1
|
Sysoev YI, Shkorbatova PY, Prikhodko VA, Kalinina DS, Bazhenova EY, Okovityi SV, Bader M, Alenina N, Gainetdinov RR, Musienko PE. Central Serotonin Deficiency Impairs Recovery of Sensorimotor Abilities After Spinal Cord Injury in Rats. Int J Mol Sci 2025; 26:2761. [PMID: 40141402 PMCID: PMC11942851 DOI: 10.3390/ijms26062761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/09/2025] [Accepted: 03/10/2025] [Indexed: 03/28/2025] Open
Abstract
Spinal cord injury (SCI) affects millions of people worldwide. One of the main challenges of rehabilitation strategies is re-training and enhancing the plasticity of the spinal circuitry that was preserved or rebuilt after the injury. The serotonergic system appears to be crucial in these processes, since recent studies have reported the capability of serotonergic (5-HT) axons for axonal sprouting and regeneration in response to central nervous system (CNS) trauma or neurodegeneration. We took advantage of tryptophan hydroxylase 2 knockout (TPH2 KO) rats, lacking serotonin specifically in the brain and spinal cord, to study the role of the serotonergic system in the recovery of sensorimotor function after SCI. In the present work, we compared the rate of sensorimotor recovery of TPH2 KO and wild-type (WT) female rats after SCI (lateral hemisection at the T8 spinal level). SCI caused severe motor impairments in the ipsilateral left hindlimb, the most pronounced in the first week after the hemisection with gradual functional recovery during the following 3 weeks. The results demonstrate that TPH2 KO rats have less potential to recover motor functions since the degree of sensorimotor deficit in the tapered beam walking test (TBW) and ladder walking test (LW) was significantly higher in the TPH2 KO group in comparison to the WT animals in the 3rd and 4th weeks after SCI. The recovery dynamics of the hindlimb muscle tone and voluntary movements was in agreement with the restoration of motor performance in TBW and LW. Compound muscle action potential analysis in the gastrocnemius (GM) and tibialis (TA) muscles of both hindlimbs after electrical stimulation of the sciatic nerve or lumbar region (L5-L6) of the spinal cord indicated slower recovery of sensorimotor pathways in the TPH2 KO group versus their WT counterparts. In general, the observed results confirm the significance of central serotonergic mechanisms in the recovery of sensorimotor functions in rats and the relevance of the TPH2 KO rat model in studying the role of the 5-HT system in neurorehabilitation.
Collapse
Affiliation(s)
- Yuri I. Sysoev
- Department of Neuroscience, Sirius University of Science and Technology, Sirius 353340, Russia; (Y.I.S.)
- Pavlov Institute of Physiology of the RAS, Saint Petersburg 199034, Russia; (P.Y.S.); (E.Y.B.)
| | - Polina Y. Shkorbatova
- Pavlov Institute of Physiology of the RAS, Saint Petersburg 199034, Russia; (P.Y.S.); (E.Y.B.)
- Institute of Translational Biomedicine, Saint Petersburg State University, 7–9 Universitetskaya Emb., Saint Petersburg 199034, Russia;
| | - Veronika A. Prikhodko
- Department of Pharmacology and Clinical Pharmacology, Saint Petersburg State Chemical and Pharmaceutical University, Saint Petersburg 197022, Russia; (V.A.P.); (S.V.O.)
| | - Daria S. Kalinina
- Department of Neuroscience, Sirius University of Science and Technology, Sirius 353340, Russia; (Y.I.S.)
- Institute of Translational Biomedicine, Saint Petersburg State University, 7–9 Universitetskaya Emb., Saint Petersburg 199034, Russia;
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the RAS, Saint Petersburg 194223, Russia
| | - Elena Y. Bazhenova
- Pavlov Institute of Physiology of the RAS, Saint Petersburg 199034, Russia; (P.Y.S.); (E.Y.B.)
- Institute of Translational Biomedicine, Saint Petersburg State University, 7–9 Universitetskaya Emb., Saint Petersburg 199034, Russia;
| | - Sergey V. Okovityi
- Department of Pharmacology and Clinical Pharmacology, Saint Petersburg State Chemical and Pharmaceutical University, Saint Petersburg 197022, Russia; (V.A.P.); (S.V.O.)
| | - Michael Bader
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany; (M.B.); (N.A.)
| | - Natalia Alenina
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany; (M.B.); (N.A.)
| | - Raul R. Gainetdinov
- Institute of Translational Biomedicine, Saint Petersburg State University, 7–9 Universitetskaya Emb., Saint Petersburg 199034, Russia;
| | - Pavel E. Musienko
- Department of Neuroscience, Sirius University of Science and Technology, Sirius 353340, Russia; (Y.I.S.)
- Federal Center of Brain Research and Neurotechnologies, Moscow 199330, Russia
- Life Improvement by Future Technologies Center, Moscow 143025, Russia
| |
Collapse
|
2
|
Tashiro S, Shibata S, Nagoshi N, Zhang L, Yamada S, Tsuji T, Nakamura M, Okano H. Do Pharmacological Treatments Act in Collaboration with Rehabilitation in Spinal Cord Injury Treatment? A Review of Preclinical Studies. Cells 2024; 13:412. [PMID: 38474376 PMCID: PMC10931131 DOI: 10.3390/cells13050412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/18/2024] [Accepted: 02/24/2024] [Indexed: 03/14/2024] Open
Abstract
There is no choice other than rehabilitation as a practical medical treatment to restore impairments or improve activities after acute treatment in people with spinal cord injury (SCI); however, the effect is unremarkable. Therefore, researchers have been seeking effective pharmacological treatments. These will, hopefully, exert a greater effect when combined with rehabilitation. However, no review has specifically summarized the combinatorial effects of rehabilitation with various medical agents. In the current review, which included 43 articles, we summarized the combinatorial effects according to the properties of the medical agents, namely neuromodulation, neurotrophic factors, counteraction to inhibitory factors, and others. The recovery processes promoted by rehabilitation include the regeneration of tracts, neuroprotection, scar tissue reorganization, plasticity of spinal circuits, microenvironmental change in the spinal cord, and enforcement of the musculoskeletal system, which are additive, complementary, or even synergistic with medication in many cases. However, there are some cases that lack interaction or even demonstrate competition between medication and rehabilitation. A large fraction of the combinatorial mechanisms remains to be elucidated, and very few studies have investigated complex combinations of these agents or targeted chronically injured spinal cords.
Collapse
Affiliation(s)
- Syoichi Tashiro
- Department of Rehabilitation Medicine, School of Medicine, Keio University, Tokyo 160-8582, Japan
- Department of Rehabilitation Medicine, Faculty of Medicine, Kyorin University, Tokyo 181-8611, Japan
| | - Shinsuke Shibata
- Division of Microscopic Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan
| | - Narihito Nagoshi
- Department of Orthopaedic Surgery, School of Medicine, Keio University, Tokyo 160-8582, Japan
| | - Liang Zhang
- Department of Rehabilitation Medicine, Faculty of Medicine, Kyorin University, Tokyo 181-8611, Japan
| | - Shin Yamada
- Department of Rehabilitation Medicine, Faculty of Medicine, Kyorin University, Tokyo 181-8611, Japan
| | - Tetsuya Tsuji
- Department of Rehabilitation Medicine, School of Medicine, Keio University, Tokyo 160-8582, Japan
| | - Masaya Nakamura
- Department of Orthopaedic Surgery, School of Medicine, Keio University, Tokyo 160-8582, Japan
| | - Hideyuki Okano
- Department of Physiology, School of Medicine, Keio University, Tokyo 160-8582, Japan
| |
Collapse
|
3
|
Nandakumar B, Blumenthal GH, Disse GD, Desmond PC, Ebinu JO, Ricard J, Bethea JR, Moxon KA. Exercise therapy guides cortical reorganization after midthoracic spinal contusion to enhance control of lower thoracic muscles, supporting functional recovery. Exp Neurol 2023; 364:114394. [PMID: 37001630 DOI: 10.1016/j.expneurol.2023.114394] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 03/20/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023]
Abstract
Postural control is critical for locomotion, allowing for gait changes, obstacle avoidance and navigation of rough terrain. A major problem after spinal cord injury (SCI) is regaining the control of balance to prevent falls and further injury. While the circuits for locomotor pattern generation reside in the spinal cord, postural control consists of multiple, complex networks that interact at the spinal, brainstem and cortical levels. After complete SCI, cortical reorganization establishes novel control of trunk musculature that is required for weight-supported stepping. In this study, we examined the impact of exercise therapy on cortical reorganization in the more clinically relevant models of both moderate and severe midthoracic contusion injury in the rat. Results demonstrate that both spontaneous recovery and therapy induced recovery of weight-supported stepping utilize cortical reorganization. Moreover, exercise therapy further improves outcome by enhancing cortical control of lower thoracic muscles enabling improvements in interlimb coordination associated with improved balance that increases weight-supported stepping. The outcome of this study suggest that cortical control of posture is key to functional improvement in locomotion. This information can be used to improve the timing and type of therapy after SCI by considering changes along the entire neural axis.
Collapse
Affiliation(s)
- Bharadwaj Nandakumar
- Department of Biomedical Engineering, University of California, Davis, CA 95616, USA; School of Biomedical Engineering Science and Health Systems, Drexel University, Philadelphia, PA 19104, USA
| | - Gary H Blumenthal
- Department of Biomedical Engineering, University of California, Davis, CA 95616, USA; School of Biomedical Engineering Science and Health Systems, Drexel University, Philadelphia, PA 19104, USA
| | - Gregory D Disse
- Neuroscience Graduate Program, University of California, Davis, CA 95616, USA
| | - Pierce C Desmond
- Department of Biomedical Engineering, University of California, Davis, CA 95616, USA
| | - Julius O Ebinu
- Department of Neurological Surgery, University of California, Davis, CA 95616, USA
| | - Jerome Ricard
- School of Biomedical Engineering Science and Health Systems, Drexel University, Philadelphia, PA 19104, USA
| | - John R Bethea
- School of Biomedical Engineering Science and Health Systems, Drexel University, Philadelphia, PA 19104, USA
| | - Karen A Moxon
- Department of Biomedical Engineering, University of California, Davis, CA 95616, USA; Neuroscience Graduate Program, University of California, Davis, CA 95616, USA; Department of Neurological Surgery, University of California, Davis, CA 95616, USA.
| |
Collapse
|
4
|
Mitrović SZ, Konstantinović LM, Miler Jerković V, Dedijer-Dujović S, Djordjević OC. Extended Poststroke Rehabilitation Combined with Cerebrolysin Promotes Upper Limb Motor Recovery in Early Subacute Phase of Rehabilitation: A Randomized Clinical Study. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:medicina59020291. [PMID: 36837492 PMCID: PMC9958781 DOI: 10.3390/medicina59020291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 02/08/2023]
Abstract
Background and Objectives: The recovery of stroke patients with severe impairment is usually poor and limited and, unfortunately, under-investigated in clinical studies. In order to support neuroplasticity and modulate motor recovery, Cerebrolysin combined with rehabilitation treatment has proven effective in the acute stroke phase in moderate to severe motor impairment. The aim of this study was to determine the efficacy of extended poststroke rehabilitation combined with Cerebrolysin on upper limb motor recovery in subacute stroke patients with severe upper limb motor impairment. Materials and Methods: A randomized, double-blind, placebo-controlled study was conducted. Sixty patients at the early stage of severe sub-acute stroke who fulfilled all eligibility criteria were randomly assigned to the Cerebrolysin group or placebo group (𝑛 = 30 each). Both groups, after conducting three weeks of conventional rehabilitation treatment five days per week, continued to perform conventional rehabilitation treatment three times per week until 90 days of rehabilitation treatment. The primary outcome measure was the Action Research Arm Test (ARAT), and the secondary outcomes were the Fugl-Meyer Assessment-Upper Extremity (FMA-UE) motor score, Barthel index (BI), and the National Institutes of Health Stroke Scale (NIHSS). The outcome data were evaluated before, after three weeks of treatment, and on the 90th day of rehabilitation treatment, and compared within groups and between the two groups. There were no adverse events. Results: Both groups showed a significant improvement (p < 0.001) over time in BI, FMA-UE, ARAT, and NIHSS scores. Patients receiving Cerebrolysin showed more significant improvement in post-stroke upper limb motor impairment and functioning compared to the placebo group after only three weeks, and the trend was maintained after 90 days of follow up. Conclusion: Cerebrolysin delivered in the early subacute post-stroke phase added to extended conventional rehabilitation treatment is beneficial and improves motor functional recovery in patients with severe motor impairment, especially on the paretic upper extremity.
Collapse
Affiliation(s)
- Sindi Z. Mitrović
- Clinic for Rehabilitation “Dr. Miroslav Zotović”, Faculty of Medicine, University of Belgrade, Sokobanjska 13, 11000 Belgrade, Serbia
- Correspondence: (S.Z.M.); (L.M.K.)
| | - Ljubica M. Konstantinović
- Clinic for Rehabilitation “Dr. Miroslav Zotović”, Faculty of Medicine, University of Belgrade, Sokobanjska 13, 11000 Belgrade, Serbia
- Correspondence: (S.Z.M.); (L.M.K.)
| | - Vera Miler Jerković
- Innovation Center, School of Electrical Engineering, University of Belgrade, Bulevar Kralja Aleksandra 73, 11120 Belgrade, Serbia
| | - Suzana Dedijer-Dujović
- Clinic for Rehabilitation “Dr. Miroslav Zotović”, Faculty of Medicine, University of Belgrade, Sokobanjska 13, 11000 Belgrade, Serbia
| | - Olivera C. Djordjević
- Clinic for Rehabilitation “Dr. Miroslav Zotović”, Faculty of Medicine, University of Belgrade, Sokobanjska 13, 11000 Belgrade, Serbia
| |
Collapse
|
5
|
Dougherty JB, Disse GD, Bridges NR, Moxon KA. Effect of spinal cord injury on neural encoding of spontaneous postural perturbations in the hindlimb sensorimotor cortex. J Neurophysiol 2021; 126:1555-1567. [PMID: 34379540 PMCID: PMC8782649 DOI: 10.1152/jn.00727.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 07/02/2021] [Accepted: 07/02/2021] [Indexed: 11/22/2022] Open
Abstract
Supraspinal signals play a significant role in compensatory responses to postural perturbations. Although the cortex is not necessary for basic postural tasks in intact animals, its role in responding to unexpected postural perturbations after spinal cord injury (SCI) has not been studied. To better understand how SCI impacts cortical encoding of postural perturbations, the activity of single neurons in the hindlimb sensorimotor cortex (HLSMC) was recorded in the rat during unexpected tilts before and after a complete midthoracic spinal transection. In a subset of animals, limb ground reaction forces were also collected. HLSMC activity was strongly modulated in response to different tilt profiles. As the velocity of the tilt increased, more information was conveyed by the HLSMC neurons about the perturbation due to increases in both the number of recruited neurons and the magnitude of their responses. SCI led to attenuated and delayed hindlimb ground reaction forces. However, HLSMC neurons remained responsive to tilts after injury but with increased latencies and decreased tuning to slower tilts. Information conveyed by cortical neurons about the tilts was therefore reduced after SCI, requiring more cells to convey the same amount of information as before the transection. Given that reorganization of the hindlimb sensorimotor cortex in response to therapy after complete midthoracic SCI is necessary for behavioral recovery, this sustained encoding of information after SCI could be a substrate for the reorganization that uses sensory information from above the lesion to control trunk muscles that permit weight-supported stepping and postural control.NEW & NOTEWORTHY The role of cortical circuits in the encoding of posture and balance is of interest for developing therapies for spinal cord injury. This work demonstrated that unexpected postural perturbations are encoded in the hindlimb sensorimotor cortex even in the absence of hindlimb sensory feedback. In fact, the hindlimb sensorimotor cortex continues to encode for postural perturbations after complete spinal transection.
Collapse
Affiliation(s)
- Jaimie B Dougherty
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania
| | - Gregory D Disse
- Department of Biomedical Engineering, University of California at Davis, Davis, California
| | - Nathaniel R Bridges
- Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, Ohio
| | - Karen A Moxon
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania
- Department of Biomedical Engineering, University of California at Davis, Davis, California
| |
Collapse
|
6
|
Zaforas M, Rosa JM, Alonso-Calviño E, Fernández-López E, Miguel-Quesada C, Oliviero A, Aguilar J. Cortical layer-specific modulation of neuronal activity after sensory deprivation due to spinal cord injury. J Physiol 2021; 599:4643-4669. [PMID: 34418097 PMCID: PMC9292026 DOI: 10.1113/jp281901] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 08/19/2021] [Indexed: 11/28/2022] Open
Abstract
Abstract Cortical areas have the capacity of large‐scale reorganization following sensory deafferentation. However, it remains unclear whether this phenomenon is a unique process that homogeneously affects the entire deprived cortical region or whether it is susceptible to changes depending on neuronal networks across distinct cortical layers. Here, we studied how the local circuitry within each layer of the deafferented cortex forms the basis for neuroplastic changes after immediate thoracic spinal cord injury (SCI) in anaesthetized rats. In vivo electrophysiological recordings from deafferented hindlimb somatosensory cortex showed that SCI induces layer‐specific changes mediating evoked and spontaneous activity. In supragranular layer 2/3, SCI increased gamma oscillations and the ability of these neurons to initiate up‐states during spontaneous activity, suggesting an altered corticocortical network and/or intrinsic properties that may serve to maintain the excitability of the cortical column after deafferentation. On the other hand, SCI enhanced the infragranular layers’ ability to integrate evoked sensory inputs leading to increased and faster neuronal responses. Delayed evoked response onsets were also observed in layer 5/6, suggesting alterations in thalamocortical connectivity. Altogether, our data indicate that SCI immediately modifies the local circuitry within the deafferented cortex allowing supragranular layers to better integrate spontaneous corticocortical information, thus modifying column excitability, and infragranular layers to better integrate evoked sensory inputs to preserve subcortical outputs. These layer‐specific neuronal changes may guide the long‐term alterations in neuronal excitability and plasticity associated with the rearrangements of somatosensory networks and the appearance of central sensory pathologies usually associated with spinal cord injury. Key points Sensory stimulation of forelimb produces cortical evoked responses in the somatosensory hindlimb cortex in a layer‐dependent manner. Spinal cord injury favours the input statistics of corticocortical connections between intact and deafferented cortices. After spinal cord injury supragranular layers exhibit better integration of spontaneous corticocortical information while infragranular layers exhibit better integration of evoked sensory stimulation. Cortical reorganization is a layer‐specific phenomenon.
Collapse
Affiliation(s)
- Marta Zaforas
- Experimental Neurophysiology and Neuronal Circuits Group, Research Unit, Hospital Nacional de Parapléjicos - SESCAM, Toledo, 45071, Spain.,FENNSI Group, Hospital Nacional de Parapléjicos - SESCAM, Research Unit, Toledo, 45071, Spain
| | - Juliana M Rosa
- Experimental Neurophysiology and Neuronal Circuits Group, Research Unit, Hospital Nacional de Parapléjicos - SESCAM, Toledo, 45071, Spain
| | - Elena Alonso-Calviño
- Experimental Neurophysiology and Neuronal Circuits Group, Research Unit, Hospital Nacional de Parapléjicos - SESCAM, Toledo, 45071, Spain
| | - Elena Fernández-López
- Experimental Neurophysiology and Neuronal Circuits Group, Research Unit, Hospital Nacional de Parapléjicos - SESCAM, Toledo, 45071, Spain
| | - Claudia Miguel-Quesada
- Experimental Neurophysiology and Neuronal Circuits Group, Research Unit, Hospital Nacional de Parapléjicos - SESCAM, Toledo, 45071, Spain
| | - Antonio Oliviero
- FENNSI Group, Hospital Nacional de Parapléjicos - SESCAM, Research Unit, Toledo, 45071, Spain
| | - Juan Aguilar
- Experimental Neurophysiology and Neuronal Circuits Group, Research Unit, Hospital Nacional de Parapléjicos - SESCAM, Toledo, 45071, Spain
| |
Collapse
|
7
|
Krupa P, Siddiqui AM, Grahn PJ, Islam R, Chen BK, Madigan NN, Windebank AJ, Lavrov IA. The Translesional Spinal Network and Its Reorganization after Spinal Cord Injury. Neuroscientist 2020; 28:163-179. [PMID: 33089762 DOI: 10.1177/1073858420966276] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Evidence from preclinical and clinical research suggest that neuromodulation technologies can facilitate the sublesional spinal networks, isolated from supraspinal commands after spinal cord injury (SCI), by reestablishing the levels of excitability and enabling descending motor signals via residual connections. Herein, we evaluate available evidence that sublesional and supralesional spinal circuits could form a translesional spinal network after SCI. We further discuss evidence of translesional network reorganization after SCI in the presence of sensory inputs during motor training. In this review, we evaluate potential mechanisms that underlie translesional circuitry reorganization during neuromodulation and rehabilitation in order to enable motor functions after SCI. We discuss the potential of neuromodulation technologies to engage various components that comprise the translesional network, their functional recovery after SCI, and the implications of the concept of translesional network in development of future neuromodulation, rehabilitation, and neuroprosthetics technologies.
Collapse
Affiliation(s)
- Petr Krupa
- Department of Neurosurgery, University Hospital Hradec Kralove, Charles University, Faculty of Medicine in Hradec Kralove, Czech Republic.,Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czech Republic
| | | | - Peter J Grahn
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN, USA.,Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Riazul Islam
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Bingkun K Chen
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | | | | | - Igor A Lavrov
- Department of Neurology, Mayo Clinic, Rochester, MN, USA.,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA.,Kazan Federal University, Kazan, Russia
| |
Collapse
|
8
|
Melo MC, Macedo DR, Soares AB. Divergent Findings in Brain Reorganization After Spinal Cord Injury: A Review. J Neuroimaging 2020; 30:410-427. [PMID: 32418286 DOI: 10.1111/jon.12711] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 03/02/2020] [Accepted: 03/24/2020] [Indexed: 12/12/2022] Open
Abstract
Spinal cord injury (SCI) leads to a general lack of sensory and motor functions below the level of injury and may promote deafferentation-induced brain reorganization. Functional magnetic resonance imaging (fMRI) has been established as an essential tool in neuroscience research and can precisely map the spatiotemporal distribution of brain activity. Task-based fMRI experiments associated with the tongue, upper limbs, or lower limbs have been used as the primary paradigms to study brain reorganization following SCI. A review of the current literature on the subject shows one common trait: while most articles agree that brain networks are usually preserved after SCI, and that is not the case as some articles describe possible alterations in brain activation after the lesion. There is no consensus if those alterations indeed occur. In articles that show alterations, there is no agreement if they are transient or permanent. Besides, there is no consensus on which areas are most prone to activation changes, or on the intensity and direction (increase vs. decrease) of those possible changes. In this article, we present a critical review of the literature and trace possible reasons for those contradictory findings on brain reorganization following SCI. fMRI studies based on the ankle dorsiflexion, upper-limb, and tongue paradigms are used as case studies for the analyses.
Collapse
Affiliation(s)
- Mariana Cardoso Melo
- Biomedical Engineering Lab, Federal University of Uberlandia, Uberlandia, Minas Gerais, Brazil
| | - Dhainner Rocha Macedo
- Biomedical Engineering Lab, Federal University of Uberlandia, Uberlandia, Minas Gerais, Brazil
| | - Alcimar Barbosa Soares
- Biomedical Engineering Lab, Federal University of Uberlandia, Uberlandia, Minas Gerais, Brazil
| |
Collapse
|
9
|
Ganzer PD, Colachis SC, Schwemmer MA, Friedenberg DA, Dunlap CF, Swiftney CE, Jacobowitz AF, Weber DJ, Bockbrader MA, Sharma G. Restoring the Sense of Touch Using a Sensorimotor Demultiplexing Neural Interface. Cell 2020; 181:763-773.e12. [DOI: 10.1016/j.cell.2020.03.054] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 10/09/2019] [Accepted: 03/24/2020] [Indexed: 12/11/2022]
|
10
|
Krishnan VS, Shin SS, Belegu V, Celnik P, Reimers M, Smith KR, Pelled G. Multimodal Evaluation of TMS - Induced Somatosensory Plasticity and Behavioral Recovery in Rats With Contusion Spinal Cord Injury. Front Neurosci 2019; 13:387. [PMID: 31068784 PMCID: PMC6491761 DOI: 10.3389/fnins.2019.00387] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 04/04/2019] [Indexed: 12/16/2022] Open
Abstract
Introduction: Spinal cord injury (SCI) causes partial or complete damage to sensory and motor pathways and induces immediate changes in cortical function. Current rehabilitative strategies do not address this early alteration, therefore impacting the degree of neuroplasticity and subsequent recovery. The following study aims to test if a non-invasive brain stimulation technique such as repetitive transcranial magnetic stimulation (rTMS) is effective in promoting plasticity and rehabilitation, and can be used as an early intervention strategy in a rat model of SCI. Methods: A contusion SCI was induced at segment T9 in adult rats. An rTMS coil was positioned over the brain to deliver high frequency stimulation. Behavior, motor and sensory functions were tested in three groups: SCI rats that received high-frequency (20 Hz) rTMS within 10 min post-injury (acute-TMS; n = 7); SCI rats that received TMS starting 2 weeks post-injury (chronic-TMS; n = 5), and SCI rats that received sham TMS (no-TMS, n = 5). Locomotion was evaluated by the Basso, Beattie, and Bresnahan (BBB) and gridwalk tests. Motor evoked potentials (MEP) were recorded from the forepaw across all groups to measure integrity of motor pathways. Functional MRI (fMRI) responses to contralateral tactile hindlimb stimulation were measured in an 11.7T horizontal bore small-animal scanner. Results: The acute-TMS group demonstrated the fastest improvements in locomotor performance in both the BBB and gridwalk tests compared to chronic and no-TMS groups. MEP responses from forepaw showed significantly greater difference in the inter-peak latency between acute-TMS and no-TMS groups, suggesting increases in motor function. Finally, the acute-TMS group showed increased fMRI-evoked responses to hindlimb stimulation over the right and left hindlimb (LHL) primary somatosensory representations (S1), respectively; the chronic-TMS group showed moderate sensory responses in comparison, and the no-TMS group exhibited the lowest sensory responses to both hindlimbs. Conclusion: The results suggest that rTMS therapy beginning in the acute phase after SCI promotes neuroplasticity and is an effective rehabilitative approach in a rat model of SCI.
Collapse
Affiliation(s)
- Vijai S Krishnan
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, United States.,The Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, United States.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States.,Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Samuel S Shin
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Visar Belegu
- Department of Neurology and Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States.,International Center for Spinal Cord Injury, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Pablo Celnik
- Department of Physical Medicine and Rehabilitation, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Mark Reimers
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, United States.,The Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, United States
| | - Kylie R Smith
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, United States.,The Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, United States
| | - Galit Pelled
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, United States.,The Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, United States.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States.,Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States.,Department of Radiology, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
11
|
Ganzer PD, Sharma G. Opportunities and challenges for developing closed-loop bioelectronic medicines. Neural Regen Res 2019; 14:46-50. [PMID: 30531069 PMCID: PMC6262994 DOI: 10.4103/1673-5374.243697] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The peripheral nervous system plays a major role in the maintenance of our physiology. Several peripheral nerves intimately regulate the state of the brain, spinal cord, and visceral systems. A new class of therapeutics, called bioelectronic medicines, are being developed to precisely regulate physiology and treat dysfunction using peripheral nerve stimulation. In this review, we first discuss new work using closed-loop bioelectronic medicine to treat upper limb paralysis. In contrast to open-loop bioelectronic medicines, closed-loop approaches trigger ‘on demand’ peripheral nerve stimulation due to a change in function (e.g., during an upper limb movement or a change in cardiopulmonary state). We also outline our perspective on timing rules for closed-loop bioelectronic stimulation, interface features for non-invasively stimulating peripheral nerves, and machine learning algorithms to recognize disease events for closed-loop stimulation control. Although there will be several challenges for this emerging field, we look forward to future bioelectronic medicines that can autonomously sense changes in the body, to provide closed-loop peripheral nerve stimulation and treat disease.
Collapse
Affiliation(s)
- Patrick D Ganzer
- Medical Devices and Neuromodulation, Battelle Memorial Institute, Columbus, OH, USA
| | - Gaurav Sharma
- Medical Devices and Neuromodulation, Battelle Memorial Institute, Columbus, OH, USA
| |
Collapse
|
12
|
Chollet F, Rigal J, Marque P, Barbieux-Guillot M, Raposo N, Fabry V, Albucher JF, Pariente J, Loubinoux I. Serotonin Selective Reuptake Inhibitors (SSRIs) and Stroke. Curr Neurol Neurosci Rep 2018; 18:100. [PMID: 30353288 DOI: 10.1007/s11910-018-0904-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
PURPOSE OF REVIEW The interest in SSRIs after stroke has increased in the past few years, with better knowledge of post-stroke depression and with the demonstrated capacity of some SSRIs to act on the functional recovery of non-depressed subjects. RECENT FINDINGS Arguments for the action of SSRIs in favour of post-stroke neurological function recovery have improved through new elements: basic science and preclinical data, positive clinical trials and repeated series of stroke patient meta-analysis, and confirmation of favourable safety conditions in post-stroke patients. Global coherence is appearing, showing that SSRIs improve stroke recovery in non-depressed patients when given for 3 months after the stroke, with highly favourable safety conditions and a favourable benefit/risk ratio. Large series are still needed.
Collapse
Affiliation(s)
- F Chollet
- Neurology Department, Hôpital Pierre-Paul Riquet, Centre Hospitalier Universitaire de Toulouse, Toulouse, France. .,Toulouse Neuro-Imaging, Inserm, UPS, Université de Toulouse, Toulouse, France.
| | - J Rigal
- Neurology Department, Hôpital Pierre-Paul Riquet, Centre Hospitalier Universitaire de Toulouse, Toulouse, France.,Toulouse Neuro-Imaging, Inserm, UPS, Université de Toulouse, Toulouse, France
| | - P Marque
- Toulouse Neuro-Imaging, Inserm, UPS, Université de Toulouse, Toulouse, France.,Rehabilitation Department, Hôpital de Rangueil, Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| | - M Barbieux-Guillot
- Neurology Department, Hôpital Pierre-Paul Riquet, Centre Hospitalier Universitaire de Toulouse, Toulouse, France.,Toulouse Neuro-Imaging, Inserm, UPS, Université de Toulouse, Toulouse, France
| | - N Raposo
- Neurology Department, Hôpital Pierre-Paul Riquet, Centre Hospitalier Universitaire de Toulouse, Toulouse, France.,Toulouse Neuro-Imaging, Inserm, UPS, Université de Toulouse, Toulouse, France
| | - V Fabry
- Neurology Department, Hôpital Pierre-Paul Riquet, Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| | - J F Albucher
- Neurology Department, Hôpital Pierre-Paul Riquet, Centre Hospitalier Universitaire de Toulouse, Toulouse, France.,Toulouse Neuro-Imaging, Inserm, UPS, Université de Toulouse, Toulouse, France
| | - J Pariente
- Neurology Department, Hôpital Pierre-Paul Riquet, Centre Hospitalier Universitaire de Toulouse, Toulouse, France.,Toulouse Neuro-Imaging, Inserm, UPS, Université de Toulouse, Toulouse, France
| | - I Loubinoux
- Toulouse Neuro-Imaging, Inserm, UPS, Université de Toulouse, Toulouse, France
| |
Collapse
|
13
|
Bridges NR, Meyers M, Garcia J, Shewokis PA, Moxon KA. A rodent brain-machine interface paradigm to study the impact of paraplegia on BMI performance. J Neurosci Methods 2018; 306:103-114. [PMID: 29859878 DOI: 10.1016/j.jneumeth.2018.05.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 05/17/2018] [Accepted: 05/20/2018] [Indexed: 01/07/2023]
Abstract
BACKGROUND Most brain machine interfaces (BMI) focus on upper body function in non-injured animals, not addressing the lower limb functional needs of those with paraplegia. A need exists for a novel BMI task that engages the lower body and takes advantage of well-established rodent spinal cord injury (SCI) models to study methods to improve BMI performance. NEW METHOD A tilt BMI task was designed that randomly applies different types of tilts to a platform, decodes the tilt type applied and rights the platform if the decoder correctly classifies the tilt type. The task was tested on female rats and is relatively natural such that it does not require the animal to learn a new skill. It is self-rewarding such that there is no need for additional rewards, eliminating food or water restriction, which can be especially hard on spinalized rats. Finally, task difficulty can be adjusted by making the tilt parameters. RESULTS This novel BMI task bilaterally engages the cortex without visual feedback regarding limb position in space and animals learn to improve their performance both pre and post-SCI.Comparison with Existing Methods: Most BMI tasks primarily engage one hemisphere, are upper-body, rely heavily on visual feedback, do not perform investigations in animal models of SCI, and require nonnaturalistic extrinsic motivation such as water rewarding for performance improvement. Our task addresses these gaps. CONCLUSIONS The BMI paradigm presented here will enable researchers to investigate the interaction of plasticity after SCI and plasticity during BMI training on performance.
Collapse
Affiliation(s)
- Nathaniel R Bridges
- Drexel University, School of Biomedical Engineering, Science and Health Systems, 3141 Chestnut Street, Philadelphia, PA, 19104, USA
| | - Michael Meyers
- Drexel University, School of Biomedical Engineering, Science and Health Systems, 3141 Chestnut Street, Philadelphia, PA, 19104, USA
| | - Jonathan Garcia
- Drexel University, School of Biomedical Engineering, Science and Health Systems, 3141 Chestnut Street, Philadelphia, PA, 19104, USA
| | - Patricia A Shewokis
- Drexel University, School of Biomedical Engineering, Science and Health Systems, 3141 Chestnut Street, Philadelphia, PA, 19104, USA; Drexel University, Nutrition Sciences Department, College of Nursing and Health Professions, 1601 Cherry St., 382 Parkway Building, Philadelphia, PA, 19102, USA
| | - Karen A Moxon
- Drexel University, School of Biomedical Engineering, Science and Health Systems, 3141 Chestnut Street, Philadelphia, PA, 19104, USA; University of California Davis, Department of Biomedical Engineering, 451 E. Health Sciences Drive, GBSF 2303, Davis, CA, 95616, USA.
| |
Collapse
|
14
|
Ganzer PD, Beringer CR, Shumsky JS, Nwaobasi C, Moxon KA. Serotonin receptor and dendritic plasticity in the spinal cord mediated by chronic serotonergic pharmacotherapy combined with exercise following complete SCI in the adult rat. Exp Neurol 2018. [PMID: 29526741 DOI: 10.1016/j.expneurol.2018.03.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Severe spinal cord injury (SCI) damages descending motor and serotonin (5-HT) fiber projections leading to paralysis and serotonin depletion. 5-HT receptors (5-HTRs) subsequently upregulate following 5-HT fiber degeneration, and dendritic density decreases indicative of atrophy. 5-HT pharmacotherapy or exercise can improve locomotor behavior after SCI. One might expect that 5-HT pharmacotherapy acts on upregulated spinal 5-HTRs to enhance function, and that exercise alone can influence dendritic atrophy. In the current study, we assessed locomotor recovery and spinal proteins influenced by SCI and therapy. 5-HT, 5-HT2AR, 5-HT1AR, and dendritic densities were quantified both early (1 week) and late (9 weeks) after SCI, and also following therapeutic interventions (5-HT pharmacotherapy, bike therapy, or a combination). Interestingly, chronic 5-HT pharmacotherapy largely normalized spinal 5-HTR upregulation following injury. Improvement in locomotor behavior was not correlated to 5-HTR density. These results support the hypothesis that chronic 5-HT pharmacotherapy can mediate recovery following SCI, despite acting on largely normal spinal 5-HTR levels. We next assessed spinal dendritic plasticity and its potential role in locomotor recovery. Single therapies did not normalize the loss of dendritic density after SCI. Groups displaying significantly atrophied dendritic processes were rarely able to achieve weight supported open-field locomotion. Only a combination of 5-HT pharmacotherapy and bike therapy enabled significant open-field weigh-supported stepping, mediated in part by restoring spinal dendritic density. These results support the use of combined therapies to synergistically impact multiple markers of spinal plasticity and improve motor recovery.
Collapse
Affiliation(s)
- Patrick D Ganzer
- School of Biomedical Engineering, Science and Health Systems, Drexel University, 3141 Chestnut St., Philadelphia, PA 19104, United States.
| | - Carl R Beringer
- School of Biomedical Engineering, Science and Health Systems, Drexel University, 3141 Chestnut St., Philadelphia, PA 19104, United States
| | - Jed S Shumsky
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, 2900 Queen Lane, Philadelphia, PA 19129, United States
| | - Chiemela Nwaobasi
- School of Biomedical Engineering, Science and Health Systems, Drexel University, 3141 Chestnut St., Philadelphia, PA 19104, United States
| | - Karen A Moxon
- School of Biomedical Engineering, Science and Health Systems, Drexel University, 3141 Chestnut St., Philadelphia, PA 19104, United States; Department of Neurobiology and Anatomy, Drexel University College of Medicine, 2900 Queen Lane, Philadelphia, PA 19129, United States
| |
Collapse
|
15
|
Humanes-Valera D, Foffani G, Alonso-Calviño E, Fernández-López E, Aguilar J. Dual Cortical Plasticity After Spinal Cord Injury. Cereb Cortex 2018; 27:2926-2940. [PMID: 27226441 DOI: 10.1093/cercor/bhw142] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
During cortical development, plasticity reflects the dynamic equilibrium between increasing and decreasing functional connectivity subserved by synaptic sprouting and pruning. After adult cortical deafferentation, plasticity seems to be dominated by increased functional connectivity, leading to the classical expansive reorganization from the intact to the deafferented cortex. In contrast, here we show a striking "decrease" in the fast cortical responses to high-intensity forepaw stimulation 1-3 months after complete thoracic spinal cord transection, as evident in both local field potentials and intracellular in vivo recordings. Importantly, this decrease in fast cortical responses co-exists with an "increase" in cortical activation over slower post-stimulus timescales, as measured by an increased forepaw-to-hindpaw propagation of stimulus-triggered cortical up-states, as well as by the enhanced slow sustained depolarization evoked by high-frequency forepaw stimuli in the deafferented hindpaw cortex. This coincidence of diminished fast cortical responses and enhanced slow cortical activation offers a dual perspective of adult cortical plasticity after spinal cord injury.
Collapse
Affiliation(s)
- Desire Humanes-Valera
- Hospital Nacional de Parapléjicos, Servicio de Salud de Castilla-La Mancha, 45071 Toledo, Spain.,Department of Systems Neuroscience, Institute of Physiology, Faculty of Medicine, Ruhr-University Bochum, D-44801 Bochum, Germany
| | - Guglielmo Foffani
- Hospital Nacional de Parapléjicos, Servicio de Salud de Castilla-La Mancha, 45071 Toledo, Spain.,CINAC, HM Puerta del Sur, Hospitales de Madrid, Móstoles, and CEU-San Pablo University, Madrid, Spain
| | - Elena Alonso-Calviño
- Hospital Nacional de Parapléjicos, Servicio de Salud de Castilla-La Mancha, 45071 Toledo, Spain
| | - Elena Fernández-López
- Hospital Nacional de Parapléjicos, Servicio de Salud de Castilla-La Mancha, 45071 Toledo, Spain
| | - Juan Aguilar
- Hospital Nacional de Parapléjicos, Servicio de Salud de Castilla-La Mancha, 45071 Toledo, Spain
| |
Collapse
|
16
|
Pinto CB, Saleh Velez FG, Lopes F, de Toledo Piza PV, Dipietro L, Wang QM, Mazwi NL, Camargo EC, Black-Schaffer R, Fregni F. SSRI and Motor Recovery in Stroke: Reestablishment of Inhibitory Neural Network Tonus. Front Neurosci 2017; 11:637. [PMID: 29200995 PMCID: PMC5696576 DOI: 10.3389/fnins.2017.00637] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 11/02/2017] [Indexed: 12/23/2022] Open
Abstract
Selective serotonin reuptake inhibitors (SSRIs) are currently widely used in the field of the neuromodulation not only because of their anti-depressive effects but also due to their ability to promote plasticity and enhance motor recovery in patients with stroke. Recent studies showed that fluoxetine promotes motor recovery after stroke through its effects on the serotonergic system enhancing motor outputs and facilitating long term potentiation, key factors in motor neural plasticity. However, little is known in regards of the exact mechanisms underlying these effects and several aspects of it remain poorly understood. In this manuscript, we discuss evidence supporting the hypothesis that SSRIs, and in particular fluoxetine, modulate inhibitory pathways, and that this modulation enhances reorganization and reestablishment of excitatory-inhibitory control; these effects play a key role in learning induced plasticity in neural circuits involved in the promotion of motor recovery after stroke. This discussion aims to provide important insights and rationale for the development of novel strategies for stroke motor rehabilitation.
Collapse
Affiliation(s)
- Camila B. Pinto
- Laboratory of Neuromodulation and Center for Clinical Research Learning, Department of Physical Medicine and Rehabilitation, Harvard Medical School, Spaulding Rehabilitation Hospital, Harvard University, Boston, MA, United States
- Department of Neuroscience and Behavior, Psychology Institute, University of São Paulo, São Paulo, Brazil
| | - Faddi G. Saleh Velez
- Laboratory of Neuromodulation and Center for Clinical Research Learning, Department of Physical Medicine and Rehabilitation, Harvard Medical School, Spaulding Rehabilitation Hospital, Harvard University, Boston, MA, United States
| | - Fernanda Lopes
- Laboratory of Neuromodulation and Center for Clinical Research Learning, Department of Physical Medicine and Rehabilitation, Harvard Medical School, Spaulding Rehabilitation Hospital, Harvard University, Boston, MA, United States
| | - Polyana V. de Toledo Piza
- Laboratory of Neuromodulation and Center for Clinical Research Learning, Department of Physical Medicine and Rehabilitation, Harvard Medical School, Spaulding Rehabilitation Hospital, Harvard University, Boston, MA, United States
- Department of Severe Patients, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | | | - Qing M. Wang
- Stroke Biological Recovery Laboratory, Department of Physical Medicine and Rehabilitation, Harvard Medical School, Spaulding Rehabilitation Hospital, Harvard University, Boston, MA, United States
| | - Nicole L. Mazwi
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Spaulding Rehabilitation Hospital, Harvard University, Boston, MA, United States
| | - Erica C. Camargo
- Department of Neurology, Harvard Medical School, Massachusetts General Hospital, Harvard University, Boston, MA, United States
| | - Randie Black-Schaffer
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Spaulding Rehabilitation Hospital, Harvard University, Boston, MA, United States
| | - Felipe Fregni
- Laboratory of Neuromodulation and Center for Clinical Research Learning, Department of Physical Medicine and Rehabilitation, Harvard Medical School, Spaulding Rehabilitation Hospital, Harvard University, Boston, MA, United States
| |
Collapse
|
17
|
Manohar A, Foffani G, Ganzer PD, Bethea JR, Moxon KA. Cortex-dependent recovery of unassisted hindlimb locomotion after complete spinal cord injury in adult rats. eLife 2017; 6. [PMID: 28661400 PMCID: PMC5499944 DOI: 10.7554/elife.23532] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Accepted: 06/22/2017] [Indexed: 12/29/2022] Open
Abstract
After paralyzing spinal cord injury the adult nervous system has little ability to ‘heal’ spinal connections, and it is assumed to be unable to develop extra-spinal recovery strategies to bypass the lesion. We challenge this assumption, showing that completely spinalized adult rats can recover unassisted hindlimb weight support and locomotion without explicit spinal transmission of motor commands through the lesion. This is achieved with combinations of pharmacological and physical therapies that maximize cortical reorganization, inducing an expansion of trunk motor cortex and forepaw sensory cortex into the deafferented hindlimb cortex, associated with sprouting of corticospinal axons. Lesioning the reorganized cortex reverses the recovery. Adult rats can thus develop a novel cortical sensorimotor circuit that bypasses the lesion, probably through biomechanical coupling, to partly recover unassisted hindlimb locomotion after complete spinal cord injury. DOI:http://dx.doi.org/10.7554/eLife.23532.001
Collapse
Affiliation(s)
- Anitha Manohar
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, United States
| | - Guglielmo Foffani
- CINAC, Hospital Universitario HM Puerta del Sur, Universidad CEU-San Pablo, Madrid, Spain.,Hospital Nacional de Parapléjicos, Servicio de Salud de Castilla-La Mancha, Toledo, Spain
| | - Patrick D Ganzer
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, United States
| | - John R Bethea
- Department of Biology, Drexel University, Philadelphia, United States
| | - Karen A Moxon
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, United States.,Department of Biomedical Engineering, University of California, Davis, United States
| |
Collapse
|
18
|
Teissier A, Soiza-Reilly M, Gaspar P. Refining the Role of 5-HT in Postnatal Development of Brain Circuits. Front Cell Neurosci 2017; 11:139. [PMID: 28588453 PMCID: PMC5440475 DOI: 10.3389/fncel.2017.00139] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 04/26/2017] [Indexed: 11/30/2022] Open
Abstract
Changing serotonin (5-hydroxytryptamine, 5-HT) brain levels during critical periods in development has long-lasting effects on brain function, particularly on later anxiety/depression-related behaviors in adulthood. A large part of the known developmental effects of 5-HT occur during critical periods of postnatal life, when activity-dependent mechanisms remodel neural circuits. This was first demonstrated for the maturation of sensory brain maps in the barrel cortex and the visual system. More recently this has been extended to the 5-HT raphe circuits themselves and to limbic circuits. Recent studies overviewed here used new genetic models in mice and rats and combined physiological and structural approaches to provide new insights on the cellular and molecular mechanisms controlled by 5-HT during late stages of neural circuit maturation in the raphe projections, the somatosensory cortex and the visual system. Similar mechanisms appear to be also involved in the maturation of limbic circuits such as prefrontal circuits. The latter are of particular relevance to understand the impact of transient 5-HT dysfunction during postnatal life on psychiatric illnesses and emotional disorders in adult life.
Collapse
Affiliation(s)
- Anne Teissier
- Institut du Fer à Moulin, Institut National de la Santé et de la Recherche Médicale (INSERM), UMR-S839Paris, France.,Université Pierre et Marie CurieParis, France.,Institut du Fer à MoulinParis, France
| | - Mariano Soiza-Reilly
- Institut du Fer à Moulin, Institut National de la Santé et de la Recherche Médicale (INSERM), UMR-S839Paris, France.,Université Pierre et Marie CurieParis, France.,Institut du Fer à MoulinParis, France
| | - Patricia Gaspar
- Institut du Fer à Moulin, Institut National de la Santé et de la Recherche Médicale (INSERM), UMR-S839Paris, France.,Université Pierre et Marie CurieParis, France.,Institut du Fer à MoulinParis, France
| |
Collapse
|
19
|
Ganzer PD, Meyers EC, Sloan AM, Maliakkal R, Ruiz A, Kilgard MP, Robert LR. Awake behaving electrophysiological correlates of forelimb hyperreflexia, weakness and disrupted muscular synchronization following cervical spinal cord injury in the rat. Behav Brain Res 2016; 307:100-11. [PMID: 27033345 DOI: 10.1016/j.bbr.2016.03.042] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 03/22/2016] [Accepted: 03/26/2016] [Indexed: 01/22/2023]
Abstract
Spinal cord injury usually occurs at the level of the cervical spine and results in profound impairment of forelimb function. In this study, we recorded awake behaving intramuscular electromyography (EMG) from the biceps and triceps muscles of the impaired forelimb during volitional and reflexive forelimb movements before and after unilateral cervical spinal cord injury (cSCI) in rats. C5/C6 hemicontusion reduced volitional forelimb strength by more than 50% despite weekly rehabilitation for one month post-injury. Triceps EMG during volitional strength assessment was reduced by more than 60% following injury, indicating reduced descending drive. Biceps EMG during reflexive withdrawal from a thermal stimulus was increased by 500% following injury, indicating flexor withdrawal hyperreflexia. The reduction in volitional forelimb strength was significantly correlated with volitional and reflexive biceps EMG activity. Our results support the hypothesis that biceps hyperreflexia and descending volitional drive both significantly contribute to forelimb strength deficits after cSCI and provide new insight into dynamic muscular dysfunction after cSCI. The use of multiple automated quantitative measures of forelimb dysfunction in the rodent cSCI model will likely aid the search for effective regenerative, pharmacological, and neuroprosthetic treatments for spinal cord injury.
Collapse
Affiliation(s)
- Patrick Daniel Ganzer
- The University of Texas at Dallas, Texas Biomedical Device Center, 800 West Campbell Road, Richardson, TX 75080, United States; The University of Texas at Dallas, Erik Jonsson School of Engineering and Computer Science, 800 West Campbell Road, Richardson, TX 75080, United States.
| | - Eric Christopher Meyers
- The University of Texas at Dallas, Texas Biomedical Device Center, 800 West Campbell Road, Richardson, TX 75080, United States; The University of Texas at Dallas, Erik Jonsson School of Engineering and Computer Science, 800 West Campbell Road, Richardson, TX 75080, United States.
| | - Andrew Michael Sloan
- The University of Texas at Dallas, Texas Biomedical Device Center, 800 West Campbell Road, Richardson, TX 75080, United States; The University of Texas at Dallas, Erik Jonsson School of Engineering and Computer Science, 800 West Campbell Road, Richardson, TX 75080, United States.
| | - Reshma Maliakkal
- The University of Texas at Dallas, School of Behavioral Brain Sciences, 800 West Campbell Road, GR41, Richardson, TX 75080, United States.
| | - Andrea Ruiz
- The University of Texas at Dallas, Texas Biomedical Device Center, 800 West Campbell Road, Richardson, TX 75080, United States; The University of Texas at Dallas, School of Behavioral Brain Sciences, 800 West Campbell Road, GR41, Richardson, TX 75080, United States.
| | - Michael Paul Kilgard
- The University of Texas at Dallas, Texas Biomedical Device Center, 800 West Campbell Road, Richardson, TX 75080, United States; The University of Texas at Dallas, School of Behavioral Brain Sciences, 800 West Campbell Road, GR41, Richardson, TX 75080, United States.
| | - LeMoine Rennaker Robert
- The University of Texas at Dallas, Texas Biomedical Device Center, 800 West Campbell Road, Richardson, TX 75080, United States; The University of Texas at Dallas, School of Behavioral Brain Sciences, 800 West Campbell Road, GR41, Richardson, TX 75080, United States; The University of Texas at Dallas, Erik Jonsson School of Engineering and Computer Science, 800 West Campbell Road, Richardson, TX 75080, United States.
| |
Collapse
|
20
|
Ganzer PD, Manohar A, Shumsky JS, Moxon KA. Therapy induces widespread reorganization of motor cortex after complete spinal transection that supports motor recovery. Exp Neurol 2016; 279:1-12. [PMID: 26826448 DOI: 10.1016/j.expneurol.2016.01.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Revised: 12/28/2015] [Accepted: 01/26/2016] [Indexed: 01/07/2023]
Abstract
Reorganization of the somatosensory system and its relationship to functional recovery after spinal cord injury (SCI) has been well studied. However, little is known about the impact of SCI on organization of the motor system. Recent studies suggest that step-training paradigms in combination with spinal stimulation, either electrically or through pharmacology, are more effective than step training alone at inducing recovery and that reorganization of descending corticospinal circuits is necessary. However, simpler, passive exercise combined with pharmacotherapy has also shown functional improvement after SCI and reorganization of, at least, the sensory cortex. In this study we assessed the effect of passive exercise and serotonergic (5-HT) pharmacological therapies on behavioral recovery and organization of the motor cortex. We compared the effects of passive hindlimb bike exercise to bike exercise combined with daily injections of 5-HT agonists in a rat model of complete mid-thoracic transection. 5-HT pharmacotherapy combined with bike exercise allowed the animals to achieve unassisted weight support in the open field. This combination of therapies also produced extensive expansion of the axial trunk motor cortex into the deafferented hindlimb motor cortex and, surprisingly, reorganization within the caudal and even the rostral forelimb motor cortex areas. The extent of the axial trunk expansion was correlated to improvement in behavioral recovery of hindlimbs during open field locomotion, including weight support. From a translational perspective, these data suggest a rationale for developing and optimizing cost-effective, non-invasive, pharmacological and passive exercise regimes to promote plasticity that supports restoration of movement after spinal cord injury.
Collapse
Affiliation(s)
- Patrick D Ganzer
- School of Biomedical Engineering, Science and Health Systems, Drexel University, 3141 Chestnut St., Philadelphia, PA 19104, United States
| | - Anitha Manohar
- School of Biomedical Engineering, Science and Health Systems, Drexel University, 3141 Chestnut St., Philadelphia, PA 19104, United States
| | - Jed S Shumsky
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, 2900 Queen Lane, Philadelphia, PA 19129, United States
| | - Karen A Moxon
- School of Biomedical Engineering, Science and Health Systems, Drexel University, 3141 Chestnut St., Philadelphia, PA 19104, United States; Department of Neurobiology and Anatomy, Drexel University College of Medicine, 2900 Queen Lane, Philadelphia, PA 19129, United States.
| |
Collapse
|
21
|
Ramos-Languren LE, González-Piña R, Montes S, Chávez-García N, Ávila-Luna A, Barón-Flores V, Ríos C. Sensorimotor recovery from cortical injury is accompanied by changes on norepinephrine and serotonin levels in the dentate gyrus and pons. Behav Brain Res 2015; 297:297-306. [PMID: 26454240 DOI: 10.1016/j.bbr.2015.10.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 10/02/2015] [Accepted: 10/03/2015] [Indexed: 01/16/2023]
Abstract
Monoamines such as norepinephrine (NE) and serotonin (5-HT) have shown to play an important role in motor recovery after brain injury. The effects elicited by these neurotransmitters have been reported as distal from the area directly affected. Remote changes may take place over minutes to weeks and play an important role in post-stroke recovery. However, the mechanisms involved in spontaneous recovery have not been thoroughly delineated. Therefore, we determined the NE and 5-HT content, in the pons and hippocampal dentate gyrus (DG) as well as motor deficit and spontaneous activity in rats after 3, 10 and 20 days cortical iron injection. Three days post-lesion the pontine NE content diminished, this effect was accompanied by deficient spontaneous activity and impaired sensorimotor evaluation. Ten and twenty days after lesion the NE levels were similar to those of control group, and animals also showed behavioral recovery. Monoamines content on DG 3 days post-lesion showed no differences as compared to controls. Interestingly, ten and twenty days after cortical injury, animals showed increased NE and 5-HT. These results suggest that behavioral recovery after brain damage involve changes on monoamines levels on DG, an important structure to plastic processes. In addition, the results herein support evidence to propose these neurotransmitters as key molecules to functional recovery in the central nervous system.
Collapse
Affiliation(s)
- Laura E Ramos-Languren
- Depto. de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía, MVS, SSA, Mexico City, Mexico; Maestría en Ciencias Farmacéuticas, Universidad Autónoma Metropolitana, Unidad Xochimilco, Mexico City, Mexico; Laboratorio de Neuroplasticidad, División de Neurociencias, Torre de Investigación, Instituto Nacional de Rehabilitacion, Mexico City, Mexico
| | - Rigoberto González-Piña
- Laboratorio de Neuroplasticidad, División de Neurociencias, Torre de Investigación, Instituto Nacional de Rehabilitacion, Mexico City, Mexico
| | - Sergio Montes
- Depto. de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía, MVS, SSA, Mexico City, Mexico
| | - Norma Chávez-García
- Depto. de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía, MVS, SSA, Mexico City, Mexico
| | - Alberto Ávila-Luna
- Laboratorio de Neuroplasticidad, División de Neurociencias, Torre de Investigación, Instituto Nacional de Rehabilitacion, Mexico City, Mexico
| | - Verónica Barón-Flores
- Neurofarmalogía Molecular, Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana, Unidad Xochimilco, Mexico City, Mexico
| | - Camilo Ríos
- Depto. de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía, MVS, SSA, Mexico City, Mexico; Maestría en Ciencias Farmacéuticas, Universidad Autónoma Metropolitana, Unidad Xochimilco, Mexico City, Mexico; Neurofarmalogía Molecular, Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana, Unidad Xochimilco, Mexico City, Mexico.
| |
Collapse
|
22
|
Foffani G, Shumsky J, Knudsen EB, Ganzer PD, Moxon KA. Interactive Effects Between Exercise and Serotonergic Pharmacotherapy on Cortical Reorganization After Spinal Cord Injury. Neurorehabil Neural Repair 2015; 30:479-89. [PMID: 26338432 DOI: 10.1177/1545968315600523] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND In rat models of spinal cord injury, at least 3 different strategies can be used to promote long-term cortical reorganization: (1) active exercise above the level of the lesion; (2) passive exercise below the level of the lesion; and (3) serotonergic pharmacotherapy. Whether and how these potential therapeutic strategies-and their underlying mechanisms of action-interact remains unknown. Methods In spinally transected adult rats, we compared the effects of active exercise above the level of the lesion (treadmill), passive exercise below the level of the lesion (bike), serotonergic pharmacotherapy (quipazine), and combinations of the above therapies (bike+quipazine, treadmill+quipazine, bike+treadmill+quipazine) on long-term cortical reorganization (9 weeks after the spinal transection). Cortical reorganization was measured as the percentage of cells recorded in the deafferented hindlimb cortex that responded to tactile stimulation of the contralateral forelimb. Results Bike and quipazine are "competing" therapies for cortical reorganization, in the sense that quipazine limits the cortical reorganization induced by bike, whereas treadmill and quipazine are "collaborative" therapies, in the sense that the reorganization induced by quipazine combined with treadmill is greater than the reorganization induced by either quipazine or treadmill. CONCLUSIONS These results uncover the interactive effects between active/passive exercise and serotonergic pharmacotherapy on cortical reorganization after spinal cord injury, emphasizing the importance of understanding the effects of therapeutic strategies in spinal cord injury (and in other forms of deafferentation) from an integrated system-level approach.
Collapse
Affiliation(s)
- Guglielmo Foffani
- Hospital Nacional de Parapléjicos, Servicio de Salud de Castilla-La Mancha, Toledo, Spain Hospitales de Madrid, Móstoles, Spain CEU-San Pablo University, Madrid, Spain
| | - Jed Shumsky
- Drexel University College of Medicine, Philadelphia, PA, USA
| | | | | | - Karen A Moxon
- Drexel University College of Medicine, Philadelphia, PA, USA Drexel University, Philadelphia, PA, USA
| |
Collapse
|
23
|
|
24
|
Hou JM, Sun TS, Xiang ZM, Zhang JZ, Zhang ZC, Zhao M, Zhong JF, Liu J, Zhang H, Liu HL, Yan RB, Li HT. Alterations of resting-state regional and network-level neural function after acute spinal cord injury. Neuroscience 2014; 277:446-54. [DOI: 10.1016/j.neuroscience.2014.07.045] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 07/20/2014] [Accepted: 07/21/2014] [Indexed: 01/12/2023]
|
25
|
Moxon KA, Oliviero A, Aguilar J, Foffani G. Cortical reorganization after spinal cord injury: always for good? Neuroscience 2014; 283:78-94. [PMID: 24997269 DOI: 10.1016/j.neuroscience.2014.06.056] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 06/09/2014] [Accepted: 06/25/2014] [Indexed: 12/29/2022]
Abstract
Plasticity constitutes the basis of behavioral changes as a result of experience. It refers to neural network shaping and re-shaping at the global level and to synaptic contacts remodeling at the local level, either during learning or memory encoding, or as a result of acute or chronic pathological conditions. 'Plastic' brain reorganization after central nervous system lesions has a pivotal role in the recovery and rehabilitation of sensory and motor dysfunction, but can also be "maladaptive". Moreover, it is clear that brain reorganization is not a "static" phenomenon but rather a very dynamic process. Spinal cord injury immediately initiates a change in brain state and starts cortical reorganization. In the long term, the impact of injury - with or without accompanying therapy - on the brain is a complex balance between supraspinal reorganization and spinal recovery. The degree of cortical reorganization after spinal cord injury is highly variable, and can range from no reorganization (i.e. "silencing") to massive cortical remapping. This variability critically depends on the species, the age of the animal when the injury occurs, the time after the injury has occurred, and the behavioral activity and possible therapy regimes after the injury. We will briefly discuss these dependencies, trying to highlight their translational value. Overall, it is not only necessary to better understand how the brain can reorganize after injury with or without therapy, it is also necessary to clarify when and why brain reorganization can be either "good" or "bad" in terms of its clinical consequences. This information is critical in order to develop and optimize cost-effective therapies to maximize functional recovery while minimizing maladaptive states after spinal cord injury.
Collapse
Affiliation(s)
- K A Moxon
- School of Biomedical Engineering, Science and Health Systems, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104, USA.
| | - A Oliviero
- Hospital Nacional de Parapléjicos, SESCAM, Finca la Peraleda s/n, 45071 Toledo, Spain
| | - J Aguilar
- Hospital Nacional de Parapléjicos, SESCAM, Finca la Peraleda s/n, 45071 Toledo, Spain
| | - G Foffani
- Hospital Nacional de Parapléjicos, SESCAM, Finca la Peraleda s/n, 45071 Toledo, Spain.
| |
Collapse
|
26
|
Shim JW, Dodge TR, Hammond MA, Wallace JM, Zhou FC, Yokota H. Physical weight loading induces expression of tryptophan hydroxylase 2 in the brain stem. PLoS One 2014; 9:e85095. [PMID: 24416346 PMCID: PMC3885668 DOI: 10.1371/journal.pone.0085095] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 11/22/2013] [Indexed: 12/25/2022] Open
Abstract
Sustaining brain serotonin is essential in mental health. Physical activities can attenuate mental problems by enhancing serotonin signaling. However, such activity is not always possible in disabled individuals or patients with dementia. Knee loading, a form of physical activity, has been found to mimic effects of voluntary exercise. Focusing on serotonergic signaling, we addressed a question: Does local mechanical loading to the skeleton elevate expression of tryptophan hydroxylase 2 (tph2) that is a rate-limiting enzyme for brain serotonin? A 5 min knee loading was applied to mice using 1 N force at 5 Hz for 1,500 cycles. A 5-min treadmill running was used as an exercise (positive) control, and a 90-min tail suspension was used as a stress (negative) control. Expression of tph2 was determined 30 min – 2 h in three brain regions ––frontal cortex (FC), ventromedial hypothalamus (VMH), and brain stem (BS). We demonstrated for the first time that knee loading and treadmill exercise upregulated the mRNA level of tph2 in the BS, while tail suspension downregulated it. The protein level of tph2 in the BS was also upregulated by knee loading and downregulated by tail suspension. Furthermore, the downregulation of tph2 mRNA by tail suspension can be partially suppressed by pre-application of knee loading. The expression of tph2 in the FC and VMH was not significantly altered with knee loading. In this study we provided evidence that peripheral mechanical loading can activate central tph2 expression, suggesting that physical cues may mediate tph2-cathalyzed serotonergic signaling in the brain.
Collapse
Affiliation(s)
- Joon W. Shim
- Department of Biomedical Engineering, Indiana University - Purdue University Indianapolis, Indianapolis, Indiana, United States of America
- * E-mail: (JWS) (JS); (HY) (HY)
| | - Todd R. Dodge
- Department of Biomedical Engineering, Indiana University - Purdue University Indianapolis, Indianapolis, Indiana, United States of America
| | - Max A. Hammond
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, United States of America
| | - Joseph M. Wallace
- Department of Biomedical Engineering, Indiana University - Purdue University Indianapolis, Indianapolis, Indiana, United States of America
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Feng C. Zhou
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Hiroki Yokota
- Department of Biomedical Engineering, Indiana University - Purdue University Indianapolis, Indianapolis, Indiana, United States of America
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- * E-mail: (JWS) (JS); (HY) (HY)
| |
Collapse
|