1
|
Khanna S, Kumar S, Sharma P, Daksh R, Nandakumar K, Shenoy RR. Flavonoids regulating NLRP3 inflammasome: a promising approach in alleviating diabetic peripheral neuropathy. Inflammopharmacology 2025:10.1007/s10787-025-01729-7. [PMID: 40205269 DOI: 10.1007/s10787-025-01729-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 01/25/2025] [Indexed: 04/11/2025]
Abstract
A common and serious side effect of diabetes is diabetic peripheral neuropathy (DPN), which is characterised by gradual nerve damage brought on by oxidative stress, chronic inflammation, and prolonged hyperglycemia. Studies identify NLRP3 inflammasome as a key mediator in the pathogenesis of DPN, connecting neuroinflammation and neuronal damage to metabolic failure. Because of their strong anti-inflammatory and antioxidant qualities, flavonoids, a broad class of naturally occurring polyphenols, have drawn interest as potential treatments for DPN. The various ways that flavonoids affect the NLRP3 inflammasome and their potential as a treatment for DPN are examined in this review. It has been demonstrated that flavonoids prevent NLRP3 activation, which lowers the release of pro-inflammatory cytokines including IL-1β and IL-18 and causes neuroinflammation. Flavonoids work mechanistically by reducing oxidative stress, altering important signalling pathways, and blocking the activities of NF-κB and caspase-1, which are both essential for the activation of the NLRP3 inflammasome. Preclinical research has shown that flavonoids have strong neuroprotective benefits, and few clinical evidence also points to the potential of flavonoids to improve nerve function and lessen neuropathic pain in diabetic patients. The current review emphasises how flavonoids may be used as a treatment strategy to target inflammation in DPN caused by the NLRP3 inflammasome. By targeting important inflammatory pathways, flavonoids provide a new way to slow the progression of this debilitating illness. Further investigation into the mechanisms, clinical translation, and novel drug delivery techniques could enhance the therapeutic efficacy of diabetic peripheral neuropathy.
Collapse
Affiliation(s)
- Saumya Khanna
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India, 576104
| | - Sachindra Kumar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India, 576104
| | - Pratyasha Sharma
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India, 576104
| | - Rajni Daksh
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India, 576104
| | - Krishnadas Nandakumar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India, 576104
| | - Rekha Raghuveer Shenoy
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India, 576104.
| |
Collapse
|
2
|
Tiwari R, Siddiqui MH, Mahmood T, Bagga P, Ahsan F, Shamim A. Herbal Remedies: A Boon for Diabetic Neuropathy. J Diet Suppl 2018; 16:470-490. [PMID: 29580105 DOI: 10.1080/19390211.2018.1441203] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Diabetic neuropathy is a chronic complication of diabetes mellitus affecting about 50% of patients. Its symptoms include decreased motility and severe pain in peripheral parts. The pathogenesis involved is an abnormality in blood vessels that supply the peripheral nerves, metabolic disorders such as myo-inositol depletion, and increased nonenzymatic glycation. Moreover, oxidative stress in neurons results in activation of multiple biochemical pathways, which results in the generation of free radicals. Apart from available marketed formulations, extensive research is being carried out on herbal-based natural products to control hyperglycemia and its associated complications. This review is focused to provide a summary on diabetic neuropathy covering its etiology, types, and existing work on herbal-based therapies, which include pure compounds isolated from plant materials, plant extracts, and Ayurvedic preparations.
Collapse
Affiliation(s)
- Reshu Tiwari
- a Faculty of Pharmacy , Integral University , Dasauli , Lucknow , India
| | - Mohd Haris Siddiqui
- b Associate Professor & Head, Department of Bioengineering , Integral University , Dasauli, Lucknow , India
| | - Tarique Mahmood
- a Faculty of Pharmacy , Integral University , Dasauli , Lucknow , India
| | - Paramdeep Bagga
- a Faculty of Pharmacy , Integral University , Dasauli , Lucknow , India
| | - Farogh Ahsan
- a Faculty of Pharmacy , Integral University , Dasauli , Lucknow , India
| | - Arshiya Shamim
- a Faculty of Pharmacy , Integral University , Dasauli , Lucknow , India
| |
Collapse
|
3
|
Prasad SN, Bharath MMS. Neurorestorative effects of eugenol, a spice bioactive: Evidence in cell model and its efficacy as an intervention molecule to abrogate brain oxidative dysfunctions in the streptozotocin diabetic rat. Neurochem Int 2015; 95:24-36. [PMID: 26519099 DOI: 10.1016/j.neuint.2015.10.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Revised: 10/09/2015] [Accepted: 10/24/2015] [Indexed: 02/07/2023]
Abstract
Eugenol (EU), an active principle of cloves, is also widely distributed in various other plants (eg. basil, cinnamon, etc). While its antioxidant and anti-inflammatory properties are well established, biochemical insights related to its neuromodulatory potential in diabetic conditions are not clear. In the present study, initially we investigated its potential to modulate specific biochemical responses in SHSY5Y cells under experimentally -induced hyperglycemic condition. Co-exposure of cells with EU (5-10 μM) not only enhanced the cell viability, but significantly offset glucose -associated oxidative stress (as evidenced by diminished levels of reactive oxygen species and hydroperoxides). Further EU enhanced the reduced glutathione (GSH) levels and also ameliorated the levels of 3 - nitrotyrosine and expression of HSP70. We subsequently examined its efficacy to attenuate biochemical aberrations in brain regions of a streptozotocin (STZ) diabetic rat employing an intervention approach. Brain regions of EU treated (10 mg/kg bw/d, post 6 weeks of STZ) diabetic rats showed diminished levels of oxidative markers and protein carbonyls in both cytosolic and mitochondrial fractions. EU treatment caused enhanced activities of enzymic antioxidants and diminished both GSH and total thiols. Further, activities of complex I - III, succinate dehydrogenase and citrate synthase in brain regions were also significantly restored. Interestingly, EU treatment differentially attenuated the elevated activity of acetylcholinesterase and levels of calcium in brain regions. Collectively, based on the data obtained in in vitro and in vivo models, we hypothesize that EU may be employed as an adjuvant therapeutic molecule to alleviate complications under diabetic conditions.
Collapse
Affiliation(s)
- Sathya N Prasad
- Department of Biochemistry & Nutrition, CSIR - Central Food Technological Research Institute (CFTRI), Mysuru 570020, India
| | - M M Srinivas Bharath
- Department of Neurochemistry, National Institute of Mental Health and Neurosciences (NIMHANS), #2900, Hosur Road, Bengaluru 560029, India
| |
Collapse
|
4
|
Prasad SN, Muralidhara. Protective effects of geraniol (a monoterpene) in a diabetic neuropathy rat model: Attenuation of behavioral impairments and biochemical perturbations. J Neurosci Res 2014; 92:1205-16. [DOI: 10.1002/jnr.23393] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 02/26/2014] [Accepted: 03/18/2014] [Indexed: 12/29/2022]
Affiliation(s)
- Sathya N. Prasad
- Department of Biochemistry and Nutrition; CSIR-Central Food Technological Research Institute (CFTRI); Karnataka India
| | - Muralidhara
- Department of Biochemistry and Nutrition; CSIR-Central Food Technological Research Institute (CFTRI); Karnataka India
| |
Collapse
|
5
|
Fu Y, Luo J, Jia Z, Zhen W, Zhou K, Gilbert E, Liu D. Baicalein Protects against Type 2 Diabetes via Promoting Islet β-Cell Function in Obese Diabetic Mice. Int J Endocrinol 2014; 2014:846742. [PMID: 25147566 PMCID: PMC4132321 DOI: 10.1155/2014/846742] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 07/07/2014] [Accepted: 07/14/2014] [Indexed: 01/09/2023] Open
Abstract
In both type 1 (T1D) and type 2 diabetes (T2D), the deterioration of glycemic control over time is primarily caused by an inadequate mass and progressive dysfunction of β-cell, leading to the impaired insulin secretion. Here, we show that dietary supplementation of baicalein, a flavone isolated from the roots of Chinese herb Scutellaria baicalensis, improved glucose tolerance and enhanced glucose-stimulated insulin secretion (GSIS) in high-fat diet (HFD-) induced middle-aged obese mice. Baicalein had no effect on food intake, body weight gain, circulating lipid profile, and insulin sensitivity in obese mice. Using another mouse model of type 2 diabetes generated by high-fat diet (HFD) feeding and low doses of streptozotocin injection, we found that baicalein treatment significantly improved hyperglycemia, glucose tolerance, and blood insulin levels in these middle-aged obese diabetic mice, which are associated with the improved islet β-cell survival and mass. In the in vitro studies, baicalein significantly augmented GSIS and promoted viability of insulin-secreting cells and human islets cultured either in the basal medium or under chronic hyperlipidemic condition. These results demonstrate that baicalein may be a naturally occurring antidiabetic agent by directly modulating pancreatic β-cell function.
Collapse
Affiliation(s)
- Yu Fu
- Department of Human Nutrition, Foods & Exercises, College of Agriculture and Life Sciences, Virginia Tech, 1981 Kraft Drive, Corporate Research Center, Blacksburg, VA 24061, USA
| | - Jing Luo
- Department of Human Nutrition, Foods & Exercises, College of Agriculture and Life Sciences, Virginia Tech, 1981 Kraft Drive, Corporate Research Center, Blacksburg, VA 24061, USA
| | - Zhenquan Jia
- Department of Biology, The University of North Carolina at Greensboro, Greensboro, NC 27412, USA
| | - Wei Zhen
- Department of Human Nutrition, Foods & Exercises, College of Agriculture and Life Sciences, Virginia Tech, 1981 Kraft Drive, Corporate Research Center, Blacksburg, VA 24061, USA
| | - Kequan Zhou
- Department of Nutrition and Food Science, Wayne State University, Detroit , MI 48202, USA
| | - Elizabeth Gilbert
- Department of Human Nutrition, Foods & Exercises, College of Agriculture and Life Sciences, Virginia Tech, 1981 Kraft Drive, Corporate Research Center, Blacksburg, VA 24061, USA
| | - Dongmin Liu
- Department of Human Nutrition, Foods & Exercises, College of Agriculture and Life Sciences, Virginia Tech, 1981 Kraft Drive, Corporate Research Center, Blacksburg, VA 24061, USA
- *Dongmin Liu:
| |
Collapse
|
6
|
Diabetic neuropathy and oxidative stress: therapeutic perspectives. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:168039. [PMID: 23738033 PMCID: PMC3655656 DOI: 10.1155/2013/168039] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2012] [Revised: 02/22/2013] [Accepted: 03/18/2013] [Indexed: 12/15/2022]
Abstract
Diabetic neuropathy (DN) is a widespread disabling disorder comprising peripheral nerves' damage. DN develops on a background of hyperglycemia and an entangled metabolic imbalance, mainly oxidative stress. The majority of related pathways like polyol, advanced glycation end products, poly-ADP-ribose polymerase, hexosamine, and protein kinase c all originated from initial oxidative stress. To date, no absolute cure for DN has been defined; although some drugs are conventionally used, much more can be found if all pathophysiological links with oxidative stress would be taken into account. In this paper, although current therapies for DN have been reviewed, we have mainly focused on the links between DN and oxidative stress and therapies on the horizon, such as inhibitors of protein kinase C, aldose reductase, and advanced glycation. With reference to oxidative stress and the related pathways, the following new drugs are under study such as taurine, acetyl-L-carnitine, alpha lipoic acid, protein kinase C inhibitor (ruboxistaurin), aldose reductase inhibitors (fidarestat, epalrestat, ranirestat), advanced glycation end product inhibitors (benfotiamine, aspirin, aminoguanidine), the hexosamine pathway inhibitor (benfotiamine), inhibitor of poly ADP-ribose polymerase (nicotinamide), and angiotensin-converting enzyme inhibitor (trandolapril). The development of modern drugs to treat DN is a real challenge and needs intensive long-term comparative trials.
Collapse
|
7
|
Modulating molecular chaperones improves sensory fiber recovery and mitochondrial function in diabetic peripheral neuropathy. Exp Neurol 2012; 235:388-96. [PMID: 22465570 DOI: 10.1016/j.expneurol.2012.03.005] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Revised: 03/03/2012] [Accepted: 03/12/2012] [Indexed: 12/20/2022]
Abstract
Quantification of intra-epidermal nerve fibers (iENFs) is an important approach to stage diabetic peripheral neuropathy (DPN) and is a promising clinical endpoint for identifying beneficial therapeutics. Mechanistically, diabetes decreases neuronal mitochondrial function and enhancing mitochondrial respiratory capacity may aid neuronal recovery from glucotoxic insults. We have proposed that modulating the activity and expression of heat shock proteins (Hsp) may be of benefit in treating DPN. KU-32 is a C-terminal Hsp90 inhibitor that improved thermal hypoalgesia in diabetic C57Bl/6 mice but it was not determined if this was associated with an increase in iENF density and mitochondrial function. After 16 weeks of diabetes, Swiss Webster mice showed decreased electrophysiological and psychosensory responses and a >30% loss of iENFs. Treatment of the mice with ten weekly doses of 20mg/kg KU-32 significantly reversed pre-existing deficits in nerve conduction velocity and responses to mechanical and thermal stimuli. KU-32 therapy significantly reversed the pre-existing loss of iENFs despite the identification of a sub-group of drug-treated diabetic mice that showed improved thermal sensitivity but no increase in iENF density. To determine if the improved clinical indices correlated with enhanced mitochondrial activity, sensory neurons were isolated and mitochondrial bioenergetics assessed ex vivo using extracellular flux technology. Diabetes decreased maximal respiratory capacity in sensory neurons and this deficit was improved following KU-32 treatment. In conclusion, KU-32 improved physiological and morphologic markers of degenerative neuropathy and drug efficacy may be related to enhanced mitochondrial bioenergetics in sensory neurons.
Collapse
|