients with Parkinson's disease before and after levodopa administration. Even though AM and FM are mathematically independent, they displayed negatively correlated dynamics. First, AM decreased while FM increased with levodopa. Second, instantaneous amplitude and instantaneous frequency were negatively cross-correlated within dopaminergic states, with FM following AM by approximately one beta cycle. Third, AM and FM changes were also negatively correlated between dopaminergic states. Both the slow component of the FM and the fast component (i.e. the phase slips) increased after levodopa, but they differently contributed to the AM-FM correlations within and between states. Finally, AM and FM provided information about whether the patients were OFF vs. ON levodopa, with partial redundancy and with FM being more informative than AM. AM and FM of spontaneous beta oscillations can thus both separately and jointly encode the dopaminergic state in patients with Parkinson's disease. These results suggest that resting brain states are defined not only by AM dynamics but also, and possibly more prominently, by FM dynamics of neuronal oscillations.
Collapse
|
18
|
Maria Pani S, Saba L, Fraschini M. Clinical applications of EEG power spectra aperiodic component analysis: a mini-review. Clin Neurophysiol 2022; 143:1-13. [DOI: 10.1016/j.clinph.2022.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 11/03/2022]
|
19
|
Weber I, Oehrn CR. NoLiTiA: An Open-Source Toolbox for Non-linear Time Series Analysis. Front Neuroinform 2022; 16:876012. [PMID: 35811996 PMCID: PMC9263366 DOI: 10.3389/fninf.2022.876012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
In many scientific fields including neuroscience, climatology or physics, complex relationships can be described most parsimoniously by non-linear mechanics. Despite their relevance, many neuroscientists still apply linear estimates in order to evaluate complex interactions. This is partially due to the lack of a comprehensive compilation of non-linear methods. Available packages mostly specialize in only one aspect of non-linear time-series analysis and most often require some coding proficiency to use. Here, we introduce NoLiTiA, a free open-source MATLAB toolbox for non-linear time series analysis. In comparison to other currently available non-linear packages, NoLiTiA offers (1) an implementation of a broad range of classic and recently developed methods, (2) an implementation of newly proposed spatially and time-resolved recurrence amplitude analysis and (3) an intuitive environment accessible even to users with little coding experience due to a graphical user interface and batch-editor. The core methodology derives from three distinct fields of complex systems theory, including dynamical systems theory, recurrence quantification analysis and information theory. Besides established methodology including estimation of dynamic invariants like Lyapunov exponents and entropy-based measures, such as active information storage, we include recent developments of quantifying time-resolved aperiodic oscillations. In general, the toolbox will make non-linear methods accessible to the broad neuroscientific community engaged in time series processing.
Collapse
Affiliation(s)
- Immo Weber
- Department of Neurology, Philipps University of Marburg, Marburg, Germany
| | - Carina R. Oehrn
- Department of Neurology, Philipps University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior, Philipps University of Marburg, Marburg, Germany
| |
Collapse
|
20
|
Lee LHN, Huang CS, Wang RW, Lai HJ, Chung CC, Yang YC, Kuo CC. Deep brain stimulation rectifies the noisy cortex and irresponsive subthalamus to improve parkinsonian locomotor activities. NPJ Parkinsons Dis 2022; 8:77. [PMID: 35725730 PMCID: PMC9209473 DOI: 10.1038/s41531-022-00343-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 05/31/2022] [Indexed: 11/10/2022] Open
Abstract
The success of deep brain stimulation (DBS) therapy indicates that Parkinson's disease is a brain rhythm disorder. However, the manifestations of the erroneous rhythms corrected by DBS remain to be established. We found that augmentation of α rhythms and α coherence between the motor cortex (MC) and the subthalamic nucleus (STN) is characteristically prokinetic and is decreased in parkinsonian rats. In multi-unit recordings, movement is normally associated with increased changes in spatiotemporal activities rather than overall spike rates in MC. In parkinsonian rats, MC shows higher spike rates at rest but less spatiotemporal activity changes upon movement, and STN burst discharges are more prevalent, longer lasting, and less responsive to MC inputs. DBS at STN rectifies the foregoing pathological MC-STN oscillations and consequently locomotor deficits, yet overstimulation may cause behavioral restlessness. These results indicate that delicate electrophysiological considerations at both cortical and subcortical levels should be exercised for optimal DBS therapy.
Collapse
Affiliation(s)
- Lan-Hsin Nancy Lee
- Department of Physiology, National Taiwan University College of Medicine, Taipei, Taiwan.,Department of Neurology, Fu Jen Catholic University Hospital, New Taipei, Taiwan.,Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | - Chen-Syuan Huang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ren-Wei Wang
- Department of Physiology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Hsing-Jung Lai
- Department of Physiology, National Taiwan University College of Medicine, Taipei, Taiwan.,Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan.,National Taiwan University Hospital, Jin-Shan Branch, New Taipei, Taiwan
| | - Chih-Ching Chung
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ya-Chin Yang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan. .,Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan. .,Neuroscience Research Center, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan. .,Department of Psychiatry, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan.
| | - Chung-Chin Kuo
- Department of Physiology, National Taiwan University College of Medicine, Taipei, Taiwan. .,Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
21
|
Sanmartino F, Cruz-Gómez ÁJ, Rashid-López R, Lozano-Soto E, López-Sosa F, Zuazo A, Riqué-Dormido J, Espinosa-Rosso R, González-Rosa JJ. Subthalamic Beta Activity in Parkinson's Disease May Be Linked to Dorsal Striatum Gray Matter Volume and Prefrontal Cortical Thickness: A Pilot Study. Front Neurol 2022; 13:799696. [PMID: 35401426 PMCID: PMC8985754 DOI: 10.3389/fneur.2022.799696] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 02/24/2022] [Indexed: 11/30/2022] Open
Abstract
Background Excessive oscillations at beta frequencies (13–35 Hz) in the subthalamic nucleus (STN) represent a pathophysiological hallmark of Parkinson's disease (PD), which correlates well with parkinsonian symptoms and is reduced in response to standard disease treatments. However, the association of disease-specific regional gray matter (GM) atrophy or cortical thickness (CT) with the presence of STN beta oscillatory activity has been poorly investigated but is of relevance given the potential of these variables for extracting information about PD pathophysiology. This exploratory study investigated the involvement of regional GM volume and CT in the basal ganglia-cortical network and its potential association with the presence of STN beta oscillatory activity in PD. Methods We acquired preoperative GM densities on T1-weighted magnetic resonance imaging scans and we carried out regional estimation of GM volume and CT. LFP activities from the STN were recorded post-operatively in 7 cognitively preserved PD patients off dopaminergic medication undergoing deep-brain stimulation surgery. Oscillatory beta power was determined by power spectral density of 4-min resting state STN LFP activity. Spearman partial correlations and regression analysis were used to screen the presence of STN beta power for their relationship with GM volume and CT measurements. Results After controlling for the effects of age, educational level, and disease duration, and after correcting for multiple testing, enhanced STN beta power showed significant and negative correlations between, first, volume of the right putamen and left caudate nucleus, and second, smaller CT in frontal regions involving the left rostral middle frontal gyrus (MFG) and left medial orbitofrontal gyrus. A lower volume in the right putamen and a lower CT in the left MFG demonstrated the strongest associations with increased STN beta power. Conclusions These tentative results seem to suggest that STN LFP beta frequencies may be mainly linked to different but ongoing parallel neurodegenerative processes, on the one hand, to GM volume reduction in dorsal striatum, and on the other hand, to CT reduction of prefrontal-“associative” regions. These findings could further delineate the brain structural interactions underpinning the exaggerated STN beta activity commonly observed in PD patients.
Collapse
Affiliation(s)
- Florencia Sanmartino
- Department of Psychology, University of Cadiz, Cádiz, Spain.,Psychophysiology and Neuroimaging Group, Institute of Biomedical Research Cadiz (INiBICA), Cádiz, Spain
| | - Álvaro J Cruz-Gómez
- Department of Psychology, University of Cadiz, Cádiz, Spain.,Psychophysiology and Neuroimaging Group, Institute of Biomedical Research Cadiz (INiBICA), Cádiz, Spain
| | - Raúl Rashid-López
- Psychophysiology and Neuroimaging Group, Institute of Biomedical Research Cadiz (INiBICA), Cádiz, Spain.,Department of Neurology, Puerta del Mar University Hospital, Cádiz, Spain
| | - Elena Lozano-Soto
- Department of Psychology, University of Cadiz, Cádiz, Spain.,Psychophysiology and Neuroimaging Group, Institute of Biomedical Research Cadiz (INiBICA), Cádiz, Spain
| | - Fernando López-Sosa
- Psychophysiology and Neuroimaging Group, Institute of Biomedical Research Cadiz (INiBICA), Cádiz, Spain
| | - Amaya Zuazo
- Department of Radiodiagnostic and Medical Imaging, Puerta del Mar University Hospital, Cádiz, Spain
| | - Jesús Riqué-Dormido
- Department of Neurosurgery, Puerta del Mar University Hospital, Cádiz, Spain
| | - Raúl Espinosa-Rosso
- Psychophysiology and Neuroimaging Group, Institute of Biomedical Research Cadiz (INiBICA), Cádiz, Spain.,Department of Neurology, Puerta del Mar University Hospital, Cádiz, Spain.,Department of Neurology, Jerez de la Frontera University Hospital, Jerez de la Frontera, Spain
| | - Javier J González-Rosa
- Department of Psychology, University of Cadiz, Cádiz, Spain.,Psychophysiology and Neuroimaging Group, Institute of Biomedical Research Cadiz (INiBICA), Cádiz, Spain
| |
Collapse
|
22
|
Foffani G, Alegre M. Brain oscillations and Parkinson disease. HANDBOOK OF CLINICAL NEUROLOGY 2022; 184:259-271. [PMID: 35034740 DOI: 10.1016/b978-0-12-819410-2.00014-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Brain oscillations have been associated with Parkinson's disease (PD) for a long time mainly due to the fundamental oscillatory nature of parkinsonian rest tremor. Over the years, this association has been extended to frequencies well above that of tremor, largely owing to the opportunities offered by deep brain stimulation (DBS) to record electrical activity directly from the patients' basal ganglia. This chapter reviews the results of research on brain oscillations in PD focusing on theta (4-7Hz), beta (13-35Hz), gamma (70-80Hz) and high-frequency oscillations (200-400Hz). For each of these oscillations, we describe localization and interaction with brain structures and between frequencies, changes due to dopamine intake, task-related modulation, and clinical relevance. The study of brain oscillations will also help to dissect the mechanisms of action of DBS. Overall, the chapter tentatively depicts PD in terms of "oscillopathy."
Collapse
Affiliation(s)
- Guglielmo Foffani
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain; Neural Bioengineering, Hospital Nacional de Parapléjicos, SESCAM, Toledo, Spain; CIBERNED, Instituto de Salud Carlos III, Madrid, Spain.
| | - Manuel Alegre
- Clinical Neurophysiology Section, Clínica Universidad de Navarra, Pamplona, Spain; Systems Neuroscience Lab, Program of Neuroscience, CIMA, Universidad de Navarra, Pamplona, Spain; IdisNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain.
| |
Collapse
|
23
|
Lin Z, Zhang C, Li D, Sun B. Preoperative Levodopa Response and Deep Brain Stimulation Effects on Motor Outcomes in Parkinson's Disease: A Systematic Review. Mov Disord Clin Pract 2021; 9:140-155. [PMID: 35146054 DOI: 10.1002/mdc3.13379] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/10/2021] [Accepted: 11/12/2021] [Indexed: 11/10/2022] Open
Affiliation(s)
- Zhengyu Lin
- Department of Neurosurgery, Ruijin Hospital Shanghai Jiao Tong University School of Medicine Shanghai China
- Center for Functional Neurosurgery Ruijin Hospital, Shanghai Jiao Tong University School of Medicine Shanghai China
- Institute of Clinical Neuroscience Ruijin Hospital LuWan Branch, Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Chencheng Zhang
- Department of Neurosurgery, Ruijin Hospital Shanghai Jiao Tong University School of Medicine Shanghai China
- Center for Functional Neurosurgery Ruijin Hospital, Shanghai Jiao Tong University School of Medicine Shanghai China
- Institute of Clinical Neuroscience Ruijin Hospital LuWan Branch, Shanghai Jiao Tong University School of Medicine Shanghai China
- Shanghai Research Center for Brain Science and Brain‐Inspired Intelligence Shanghai China
| | - Dianyou Li
- Department of Neurosurgery, Ruijin Hospital Shanghai Jiao Tong University School of Medicine Shanghai China
- Center for Functional Neurosurgery Ruijin Hospital, Shanghai Jiao Tong University School of Medicine Shanghai China
- Institute of Clinical Neuroscience Ruijin Hospital LuWan Branch, Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Bomin Sun
- Department of Neurosurgery, Ruijin Hospital Shanghai Jiao Tong University School of Medicine Shanghai China
- Center for Functional Neurosurgery Ruijin Hospital, Shanghai Jiao Tong University School of Medicine Shanghai China
- Institute of Clinical Neuroscience Ruijin Hospital LuWan Branch, Shanghai Jiao Tong University School of Medicine Shanghai China
| |
Collapse
|
24
|
Lee LHN, Huang CS, Chuang HH, Lai HJ, Yang CK, Yang YC, Kuo CC. An electrophysiological perspective on Parkinson's disease: symptomatic pathogenesis and therapeutic approaches. J Biomed Sci 2021; 28:85. [PMID: 34886870 PMCID: PMC8656091 DOI: 10.1186/s12929-021-00781-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 11/29/2021] [Indexed: 12/16/2022] Open
Abstract
Parkinson's disease (PD), or paralysis agitans, is a common neurodegenerative disease characterized by dopaminergic deprivation in the basal ganglia because of neuronal loss in the substantia nigra pars compacta. Clinically, PD apparently involves both hypokinetic (e.g. akinetic rigidity) and hyperkinetic (e.g. tremor/propulsion) symptoms. The symptomatic pathogenesis, however, has remained elusive. The recent success of deep brain stimulation (DBS) therapy applied to the subthalamic nucleus (STN) or the globus pallidus pars internus indicates that there are essential electrophysiological abnormalities in PD. Consistently, dopamine-deprived STN shows excessive burst discharges. This proves to be a central pathophysiological element causally linked to the locomotor deficits in PD, as maneuvers (such as DBS of different polarities) decreasing and increasing STN burst discharges would decrease and increase the locomotor deficits, respectively. STN bursts are not so autonomous but show a "relay" feature, requiring glutamatergic synaptic inputs from the motor cortex (MC) to develop. In PD, there is an increase in overall MC activities and the corticosubthalamic input is enhanced and contributory to excessive burst discharges in STN. The increase in MC activities may be relevant to the enhanced beta power in local field potentials (LFP) as well as the deranged motor programming at the cortical level in PD. Moreover, MC could not only drive erroneous STN bursts, but also be driven by STN discharges at specific LFP frequencies (~ 4 to 6 Hz) to produce coherent tremulous muscle contractions. In essence, PD may be viewed as a disorder with deranged rhythms in the cortico-subcortical re-entrant loops, manifestly including STN, the major component of the oscillating core, and MC, the origin of the final common descending motor pathways. The configurations of the deranged rhythms may play a determinant role in the symptomatic pathogenesis of PD, and provide insight into the mechanism underlying normal motor control. Therapeutic brain stimulation for PD and relevant disorders should be adaptively exercised with in-depth pathophysiological considerations for each individual patient, and aim at a final normalization of cortical discharge patterns for the best ameliorating effect on the locomotor and even non-motor symptoms.
Collapse
Affiliation(s)
- Lan-Hsin Nancy Lee
- Department of Physiology, National Taiwan University College of Medicine, 1 Jen-Ai Road, 1st Section, Taipei, 100, Taiwan.,Department of Neurology, Fu Jen Catholic University Hospital, New Taipei, Taiwan.,Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | - Chen-Syuan Huang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Hsiang-Hao Chuang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Hsing-Jung Lai
- Department of Physiology, National Taiwan University College of Medicine, 1 Jen-Ai Road, 1st Section, Taipei, 100, Taiwan.,Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan.,National Taiwan University Hospital, Jin-Shan Branch, New Taipei, Taiwan
| | - Cheng-Kai Yang
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, 259 Wen-Hwa 1st Road, Kwei-Shan, Taoyuan, 333, Taiwan
| | - Ya-Chin Yang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan. .,Department of Biomedical Sciences, College of Medicine, Chang Gung University, 259 Wen-Hwa 1st Road, Kwei-Shan, Taoyuan, 333, Taiwan. .,Neuroscience Research Center, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan.
| | - Chung-Chin Kuo
- Department of Physiology, National Taiwan University College of Medicine, 1 Jen-Ai Road, 1st Section, Taipei, 100, Taiwan. .,Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
25
|
di Biase L, Tinkhauser G, Martin Moraud E, Caminiti ML, Pecoraro PM, Di Lazzaro V. Adaptive, personalized closed-loop therapy for Parkinson's disease: biochemical, neurophysiological, and wearable sensing systems. Expert Rev Neurother 2021; 21:1371-1388. [PMID: 34736368 DOI: 10.1080/14737175.2021.2000392] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Motor complication management is one of the main unmet needs in Parkinson's disease patients. AREAS COVERED Among the most promising emerging approaches for handling motor complications in Parkinson's disease, adaptive deep brain stimulation strategies operating in closed-loop have emerged as pivotal to deliver sustained, near-to-physiological inputs to dysfunctional basal ganglia-cortical circuits over time. Existing sensing systems that can provide feedback signals to close the loop include biochemical-, neurophysiological- or wearable-sensors. Biochemical sensing allows to directly monitor the pharmacokinetic and pharmacodynamic of antiparkinsonian drugs and metabolites. Neurophysiological sensing relies on neurotechnologies to sense cortical or subcortical brain activity and extract real-time correlates of symptom intensity or symptom control during DBS. A more direct representation of the symptom state, particularly the phenomenological differentiation and quantification of motor symptoms, can be realized via wearable sensor technology. EXPERT OPINION Biochemical, neurophysiologic, and wearable-based biomarkers are promising technological tools that either individually or in combination could guide adaptive therapy for Parkinson's disease motor symptoms in the future.
Collapse
Affiliation(s)
- Lazzaro di Biase
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Università Campus Bio-Medico Di Roma, Rome, Italy.,Brain Innovations Lab, Università Campus Bio-Medico Di Roma, Rome, Italy
| | - Gerd Tinkhauser
- Department of Neurology, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Eduardo Martin Moraud
- Department of Clinical Neurosciences, Lausanne University Hospital (Chuv) and University of Lausanne (Unil), Lausanne, Switzerland.,Defitech Center for Interventional Neurotherapies (.neurorestore), Lausanne University Hospital and Swiss Federal Institute of Technology (Epfl), Lausanne, Switzerland
| | - Maria Letizia Caminiti
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Università Campus Bio-Medico Di Roma, Rome, Italy
| | - Pasquale Maria Pecoraro
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Università Campus Bio-Medico Di Roma, Rome, Italy
| | - Vincenzo Di Lazzaro
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Università Campus Bio-Medico Di Roma, Rome, Italy
| |
Collapse
|
26
|
Nie Y, Luo H, Li X, Geng X, Green AL, Aziz TZ, Wang S. Subthalamic dynamic neural states correlate with motor symptoms in Parkinson's Disease. Clin Neurophysiol 2021; 132:2789-2797. [PMID: 34592557 DOI: 10.1016/j.clinph.2021.07.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/23/2021] [Accepted: 07/15/2021] [Indexed: 10/20/2022]
Abstract
OBJECTIVE This study aims to discriminate the dynamic synchronization states from the subthalamic local field potentials and investigate their correlations with the motor symptoms in Parkinson's Disease (PD). METHODS The resting-state local field potentials of 10 patients with PD were recorded from the subthalamic nucleus. The dynamic neural states of multiple oscillations were discriminated and analyzed. The Spearman correlation was used to investigate the correlations between occurrence rate or duration of dynamic neural states and the severity of motor symptoms. RESULTS The proportion of long low-beta and theta synchronized state was significantly correlated with the general motor symptom and tremor, respectively. The duration of combined low/high-beta state was significantly correlated with rigidity, and the duration of combined alpha/high-beta state was significantly correlated with bradykinesia. CONCLUSIONS This study provides evidence that motor symptoms are associated with the neural states coded with multiple oscillations in PD. SIGNIFICANCE This study may advance the understanding of the neurophysiological mechanisms of the motor symptoms and provide potential biomarkers for closed-loop deep brain stimulation in PD.
Collapse
Affiliation(s)
- Yingnan Nie
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China; Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, China; MOE Frontiers Center for Brain Science, Ministry of Education, Fudan University, Shanghai, China
| | - Huichun Luo
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China; Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, China; MOE Frontiers Center for Brain Science, Ministry of Education, Fudan University, Shanghai, China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao Li
- Shanghai Engineering Research Center of AI & Robotics, Fudan University, Shanghai, China; Engineering Research Center of AI & Robotics, Ministry of Education, Fudan University, Shanghai, China
| | - Xinyi Geng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China; Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, China; MOE Frontiers Center for Brain Science, Ministry of Education, Fudan University, Shanghai, China
| | - Alexander L Green
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Tipu Z Aziz
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Shouyan Wang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China; Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, China; MOE Frontiers Center for Brain Science, Ministry of Education, Fudan University, Shanghai, China; Shanghai Engineering Research Center of AI & Robotics, Fudan University, Shanghai, China; Engineering Research Center of AI & Robotics, Ministry of Education, Fudan University, Shanghai, China.
| |
Collapse
|
27
|
Wei J, Zou Z, Li J, Zhang Y. Gamma Oscillations and Coherence Are Weaker in the Dorsomedial Subregion of STN in Parkinson's Disease. Front Neurol 2021; 12:710206. [PMID: 34557146 PMCID: PMC8453062 DOI: 10.3389/fneur.2021.710206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 07/13/2021] [Indexed: 11/24/2022] Open
Abstract
Background: Deep-brain stimulation (DBS) of the subthalamic nucleus (STN) is an effective treatment for motor symptoms of advanced Parkinson's disease (PD). Due to a lack of detailed somatotopic organization in STN, the clinically most effective part of the STN for stimulation has already become one of the hot research focuses. At present, there are some reports about topographic distribution for different depths within the STN, but few about a mediolateral topography in this area. Objective: The objective was to investigate the local field potential (LFP) distribution patterns in dorsomedial and dorsolateral subparts of STN. Methods: In total, 18 PD patients eventually enrolled in this study. The DBS electrodes were initially located on the lateral portion of dorsolateral STN. Because of internal capsule side effects presented at low threshold (below 1.5 mA), the electrode was reimplanted more medially to the dorsomedial STN. In this process, intraoperative LFPs from dorsomedial and dorsolateral STN were recorded from the inserted electrode. Both beta power and gamma power of the LFPs were calculated using the power spectral density (PSD) for each DBS contact pair. Furthermore, coherence between any two pairs of contacts was computed in the dorsomedial and dorsolateral parts of STN, respectively. Meanwhile, the Unified Parkinson's Disease Rating Scale part III (UPDRS-III) was monitored prior to surgery and at the 6-month follow-up. Results: Compared to the dorsolateral part of STN, gamma oscillations (p < 0.01) and coherence (p < 0.05) were all weaker in the dorsomedial part. However, no obvious differences in beta oscillations and coherence were observed between the two groups (p > 0.05). Moreover, it should be noted that DBS of the dorsomedial STN resulted in significant improvement in the UPDRS-III in PD patients. There was a 61.50 ± 21.30% improvement in UPDRS-III scores in Med-off/Stim-on state relative to the Med-off state at baseline (from 15.44 ± 6.84 to 43.94 ± 15.79, p < 0.01). Conclusions: The specific features of gamma activity may be used to differentiate STN subregions. Moreover, the dorsomedial part of STN might be a potential target for DBS in PD.
Collapse
Affiliation(s)
- Jing Wei
- School of Biomedical Engineering, Capital Medical University, Beijing, China
| | - Zhifan Zou
- Department of Physiology and Pathophysiology, Capital Medical University, Beijing, China
| | - Jiping Li
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yuqing Zhang
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
28
|
Formaggio E, Rubega M, Rupil J, Antonini A, Masiero S, Toffolo GM, Del Felice A. Reduced Effective Connectivity in the Motor Cortex in Parkinson's Disease. Brain Sci 2021; 11:brainsci11091200. [PMID: 34573222 PMCID: PMC8466840 DOI: 10.3390/brainsci11091200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/06/2021] [Accepted: 09/09/2021] [Indexed: 11/16/2022] Open
Abstract
Fast rhythms excess is a hallmark of Parkinson’s Disease (PD). To implement innovative, non-pharmacological, neurostimulation interventions to restore cortical-cortical interactions, we need to understand the neurophysiological mechanisms underlying these phenomena. Here, we investigated effective connectivity on source-level resting-state electroencephalography (EEG) signals in 15 PD participants and 10 healthy controls. First, we fitted multivariate auto-regressive models to the EEG source waveforms. Second, we estimated causal connections using Granger Causality, which provide information on connections’ strength and directionality. Lastly, we sought significant differences connectivity patterns between the two populations characterizing the network graph features—i.e., global efficiency and node strength. Causal brain networks in PD show overall poorer and weaker connections compared to controls quantified as a reduction of global efficiency. Motor areas appear almost isolated, with a strongly impoverished information flow particularly from parietal and occipital cortices. This striking isolation of motor areas may reflect an impaired sensory-motor integration in PD. The identification of defective nodes/edges in PD network may be a biomarker of disease and a potential target for future interventional trials.
Collapse
Affiliation(s)
- Emanuela Formaggio
- Department of Neuroscience, Section of Rehabilitation, University of Padova, Via Gustiniani 3, 35128 Padova, Italy; (E.F.); (S.M.); (A.D.F.)
| | - Maria Rubega
- Department of Neuroscience, Section of Rehabilitation, University of Padova, Via Gustiniani 3, 35128 Padova, Italy; (E.F.); (S.M.); (A.D.F.)
- Correspondence:
| | - Jessica Rupil
- Department of Information Engineering, University of Padova, Via Gradenigo 6/A, 35131 Padova, Italy; (J.R.); (G.M.T.)
| | - Angelo Antonini
- Parkinson and Movement Disorders Unit, Study Centre on Neurodegeneration (CESNE), Department of Neuroscience, University of Padova, Via Giustiniani 5, 35121 Padova, Italy;
- Padova Neuroscience Center, University of Padova, Via Orus, 35128 Padova, Italy
| | - Stefano Masiero
- Department of Neuroscience, Section of Rehabilitation, University of Padova, Via Gustiniani 3, 35128 Padova, Italy; (E.F.); (S.M.); (A.D.F.)
- Padova Neuroscience Center, University of Padova, Via Orus, 35128 Padova, Italy
| | - Gianna Maria Toffolo
- Department of Information Engineering, University of Padova, Via Gradenigo 6/A, 35131 Padova, Italy; (J.R.); (G.M.T.)
| | - Alessandra Del Felice
- Department of Neuroscience, Section of Rehabilitation, University of Padova, Via Gustiniani 3, 35128 Padova, Italy; (E.F.); (S.M.); (A.D.F.)
- Padova Neuroscience Center, University of Padova, Via Orus, 35128 Padova, Italy
| |
Collapse
|
29
|
Zhang J, Idaji MJ, Villringer A, Nikulin VV. Neuronal biomarkers of Parkinson's disease are present in healthy aging. Neuroimage 2021; 243:118512. [PMID: 34455060 DOI: 10.1016/j.neuroimage.2021.118512] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 08/23/2021] [Indexed: 10/20/2022] Open
Abstract
The prevalence of Parkinson's disease (PD) increases with aging and both processes share similar cellular mechanisms and alterations in the dopaminergic system. Yet it remains to be investigated whether aging can also demonstrate electrophysiological neuronal signatures typically associated with PD. Previous work has shown that phase-amplitude coupling (PAC) between the phase of beta oscillations and the amplitude of gamma oscillations as well as beta bursts features can serve as electrophysiological biomarkers for PD. Here we hypothesize that these metrics are also present in apparently healthy elderly subjects. Using resting state multichannel EEG measurements, we show that PAC between beta oscillation and broadband gamma activity (50-150 Hz) is elevated in a group of elderly (59-77 years) compared to young volunteers (20-35 years) without PD. Importantly, the increase of PAC is statistically significant even after ruling out confounds relating to changes in spectral power and non-sinusoidal shape of beta oscillation. Moreover, a trend for a higher percentage of longer beta bursts (> 0.2 s) along with the increase in their incidence rate is also observed for elderly subjects. Using inverse modeling, we further show that elevated PAC and longer beta bursts are most pronounced in the sensorimotor areas. Moreover, we show that PAC and longer beta bursts might reflect distinct mechanisms, since their spatial patterns only partially overlap and the correlation between them is weak. Taken together, our findings provide novel evidence that electrophysiological biomarkers of PD may already occur in apparently healthy elderly subjects. We hypothesize that PAC and beta bursts characteristics in aging might reflect a pre-clinical state of PD and suggest their predictive value to be tested in prospective longitudinal studies.
Collapse
Affiliation(s)
- Juanli Zhang
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany.
| | - Mina Jamshidi Idaji
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Machine Learning Group, Technical University of Berlin, Berlin, Germany; International Max Planck Research School NeuroCom, Leipzig, Germany
| | - Arno Villringer
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Department of Cognitive Neurology, University Hospital Leipzig, Leipzig, Germany
| | - Vadim V Nikulin
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Centre for Cognition and Decision Making, Institute for Cognitive Neuroscience, National Research University Higher School of Economics, Moscow, Russian Federation; Neurophysics Group, Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
30
|
Bočková M, Rektor I. Electrophysiological biomarkers for deep brain stimulation outcomes in movement disorders: state of the art and future challenges. J Neural Transm (Vienna) 2021; 128:1169-1175. [PMID: 34245367 DOI: 10.1007/s00702-021-02381-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 07/02/2021] [Indexed: 11/25/2022]
Abstract
Several neurological diseases are accompanied by rhythmic oscillatory dysfunctions in various frequency ranges and disturbed cross-frequency relationships on regional, interregional, and whole brain levels. Knowledge of these disease-specific oscillopathies is important mainly in the context of deep brain stimulation (DBS) therapy. Electrophysiological biomarkers have been used as input signals for adaptive DBS (aDBS) as well as preoperative outcome predictors. As movement disorders, particularly Parkinson's disease (PD), are among the most frequent DBS indications, the current research of DBS is the most advanced in the movement disorders field. We reviewed the literature published mainly between 2010 and 2020 to identify the most important findings concerning the current evolution of electrophysiological biomarkers in DBS and to address future challenges for prospective research.
Collapse
Affiliation(s)
- Martina Bočková
- Central European Institute of Technology (CEITEC), Brain and Mind Research Program, Masaryk University, Brno, Czech Republic
- Movement Disorders Center, First Department of Neurology, Masaryk University School of Medicine, St. Anne's Hospital, Pekařská 53, 656 91, Brno, Czech Republic
| | - Ivan Rektor
- Central European Institute of Technology (CEITEC), Brain and Mind Research Program, Masaryk University, Brno, Czech Republic.
- Movement Disorders Center, First Department of Neurology, Masaryk University School of Medicine, St. Anne's Hospital, Pekařská 53, 656 91, Brno, Czech Republic.
| |
Collapse
|
31
|
Impaired reach-to-grasp kinematics in parkinsonian patients relates to dopamine-dependent, subthalamic beta bursts. NPJ Parkinsons Dis 2021; 7:53. [PMID: 34188058 PMCID: PMC8242004 DOI: 10.1038/s41531-021-00187-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 03/17/2021] [Indexed: 11/17/2022] Open
Abstract
Excessive beta-band oscillations in the subthalamic nucleus are key neural features of Parkinson’s disease. Yet the distinctive contributions of beta low and high bands, their dependency on striatal dopamine, and their correlates with movement kinematics are unclear. Here, we show that the movement phases of the reach-to-grasp motor task are coded by the subthalamic bursting activity in a maximally-informative beta high range. A strong, three-fold correlation linked beta high range bursts, imbalanced inter-hemispheric striatal dopaminergic tone, and impaired inter-joint movement coordination. These results provide new insight into the neural correlates of motor control in parkinsonian patients, paving the way for more informative use of beta-band features for adaptive deep brain stimulation devices.
Collapse
|
32
|
Kearney J, Brittain JS. Sensory Attenuation in Sport and Rehabilitation: Perspective from Research in Parkinson's Disease. Brain Sci 2021; 11:580. [PMID: 33946218 PMCID: PMC8145846 DOI: 10.3390/brainsci11050580] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 04/27/2021] [Accepted: 04/29/2021] [Indexed: 11/16/2022] Open
Abstract
People with Parkinson's disease (PD) experience motor symptoms that are affected by sensory information in the environment. Sensory attenuation describes the modulation of sensory input caused by motor intent. This appears to be altered in PD and may index important sensorimotor processes underpinning PD symptoms. We review recent findings investigating sensory attenuation and reconcile seemingly disparate results with an emphasis on task-relevance in the modulation of sensory input. Sensory attenuation paradigms, across different sensory modalities, capture how two identical stimuli can elicit markedly different perceptual experiences depending on our predictions of the event, but also the context in which the event occurs. In particular, it appears as though contextual information may be used to suppress or facilitate a response to a stimulus on the basis of task-relevance. We support this viewpoint by considering the role of the basal ganglia in task-relevant sensory filtering and the use of contextual signals in complex environments to shape action and perception. This perspective highlights the dual effect of basal ganglia dysfunction in PD, whereby a reduced capacity to filter task-relevant signals harms the ability to integrate contextual cues, just when such cues are required to effectively navigate and interact with our environment. Finally, we suggest how this framework might be used to establish principles for effective rehabilitation in the treatment of PD.
Collapse
Affiliation(s)
- Joshua Kearney
- School of Psychology, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - John-Stuart Brittain
- Centre for Human Brain Health, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK;
| |
Collapse
|
33
|
Li M, Wang X, Yao X, Wang X, Chen F, Zhang X, Sun S, He F, Jia Q, Guo M, Chen D, Sun Y, Li Y, He Q, Zhu Z, Wang M. Roles of Motor Cortex Neuron Classes in Reach-Related Modulation for Hemiparkinsonian Rats. Front Neurosci 2021; 15:645849. [PMID: 33986639 PMCID: PMC8111217 DOI: 10.3389/fnins.2021.645849] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 03/24/2021] [Indexed: 01/12/2023] Open
Abstract
Disruption of the function of the primary motor cortex (M1) is thought to play a critical role in motor dysfunction in Parkinson's disease (PD). Detailed information regarding the specific aspects of M1 circuits that become abnormal is lacking. We recorded single units and local field potentials (LFPs) of M1 neurons in unilateral 6-hydroxydopamine (6-OHDA) lesion rats and control rats to assess the impact of dopamine (DA) cell loss during rest and a forelimb reaching task. Our results indicated that M1 neurons can be classified into two groups (putative pyramidal neurons and putative interneurons) and that 6-OHDA could modify the activity of different M1 subpopulations to a large extent. Reduced activation of putative pyramidal neurons during inattentive rest and reaching was observed. In addition, 6-OHDA intoxication was associated with an increase in certain LFP frequencies, especially those in the beta range (broadly defined here as any frequency between 12 and 35 Hz), which become pathologically exaggerated throughout cortico-basal ganglia circuits after dopamine depletion. Furthermore, assessment of different spike-LFP coupling parameters revealed that the putative pyramidal neurons were particularly prone to being phase-locked to ongoing cortical oscillations at 12-35 Hz during reaching. Conversely, putative interneurons were neither hypoactive nor synchronized to ongoing cortical oscillations. These data collectively demonstrate a neuron type-selective alteration in the M1 in hemiparkinsonian rats. These alterations hamper the ability of the M1 to contribute to motor conduction and are likely some of the main contributors to motor impairments in PD.
Collapse
Affiliation(s)
- Min Li
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Science, Shandong Normal University, Jinan, China
| | - Xuenan Wang
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Science, Shandong Normal University, Jinan, China.,Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiaomeng Yao
- School of Nursing, Qilu Institute of Technology, Jinan, China
| | - Xiaojun Wang
- The First Hospital Affiliated With Shandong First Medicine University, Jinan, China
| | - Feiyu Chen
- School of International Education, Qilu University of Technology, Jinan, China
| | - Xiao Zhang
- Editorial Department of Journal of Shandong Jianzhu University, Jinan, China
| | - Shuang Sun
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Science, Shandong Normal University, Jinan, China
| | - Feng He
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Science, Shandong Normal University, Jinan, China
| | - Qingmei Jia
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Science, Shandong Normal University, Jinan, China
| | - Mengnan Guo
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Science, Shandong Normal University, Jinan, China
| | - Dadian Chen
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Science, Shandong Normal University, Jinan, China
| | - Yue Sun
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Science, Shandong Normal University, Jinan, China
| | - Yuchuan Li
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Science, Shandong Normal University, Jinan, China
| | - Qin He
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Science, Shandong Normal University, Jinan, China
| | - Zhiwei Zhu
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Science, Shandong Normal University, Jinan, China
| | - Min Wang
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Science, Shandong Normal University, Jinan, China
| |
Collapse
|
34
|
Damborská A, Lamoš M, Brunet D, Vulliemoz S, Bočková M, Deutschová B, Baláž M, Rektor I. Resting-State Phase-Amplitude Coupling Between the Human Subthalamic Nucleus and Cortical Activity: A Simultaneous Intracranial and Scalp EEG Study. Brain Topogr 2021; 34:272-282. [PMID: 33515171 DOI: 10.1007/s10548-021-00822-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 01/18/2021] [Indexed: 10/22/2022]
Abstract
It has been suggested that slow oscillations in the subthalamic nucleus (STN) reflect top-down inputs from the medial prefrontal cortex, thus implementing behavior control. It is unclear, however, whether the STN oscillations are related to cortical activity in a bottom-up manner. To assess resting-state subcortico-cortical interactions, we recorded simultaneous scalp electroencephalographic activity and local field potentials in the STN (LFP-STN) in 11 patients with Parkinson's disease implanted with deep brain stimulation electrodes in the on-medication state during rest. We assessed the cross-structural phase-amplitude coupling (PAC) between the STN and cortical activity within a wide frequency range of 1 to 100 Hz. The PAC was dominant between the δ/θ STN phase and β/γ cortical amplitude in most investigated scalp regions and between the δ cortical phase and θ/α STN amplitude in the frontal and temporal regions. The cross-frequency linkage between the slow oscillations of the LFP-STN activity and the amplitude of the scalp-recorded cortical activity at rest was demonstrated, and similar involvement of the left and right STNs in the coupling was observed. Our results suggest that the STN plays a role in both bottom-up and top-down processes within the subcortico-cortical circuitries of the human brain during the resting state. A relative left-right symmetry in the STN-cortex functional linkage was suggested. Practical treatment studies would be necessary to assess whether unilateral stimulation of the STN might be sufficient for treatment of Parkinson's disease.
Collapse
Affiliation(s)
- Alena Damborská
- CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic. .,Functional Brain Mapping Lab, University of Geneva, Geneva, Switzerland. .,CEITEC - Central European Institute of Technology, Brain and Mind Research Program, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic.
| | - Martin Lamoš
- CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Denis Brunet
- Functional Brain Mapping Lab, University of Geneva, Geneva, Switzerland.,CIBM - Center for Biomedical Imaging, Geneva, Switzerland
| | - Serge Vulliemoz
- CIBM - Center for Biomedical Imaging, Geneva, Switzerland.,EEG and Epilepsy Unit, Neurology, University Hospital and Faculty of Medicine, Geneva, Switzerland
| | - Martina Bočková
- CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic.,First Department of Neurology, St. Anne's University Hospital, Masaryk University, Brno, Czech Republic
| | - Barbora Deutschová
- CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic.,First Department of Neurology, St. Anne's University Hospital, Masaryk University, Brno, Czech Republic
| | - Marek Baláž
- First Department of Neurology, St. Anne's University Hospital, Masaryk University, Brno, Czech Republic
| | - Ivan Rektor
- CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic.,First Department of Neurology, St. Anne's University Hospital, Masaryk University, Brno, Czech Republic
| |
Collapse
|
35
|
Gait-related frequency modulation of beta oscillatory activity in the subthalamic nucleus of parkinsonian patients. Brain Stimul 2020; 13:1743-1752. [DOI: 10.1016/j.brs.2020.09.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 09/13/2020] [Indexed: 01/24/2023] Open
|
36
|
Nguyen TAK, Schüpbach M, Mercanzini A, Dransart A, Pollo C. Directional Local Field Potentials in the Subthalamic Nucleus During Deep Brain Implantation of Parkinson's Disease Patients. Front Hum Neurosci 2020; 14:521282. [PMID: 33192384 PMCID: PMC7556345 DOI: 10.3389/fnhum.2020.521282] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 09/15/2020] [Indexed: 11/29/2022] Open
Abstract
Segmented deep brain stimulation leads feature directional electrodes that allow for a finer spatial control of electrical stimulation compared to traditional ring-shaped electrodes. These segmented leads have demonstrated enlarged therapeutic windows and have thus the potential to improve the treatment of Parkinson's disease patients. Moreover, they provide a unique opportunity to record directional local field potentials. Here, we investigated whether directional local field potentials can help identify the best stimulation direction to assist device programming. Four Parkinson's disease patients underwent routine implantation of the subthalamic nucleus. Firstly, local field potentials were recorded in three directions for two conditions: In one condition, the patient was at rest; in the other condition, the patient's arm was moved. Secondly, current thresholds for therapeutic and side effects were identified intraoperatively for directional stimulation. Therapeutic windows were calculated from these two thresholds. Thirdly, the spectral power of the total beta band (13-35 Hz) and its sub-bands low, high, and peak beta were analyzed post hoc. Fourthly, the spectral power was used by different algorithms to predict the ranking of directions. The spectral power profiles were patient-specific, and spectral peaks were found both in the low beta band (13-20 Hz) and in the high beta band (20.5-35 Hz). The direction with the highest spectral power in the total beta band was most indicative of the 1st best direction when defined by therapeutic window. Based on the total beta band, the resting condition and the moving condition were similarly predictive about the direction ranking and classified 83.3% of directions correctly. However, different algorithms were needed to predict the ranking defined by therapeutic window or therapeutic current threshold. Directional local field potentials may help predict the best stimulation direction. Further studies with larger sample sizes are needed to better distinguish the informative value of different conditions and the beta sub-bands.
Collapse
Affiliation(s)
- T. A. Khoa Nguyen
- Department of Neurosurgery, University Hospital of Bern, Bern, Switzerland
| | - Michael Schüpbach
- Department of Neurology, University Hospital of Bern, Bern, Switzerland
| | - André Mercanzini
- Microsystems Laboratory 4, School of Engineering, EPF Lausanne, Lausanne, Switzerland
- Aleva Neurotherapeutics SA, Lausanne, Switzerland
| | | | - Claudio Pollo
- Department of Neurosurgery, University Hospital of Bern, Bern, Switzerland
| |
Collapse
|
37
|
Eight cylindrical contact lead recordings in the subthalamic region localize beta oscillations source to the dorsal STN. Neurobiol Dis 2020; 146:105090. [PMID: 32977021 DOI: 10.1016/j.nbd.2020.105090] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 09/20/2020] [Accepted: 09/21/2020] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND In Parkinson's disease (PD) patients, the subthalamic nucleus (STN) has prominent oscillatory activity in the beta band, which may be related to the motor symptoms severity. Local field potential (LFP) studies using standard four-contact deep brain stimulation (DBS) leads indicate that the source of beta activity in the STN region is the dorsolateral segment of the nucleus. However, these leads have few contacts outside of the STN, making the source localization of beta activity around the STN region uncertain. OBJECTIVE This study aimed to investigate the electrophysiological characteristics of the STN and the surrounding area in PD to better locate the source of these oscillations and their clinical relevance. METHODS Eight PD patients were bilaterally implanted in the STN with the eight ring-contact DBS lead (Boston Scientific Corporation). LFPs were recorded intra-operatively from each DBS contact in the off medication state at rest. Each contact location was normalized relative to the STN borders based on microelectrode recordings. For each recording, power spectral density was computed, averaged over multiple frequency bands and phase reversal analysis was used to localize the source of oscillatory activity. Beta burst, high-frequency activity (HFA), and phase-amplitude coupling (PAC) were also computed. Neurophysiological signatures were correlated with hemibody symptoms severity and clinical outcomes. RESULTS Beta band power and phase reversal localized the beta oscillator to the dorsal STN and correlated with pre-operative off medication hemibody bradykinesia and rigidity score. The contact along the electrode with the largest beta oscillatory power co-localized with the independently chosen optimized contact used for long-term chronic DBS. Lastly, beta bursting, HFA, and Beta-HFA PAC co-localized with the beta oscillator at the dorsal STN, and Beta-HFA PAC correlated with DBS effect. CONCLUSIONS Our findings support the hypothesis that the primary source of beta oscillations is located in dorsal STN, and argue against the alternative hypothesis that beta activity in the STN region arises from volume conduction from other sources. We demonstrate intrinsic STN beta-HFA PAC as an independent marker of DBS effect.
Collapse
|
38
|
Bočková M, Lamoš M, Klimeš P, Jurák P, Halámek J, Goldemundová S, Baláž M, Rektor I. Suboptimal response to STN-DBS in Parkinson’s disease can be identified via reaction times in a motor cognitive paradigm. J Neural Transm (Vienna) 2020; 127:1579-1588. [DOI: 10.1007/s00702-020-02254-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 09/14/2020] [Indexed: 12/17/2022]
|
39
|
Khawaldeh S, Tinkhauser G, Shah SA, Peterman K, Debove I, Nguyen TAK, Nowacki A, Lachenmayer ML, Schuepbach M, Pollo C, Krack P, Woolrich M, Brown P. Subthalamic nucleus activity dynamics and limb movement prediction in Parkinson's disease. Brain 2020; 143:582-596. [PMID: 32040563 PMCID: PMC7009471 DOI: 10.1093/brain/awz417] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/21/2019] [Accepted: 11/19/2019] [Indexed: 02/01/2023] Open
Abstract
Whilst exaggerated bursts of beta frequency band oscillatory synchronization in the subthalamic nucleus have been associated with motor impairment in Parkinson's disease, a plausible mechanism linking the two phenomena has been lacking. Here we test the hypothesis that increased synchronization denoted by beta bursting might compromise information coding capacity in basal ganglia networks. To this end we recorded local field potential activity in the subthalamic nucleus of 18 patients with Parkinson's disease as they executed cued upper and lower limb movements. We used the accuracy of local field potential-based classification of the limb to be moved on each trial as an index of the information held by the system with respect to intended action. Machine learning using the naïve Bayes conditional probability model was used for classification. Local field potential dynamics allowed accurate prediction of intended movements well ahead of their execution, with an area under the receiver operator characteristic curve of 0.80 ± 0.04 before imperative cues when the demanded action was known ahead of time. The presence of bursts of local field potential activity in the alpha, and even more so, in the beta frequency band significantly compromised the prediction of the limb to be moved. We conclude that low frequency bursts, particularly those in the beta band, restrict the capacity of the basal ganglia system to encode physiologically relevant information about intended actions. The current findings are also important as they suggest that local subthalamic activity may potentially be decoded to enable effector selection, in addition to force control in restorative brain-machine interface applications.
Collapse
Affiliation(s)
- Saed Khawaldeh
- MRC Brain Network Dynamics Unit, University of Oxford, UK.,Nuffield Department of Clinical Neurosciences, University of Oxford, UK.,Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, University of Oxford, UK
| | - Gerd Tinkhauser
- MRC Brain Network Dynamics Unit, University of Oxford, UK.,Nuffield Department of Clinical Neurosciences, University of Oxford, UK.,Department of Neurology, Bern University Hospital and University of Bern, Switzerland
| | - Syed Ahmar Shah
- MRC Brain Network Dynamics Unit, University of Oxford, UK.,Nuffield Department of Clinical Neurosciences, University of Oxford, UK.,Usher Institute of Population Health Sciences and Informatics, Edinburgh Medical School, The University of Edinburgh, Edinburgh, UK
| | - Katrin Peterman
- Department of Neurology, Bern University Hospital and University of Bern, Switzerland
| | - Ines Debove
- Department of Neurology, Bern University Hospital and University of Bern, Switzerland
| | - T A Khoa Nguyen
- Department of Neurosurgery, Bern University Hospital and University of Bern, Switzerland
| | - Andreas Nowacki
- Department of Neurosurgery, Bern University Hospital and University of Bern, Switzerland
| | - M Lenard Lachenmayer
- Department of Neurology, Bern University Hospital and University of Bern, Switzerland
| | - Michael Schuepbach
- Department of Neurology, Bern University Hospital and University of Bern, Switzerland
| | - Claudio Pollo
- Department of Neurosurgery, Bern University Hospital and University of Bern, Switzerland
| | - Paul Krack
- Department of Neurology, Bern University Hospital and University of Bern, Switzerland
| | - Mark Woolrich
- Nuffield Department of Clinical Neurosciences, University of Oxford, UK.,Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, University of Oxford, UK
| | - Peter Brown
- MRC Brain Network Dynamics Unit, University of Oxford, UK.,Nuffield Department of Clinical Neurosciences, University of Oxford, UK
| |
Collapse
|
40
|
Asch N, Herschman Y, Maoz R, Auerbach-Asch CR, Valsky D, Abu-Snineh M, Arkadir D, Linetsky E, Eitan R, Marmor O, Bergman H, Israel Z. Independently together: subthalamic theta and beta opposite roles in predicting Parkinson's tremor. Brain Commun 2020; 2:fcaa074. [PMID: 33585815 PMCID: PMC7869429 DOI: 10.1093/braincomms/fcaa074] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 04/23/2020] [Accepted: 04/29/2020] [Indexed: 01/20/2023] Open
Abstract
Tremor is a core feature of Parkinson’s disease and the most easily recognized Parkinsonian sign. Nonetheless, its pathophysiology remains poorly understood. Here, we show that multispectral spiking activity in the posterior-dorso-lateral oscillatory (motor) region of the subthalamic nucleus distinguishes resting tremor from the other Parkinsonian motor signs and strongly correlates with its severity. We evaluated microelectrode-spiking activity from the subthalamic dorsolateral oscillatory region of 70 Parkinson’s disease patients who underwent deep brain stimulation surgery (114 subthalamic nuclei, 166 electrode trajectories). We then investigated the relationship between patients’ clinical Unified Parkinson’s Disease Rating Scale score and their peak theta (4–7 Hz) and beta (13–30 Hz) powers. We found a positive correlation between resting tremor and theta activity (r = 0.41, P < 0.01) and a non-significant negative correlation with beta activity (r = −0.2, P = 0.5). Hypothesizing that the two neuronal frequencies mask each other’s relationship with resting tremor, we created a non-linear model of their proportional spectral powers and investigated its relationship with resting tremor. As hypothesized, patients’ proportional scores correlated better than either theta or beta alone (r = 0.54, P < 0.001). However, theta and beta oscillations were frequently temporally correlated (38/70 patients manifested significant positive temporal correlations and 1/70 exhibited significant negative correlation between the two frequency bands). When comparing theta and beta temporal relationship (r θ β) to patients’ resting tremor scores, we found a significant negative correlation between the two (r = −0.38, P < 0.01). Patients manifesting a positive correlation between the two bands (i.e. theta and beta were likely to appear simultaneously) were found to have lower resting tremor scores than those with near-zero correlation values (i.e. theta and beta were likely to appear separately). We therefore created a new model incorporating patients’ proportional theta–beta power and r θ βscores to obtain an improved neural correlate of resting tremor (r = 0.62, P < 0.001). We then used the Akaike and Bayesian information criteria for model selection and found the multispectral model, incorporating theta–beta proportional power and their correlation, to be the best fitting model, with 0.96 and 0.89 probabilities, respectively. Here we found that as theta increases, beta decreases and the two appear separately—resting tremor is worsened. Our results therefore show that theta and beta convey information about resting tremor in opposite ways. Furthermore, the finding that theta and beta coactivity is negatively correlated with resting tremor suggests that theta–beta non-linear scale may be a valuable biomarker for Parkinson’s resting tremor in future adaptive deep brain stimulation techniques.
Collapse
Affiliation(s)
- Nir Asch
- Department of Medical Neurobiology, The Hebrew University of Jerusalem, Israel
| | - Yehuda Herschman
- Functional Neurosurgery Unit, Department of Neurosurgery, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Rotem Maoz
- Department of Medical Neurobiology, The Hebrew University of Jerusalem, Israel
| | - Carmel R Auerbach-Asch
- Edmond and Lily Safra Center for Brain Sciences (ELSC), The Hebrew University of Jerusalem, Israel
| | - Dan Valsky
- Department of Medical Neurobiology, The Hebrew University of Jerusalem, Israel
| | | | - David Arkadir
- Department of Neurology, Hadassah Medical Center, Jerusalem, Israel
| | - Eduard Linetsky
- Department of Neurology, Hadassah Medical Center, Jerusalem, Israel
| | - Renana Eitan
- Research and Training Unit, Jerusalem Mental Health Center, Kfar Shaul Eitanim Hospital, Jerusalem, Israel
| | - Odeya Marmor
- Department of Medical Neurobiology, The Hebrew University of Jerusalem, Israel
| | - Hagai Bergman
- Department of Medical Neurobiology, The Hebrew University of Jerusalem, Israel
| | - Zvi Israel
- Functional Neurosurgery Unit, Department of Neurosurgery, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
41
|
Weber I, Florin E, von Papen M, Visser-Vandewalle V, Timmermann L. Characterization of information processing in the subthalamic area of Parkinson’s patients. Neuroimage 2020; 209:116518. [DOI: 10.1016/j.neuroimage.2020.116518] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/19/2019] [Accepted: 01/02/2020] [Indexed: 12/21/2022] Open
|
42
|
Zhao XM, Zhuang P, Li YJ, Zhang YQ, Li JY, Wang YP, Li JP. Asymmetry of Subthalamic Neuronal Firing Rate and Oscillatory Characteristics in Parkinson's Disease. Neuropsychiatr Dis Treat 2020; 16:313-323. [PMID: 32095073 PMCID: PMC6995290 DOI: 10.2147/ndt.s229513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 01/11/2020] [Indexed: 01/28/2023] Open
Abstract
PURPOSE The aim of this study was to compare the neuronal firing rate and oscillatory activity of the subthalamic nucleus (STN) between the more affected (MA) and the less affected (LA) hemispheres in Parkinson's disease (PD). PATIENTS AND METHODS We recorded and analyzed the intra-operative microelectrode recordings (MER) from the STN of 24 PD subjects. Lateralized Unified Parkinson's Disease Rating Scale (UPDRS) III sub-scores (item 20-26) were calculated. The STN corresponding to the MA side was designated as the MA STN while the other side as the LA STN. Single unit characteristics including interspike intervals were identified and spectral analyses were assessed. Further, the mean spontaneous firing rate (MSFR) of neurons was calculated. The correlations between clinical symptoms and neuronal activity were analyzed. RESULTS The firing rate in the MA and LA sides were 43.18 ± 0.74 Hz and 36.94 ± 1.32 Hz, respectively, with an increase of 16.9% in the MA group. The number of neurons that oscillated in the Tremor-Frequency Band (TFB), β-Frequency Band (βFB), and the non-oscillatory cells in the MA group were 43, 115, and 62 versus 78, 68, and 54 in the LA group, respectively. The proportions of the three types of neurons were different between both groups. The firing rate of the STN neurons and the UPDRS III sub-scores were positively correlated. Additionally, we observed a positive correlation between the percentage of βFB oscillatory neurons and bradykinesia score. CONCLUSION The firing rate of the STN in the MA hemisphere is higher than in the LA side, following disease progression and there seems to be an increase in firing rate. The βFB oscillatory neurons are at a larger proportion in the MA group while there were larger percentage of TFB oscillatory cells in the LA group. The proportion of βFB oscillatory neurons is selectively correlated with the severity of bradykinesia.
Collapse
Affiliation(s)
- Xue-Min Zhao
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Ping Zhuang
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, People's Republic of China.,Center of Parkinson's Disease, Beijing Institute for Brain Disorders, Beijing, People's Republic of China.,Key Laboratory of Neurodegenerative Diseases (Capital Medical University), Ministry of Education, Beijing, People's Republic of China
| | - Yong-Jie Li
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Yu-Qing Zhang
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Jian-Yu Li
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Yun-Peng Wang
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Ji-Ping Li
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, People's Republic of China
| |
Collapse
|
43
|
Krack P, Volkmann J, Tinkhauser G, Deuschl G. Deep Brain Stimulation in Movement Disorders: From Experimental Surgery to Evidence‐Based Therapy. Mov Disord 2019; 34:1795-1810. [DOI: 10.1002/mds.27860] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 08/01/2019] [Accepted: 08/19/2019] [Indexed: 12/21/2022] Open
Affiliation(s)
- Paul Krack
- Department of Neurology Bern University Hospital and University of Bern Bern Switzerland
| | - Jens Volkmann
- Department of Neurology University Hospital and Julius‐Maximilian‐University Wuerzburg Germany
| | - Gerd Tinkhauser
- Department of Neurology Bern University Hospital and University of Bern Bern Switzerland
| | - Günther Deuschl
- Department of Neurology University Hospital Schleswig Holstein (UKSH), Kiel Campus; Christian‐Albrechts‐University Kiel Germany
| |
Collapse
|
44
|
Tinkhauser G, Shah SA, Fischer P, Peterman K, Debove I, Nygyuen K, Nowacki A, Torrecillos F, Khawaldeh S, Tan H, Pogosyan A, Schuepbach M, Pollo C, Brown P. Electrophysiological differences between upper and lower limb movements in the human subthalamic nucleus. Clin Neurophysiol 2019; 130:727-738. [PMID: 30903826 PMCID: PMC6487671 DOI: 10.1016/j.clinph.2019.02.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 01/26/2019] [Accepted: 02/18/2019] [Indexed: 11/21/2022]
Abstract
OBJECTIVE Functional processes in the brain are segregated in both the spatial and spectral domain. Motivated by findings reported at the cortical level in healthy participants we test the hypothesis in the basal ganglia of Parkinson's disease patients that lower frequency beta band activity relates to motor circuits associated with the upper limb and higher beta frequencies with lower limb movements. METHODS We recorded local field potentials (LFPs) from the subthalamic nucleus using segmented "directional" DBS leads, during which patients performed repetitive upper and lower limb movements. Movement-related spectral changes in the beta and gamma frequency-ranges and their spatial distributions were compared between limbs. RESULTS We found that the beta desynchronization during leg movements is characterised by a strikingly greater involvement of higher beta frequencies (24-31 Hz), regardless of whether this was contralateral or ipsilateral to the limb moved. The spatial distribution of limb-specific movement-related changes was evident at higher gamma frequencies. CONCLUSION Limb processing in the basal ganglia is differentially organised in the spectral and spatial domain and can be captured by directional DBS leads. SIGNIFICANCE These findings may help to refine the use of the subthalamic LFPs as a control signal for adaptive DBS and neuroprosthetic devices.
Collapse
Affiliation(s)
- Gerd Tinkhauser
- Department of Neurology, Bern University Hospital and University of Bern, Bern, Switzerland; MRC Brain Network Dynamics Unit at the University of Oxford, Oxford, United Kingdom; Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom.
| | - Syed Ahmar Shah
- MRC Brain Network Dynamics Unit at the University of Oxford, Oxford, United Kingdom; Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Petra Fischer
- MRC Brain Network Dynamics Unit at the University of Oxford, Oxford, United Kingdom; Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Katrin Peterman
- Department of Neurology, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Ines Debove
- Department of Neurology, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Khoa Nygyuen
- Department of Neurosurgery, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Andreas Nowacki
- Department of Neurosurgery, Bern University Hospital and University of Bern, Bern, Switzerland; Department of Neurosurgery, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Flavie Torrecillos
- MRC Brain Network Dynamics Unit at the University of Oxford, Oxford, United Kingdom; Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Saed Khawaldeh
- MRC Brain Network Dynamics Unit at the University of Oxford, Oxford, United Kingdom; Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Huiling Tan
- MRC Brain Network Dynamics Unit at the University of Oxford, Oxford, United Kingdom; Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Alek Pogosyan
- MRC Brain Network Dynamics Unit at the University of Oxford, Oxford, United Kingdom; Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Michael Schuepbach
- Department of Neurology, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Claudio Pollo
- Department of Neurosurgery, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Peter Brown
- MRC Brain Network Dynamics Unit at the University of Oxford, Oxford, United Kingdom; Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
45
|
Bočková M, Rektor I. Impairment of brain functions in Parkinson’s disease reflected by alterations in neural connectivity in EEG studies: A viewpoint. Clin Neurophysiol 2019; 130:239-247. [DOI: 10.1016/j.clinph.2018.11.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 10/29/2018] [Accepted: 11/06/2018] [Indexed: 11/26/2022]
|
46
|
What Is the Best Electrophysiologic Marker of the Outcome of Subthalamic Nucleus Stimulation in Parkinson Disease? World Neurosurg 2018; 120:e1217-e1224. [DOI: 10.1016/j.wneu.2018.09.047] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 09/05/2018] [Accepted: 09/07/2018] [Indexed: 11/23/2022]
|
47
|
Martin S, Iturrate I, Chavarriaga R, Leeb R, Sobolewski A, Li AM, Zaldivar J, Peciu-Florianu I, Pralong E, Castro-Jiménez M, Benninger D, Vingerhoets F, Knight RT, Bloch J, Millán JDR. Differential contributions of subthalamic beta rhythms and 1/f broadband activity to motor symptoms in Parkinson's disease. NPJ Parkinsons Dis 2018; 4:32. [PMID: 30417084 PMCID: PMC6218479 DOI: 10.1038/s41531-018-0068-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 10/18/2018] [Indexed: 12/22/2022] Open
Abstract
Excessive beta oscillatory activity in the subthalamic nucleus (STN) is linked to Parkinson's Disease (PD) motor symptoms. However, previous works have been inconsistent regarding the functional role of beta activity in untreated Parkinsonian states, questioning such role. We hypothesized that this inconsistency is due to the influence of electrophysiological broadband activity -a neurophysiological indicator of synaptic excitation/inhibition ratio- that could confound measurements of beta activity in STN recordings. Here we propose a data-driven, automatic and individualized mathematical model that disentangles beta activity and 1/f broadband activity in the STN power spectrum, and investigate the link between these individual components and motor symptoms in thirteen Parkinsonian patients. We show, using both modeled and actual data, how beta oscillatory activity significantly correlates with motor symptoms (bradykinesia and rigidity) only when broadband activity is not considered in the biomarker estimations, providing solid evidence that oscillatory beta activity does correlate with motor symptoms in untreated PD states as well as the significant impact of broadband activity. These findings emphasize the importance of data-driven models and the identification of better biomarkers for characterizing symptom severity and closed-loop applications.
Collapse
Affiliation(s)
- Stephanie Martin
- Defitech Chair in Brain-Machine Interface (CNBI), Center for Neuroprosthetics (CNP), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA USA
| | - Iñaki Iturrate
- Defitech Chair in Brain-Machine Interface (CNBI), Center for Neuroprosthetics (CNP), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Ricardo Chavarriaga
- Defitech Chair in Brain-Machine Interface (CNBI), Center for Neuroprosthetics (CNP), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Robert Leeb
- Defitech Chair in Brain-Machine Interface (CNBI), Center for Neuroprosthetics (CNP), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Aleksander Sobolewski
- Defitech Chair in Brain-Machine Interface (CNBI), Center for Neuroprosthetics (CNP), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Andrew M. Li
- Defitech Chair in Brain-Machine Interface (CNBI), Center for Neuroprosthetics (CNP), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, P.R. China
| | - Julien Zaldivar
- Department of Clinical Neurosciences (Neurology and Neurosurgery), University Hospital of Vaud (CHUV), Lausanne, Switzerland
- Service de Neurochirurgie, Hôpital de Sion, Hôpital du Valais, Valais, Switzerland
| | - Iulia Peciu-Florianu
- Department of Clinical Neurosciences (Neurology and Neurosurgery), University Hospital of Vaud (CHUV), Lausanne, Switzerland
| | - Etienne Pralong
- Department of Clinical Neurosciences (Neurology and Neurosurgery), University Hospital of Vaud (CHUV), Lausanne, Switzerland
| | - Mayte Castro-Jiménez
- Department of Clinical Neurosciences (Neurology and Neurosurgery), University Hospital of Vaud (CHUV), Lausanne, Switzerland
| | - David Benninger
- Department of Clinical Neurosciences (Neurology and Neurosurgery), University Hospital of Vaud (CHUV), Lausanne, Switzerland
| | - François Vingerhoets
- Department of Clinical Neurosciences (Neurology and Neurosurgery), University Hospital of Vaud (CHUV), Lausanne, Switzerland
| | - Robert T. Knight
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA USA
- Department of Psychology, University of California, Berkeley, CA USA
| | - Jocelyne Bloch
- Department of Clinical Neurosciences (Neurology and Neurosurgery), University Hospital of Vaud (CHUV), Lausanne, Switzerland
| | - José del R. Millán
- Defitech Chair in Brain-Machine Interface (CNBI), Center for Neuroprosthetics (CNP), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
48
|
Zhu G, Geng X, Tan Z, Chen Y, Zhang R, Wang X, Aziz T, Wang S, Zhang J. Characteristics of Globus Pallidus Internus Local Field Potentials in Hyperkinetic Disease. Front Neurol 2018; 9:934. [PMID: 30455666 PMCID: PMC6230660 DOI: 10.3389/fneur.2018.00934] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Accepted: 10/15/2018] [Indexed: 01/26/2023] Open
Abstract
Background: Dystonia and Huntington's disease (HD) are both hyperkinetic movement disorders but exhibit distinct clinical characteristics. Aberrant output from the globus pallidus internus (GPi) is involved in the pathophysiology of both HD and dystonia, and deep brain stimulation (DBS) of the GPi shows good clinical efficacy in both disorders. The electrode externalized period provides an opportunity to record local field potentials (LFPs) from the GPi to examine if activity patterns differ between hyperkinetic disorders and are associated with specific clinical characteristics. Methods: LFPs were recorded from 7 chorea-dominant HD and nine cervical dystonia patients. Differences in oscillatory activities were compared by power spectrum and Lempel-Ziv complexity (LZC). The discrepancy band power ratio was used to control for the influence of absolute power differences between groups. We further identified discrepant frequency bands and frequency band ratios for each subject and examined the correlations with clinical scores. Results: Dystonia patients exhibited greater low frequency power (6–14 Hz) while HD patients demonstrated greater high-beta and low-gamma power (26–43 Hz) (p < 0.0298, corrected). United Huntington Disease Rating Scale chorea sub-score was positively correlated with 26–43 Hz frequency band power and negatively correlated with the 6–14 Hz/26–43 Hz band power ratio. Conclusion: Dystonia and HD are characterized by distinct oscillatory activity patterns, which may relate to distinct clinical characteristics. Specifically, chorea may be related to elevated high-beta and low-gamma band power, while dystonia may be related to elevated low frequency band power. These LFPs may be useful biomarkers for adaptive DBS to treat hyperkinetic diseases.
Collapse
Affiliation(s)
- Guanyu Zhu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xinyi Geng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Zheng Tan
- Department of Psychology, University of Chinese Academy of Sciences (UCAS), Beijing, China
| | - Yingchuan Chen
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Ruili Zhang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Xiu Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Tipu Aziz
- Medical Sciences Division, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
| | - Shouyan Wang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Jianguo Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Neurostimulation, Beijing, China.,Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
49
|
Habets JGV, Heijmans M, Kuijf ML, Janssen MLF, Temel Y, Kubben PL. An update on adaptive deep brain stimulation in Parkinson's disease. Mov Disord 2018; 33:1834-1843. [PMID: 30357911 PMCID: PMC6587997 DOI: 10.1002/mds.115] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 06/26/2018] [Accepted: 07/08/2018] [Indexed: 12/24/2022] Open
Abstract
Advancing conventional open‐loop DBS as a therapy for PD is crucial for overcoming important issues such as the delicate balance between beneficial and adverse effects and limited battery longevity that are currently associated with treatment. Closed‐loop or adaptive DBS aims to overcome these limitations by real‐time adjustment of stimulation parameters based on continuous feedback input signals that are representative of the patient's clinical state. The focus of this update is to discuss the most recent developments regarding potential input signals and possible stimulation parameter modulation for adaptive DBS in PD. Potential input signals for adaptive DBS include basal ganglia local field potentials, cortical recordings (electrocorticography), wearable sensors, and eHealth and mHealth devices. Furthermore, adaptive DBS can be applied with different approaches of stimulation parameter modulation, the feasibility of which can be adapted depending on specific PD phenotypes. Implementation of technological developments like machine learning show potential in the design of such approaches; however, energy consumption deserves further attention. Furthermore, we discuss future considerations regarding the clinical implementation of adaptive DBS in PD. © 2018 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Jeroen G V Habets
- Departments of Neurosurgery, Maastricht University Medical Center, Maastricht, The Netherlands.,School of Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Margot Heijmans
- Departments of Neurosurgery, Maastricht University Medical Center, Maastricht, The Netherlands.,School of Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Mark L Kuijf
- Department of Neurology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Marcus L F Janssen
- Department of Neurology, Maastricht University Medical Center, Maastricht, The Netherlands.,Department of Clinical Neurophysiology, Maastricht University Medical Center, Maastricht, The Netherlands.,School of Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Yasin Temel
- Departments of Neurosurgery, Maastricht University Medical Center, Maastricht, The Netherlands.,School of Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Pieter L Kubben
- Departments of Neurosurgery, Maastricht University Medical Center, Maastricht, The Netherlands.,School of Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, The Netherlands
| |
Collapse
|
50
|
Malekmohammadi M, Shahriari Y, AuYong N, O’Keeffe A, Bordelon Y, Hu X, Pouratian N. Pallidal stimulation in Parkinson disease differentially modulates local and network β activity. J Neural Eng 2018; 15:056016. [PMID: 29972146 PMCID: PMC6125208 DOI: 10.1088/1741-2552/aad0fb] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
β hypersynchrony within the basal ganglia-thalamocortical (BGTC) network has been suggested as a hallmark of Parkinson disease (PD) pathophysiology. Subthalamic nucleus (STN)-DBS has been shown to alter cortical-subcortical synchronization. It is unclear whether this is a generalizable phenomenon of therapeutic stimulation across targets. OBJECTIVES We aimed to evaluate whether DBS of the globus pallidus internus (GPi) results in cortical-subcortical desynchronization, despite the lack of monosynaptic connections between GPi and sensorimotor cortex. APPROACH We recorded local field potentials from the GPi and electrocorticographic signals from the ipsilateral sensorimotor cortex, off medications in nine PD patients, undergoing DBS implantation. We analyzed both local oscillatory power and functional connectivity (coherence and debiased weighted phase lag index (dWPLI)) with and without stimulation while subjects were resting with eyes open. MAIN RESULTS DBS significantly suppressed low β power within the GPi (-26.98% ± 15.14%), p < 0.05) without modulation of sensorimotor cortical β power (low or high). In contrast, stimulation suppressed pallidocortical high β coherence (-38.89% ± 6.19%, p = 0.02) and dWPLI (-61.40% ± 8.75%, p = 0.02). Changes in cortical-subcortical functional connectivity were spatially specific to the motor cortex. SIGNIFICANCE We highlight the role of DBS in desynchronizing network activity, particularly in the high β band. The current study of GPi-DBS suggests these network-level effects are not necessarily dependent and potentially may be independent of the hyperdirect pathway. Importantly, these results draw a sharp distinction between the potential significance of low β oscillations locally within the basal ganglia and high β oscillations across the BGTC motor circuit.
Collapse
Affiliation(s)
| | - Yalda Shahriari
- Department of Electrical, Computer, and Biomedical Engineering, University of Rhode Island, RI, USA
- Department of Physiological Nursing, University of California, San Francisco, CA, USA
| | - Nicholas AuYong
- Department of Neurosurgery, University of California, Los Angeles, CA, USA
| | - Andrew O’Keeffe
- Department of Neurosurgery, University of California, Los Angeles, CA, USA
| | - Yvette Bordelon
- Department of Neurology, University of California, Los Angeles, CA, USA
| | - Xiao Hu
- Department of Physiological Nursing, University of California, San Francisco, CA, USA
| | - Nader Pouratian
- Department of Neurosurgery, University of California, Los Angeles, CA, USA
| |
Collapse
|