1
|
Dupont S, Lebas H, Mavouna S, Pascal E, Perrot A, Cogo A, Bourrienne MC, Farkh C, Solo Nomenjanahary M, Ollivier V, Zemali F, Nieswandt B, Loyau S, Jandrot-Perrus M, Camerer E, Desilles JP, Mazighi M, Boulaftali Y, Ho-Tin-Noé B. Comparative Effects of Glenzocimab and Eptifibatide on Bleeding Severity in 2 Mouse Models of Intracranial Hemorrhage. J Am Heart Assoc 2025; 14:e034207. [PMID: 39818980 DOI: 10.1161/jaha.123.034207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 11/27/2024] [Indexed: 01/19/2025]
Abstract
BACKGROUND Antiplatelet drugs represent potential candidates for protecting the penumbral microcirculation during cerebral ischemia and improving the benefits of arterial recanalization in ischemic stroke. Yet while the efficacy of such adjuvant strategies has been shown to be highly time dependent, antiplatelet therapy at the acute phase of ischemic stroke cannot be envisioned until the diagnosis of stroke and its ischemic nature have been confirmed because of the presumed risk of worsening bleeding in case of intracranial hemorrhage (ICH). Here, we investigated this risk for 2 antiplatelet drugs currently being tested in clinical trials for ischemic stroke, glenzocimab and eptifibatide, in 2 mouse models of ICH. METHODS AND RESULTS The severity of ICH was assessed in mice humanized for glycoprotein VI treated or not with glenzocimab or eptifibatide at effective dose, in a model of primary ICH caused by unilateral striatal injection of collagenase type VII, and in a model of hyperglycemia-induced hemorrhagic transformation of cerebral ischemia-reperfusion injury. Glenzocimab had no impact on bleeding severity in either model of ICH. Conversely, eptifibatide caused a significant increase in intracranial bleeding in both models, and a drastic increase in death after hyperglycemia-induced hemorrhagic transformation of cerebral ischemia-reperfusion injury. CONCLUSIONS Unlike eptifibatide, glenzocimab is safe in the setting of ICH. These results suggest that glenzocimab could be administered upon suspicion of ischemic stroke, before assessment of its ischemic nature, thus opening the way to hastening of treatment initiation.
Collapse
Affiliation(s)
- Sébastien Dupont
- Université Paris Cité, Inserm, UMRS-1144, Optimisation Thérapeutique en Neuropsychopharmacologie Paris France
| | - Héloïse Lebas
- Université Paris Cité, Inserm, UMRS-1148, Laboratory for Vascular Translational Science Paris France
| | - Sabrina Mavouna
- Université Paris Cité, Inserm, UMRS-1144, Optimisation Thérapeutique en Neuropsychopharmacologie Paris France
| | - Eloïse Pascal
- Université Paris Cité, Inserm, UMRS-1144, Optimisation Thérapeutique en Neuropsychopharmacologie Paris France
| | - Astride Perrot
- Université Paris Cité, Inserm, UMRS-1144, Optimisation Thérapeutique en Neuropsychopharmacologie Paris France
| | - Adrien Cogo
- Université Paris Cité, Inserm, UMRS-1144, Optimisation Thérapeutique en Neuropsychopharmacologie Paris France
| | - Marie-Charlotte Bourrienne
- Université Paris Cité, Inserm, UMRS-1144, Optimisation Thérapeutique en Neuropsychopharmacologie Paris France
| | - Carine Farkh
- Université Paris Cité, Inserm, UMRS-1144, Optimisation Thérapeutique en Neuropsychopharmacologie Paris France
| | | | - Véronique Ollivier
- Université Paris Cité, Inserm, UMRS-1144, Optimisation Thérapeutique en Neuropsychopharmacologie Paris France
| | - Fatima Zemali
- Université Paris Cité, Inserm, UMRS-1144, Optimisation Thérapeutique en Neuropsychopharmacologie Paris France
| | - Bernhard Nieswandt
- Institute of Experimental Biomedicine I, University Hospital, University of Würzburg Würzburg Germany
| | - Stéphane Loyau
- Université Paris Cité, Inserm, UMRS-1148, Laboratory for Vascular Translational Science Paris France
| | - Martine Jandrot-Perrus
- Université Paris Cité, Inserm, UMRS-1148, Laboratory for Vascular Translational Science Paris France
| | - Eric Camerer
- Université Paris Cité, Inserm, PARCC Paris France
| | - Jean-Philippe Desilles
- Université Paris Cité, Inserm, UMRS-1144, Optimisation Thérapeutique en Neuropsychopharmacologie Paris France
- Interventional Neuroradiology Department and Biological resources center Rothschild Foundation hospital Paris France
- Department of Neurology Hôpital Lariboisière, APHP Nord, FHU Neurovasc Paris France
| | - Mikael Mazighi
- Université Paris Cité, Inserm, UMRS-1144, Optimisation Thérapeutique en Neuropsychopharmacologie Paris France
- Interventional Neuroradiology Department and Biological resources center Rothschild Foundation hospital Paris France
- Department of Neurology Hôpital Lariboisière, APHP Nord, FHU Neurovasc Paris France
- Institut Universitaire de France Paris France
| | - Yacine Boulaftali
- Université Paris Cité, Inserm, UMRS-1148, Laboratory for Vascular Translational Science Paris France
| | - Benoît Ho-Tin-Noé
- Université Paris Cité, Inserm, UMRS-1144, Optimisation Thérapeutique en Neuropsychopharmacologie Paris France
| |
Collapse
|
2
|
Xu L, Ma S, Qu M, Li N, Sun X, Wang T, Chen L, Zhu J, Ding Y, Gong Y, Hu F, Dong Z, Zhang R, Wang JH, Wang J, Zhou H. Parthanatos initiated by ROS-induced DNA damage is involved in intestinal epithelial injury during necrotizing enterocolitis. Cell Death Discov 2024; 10:345. [PMID: 39085218 PMCID: PMC11291915 DOI: 10.1038/s41420-024-02114-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 07/13/2024] [Accepted: 07/23/2024] [Indexed: 08/02/2024] Open
Abstract
Necrotizing enterocolitis (NEC) involves intestinal epithelial damage and inflammatory response and is associated with high morbidity and mortality in infants. To improve therapeutic prospects, elucidating underlying molecular mechanisms of intestinal epithelial damage during NEC is of the essence. Poly (ADP-ribose) polymerase 1 (PARP1)-dependent parthanatos is a programmed inflammatory cell death. In the present study, the presence of parthanatos-associated proteins PARP1 and poly (ADP-ribose) (PAR), along with high expression of DNA damage-associated biomarkers, 8-hydroxy-2'-deoxyguanosine (8-OHdG) and phosphorylation of histone H2AX (γH2AX), were discovered in the intestinal tissues of NEC infants. Additionally, the upregulated expression of PARP1 and PAR in NEC intestinal tissues correlated distinctly with clinical indices indicative of NEC incidence and severity. Furthermore, we demonstrated that inhibiting the expression of parthanatos-associated proteins, by either pharmacological blockage using 3-aminobenzamide (3-AB), an inhibitor of PARP1, or genetic knockout using Parp1-deficient mice, resulted in substantial improvements in both histopathological severity scores associated with intestinal injury and inflammatory reactions. Moreover, in an in vitro NEC model, reactive oxygen species (ROS)-induced DNA damage promoted the formation of PAR and nuclear translocation of apoptosis-inducing factor (AIF), thus activating PARP1-dependent parthanatos in Caco-2 cells and human intestinal organoids. Our work verifies a previously unexplored role for parthanatos in intestinal epithelial damage during NEC and suggests that inhibition of parthanatos may serve as a potential therapeutic strategy for intervention of NEC.
Collapse
Affiliation(s)
- Lingqi Xu
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - Shurong Ma
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - Minhan Qu
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - Na Li
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - Xu Sun
- Department of Surgery, Children's Hospital of Soochow University, Suzhou, China
| | - Tingting Wang
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - Lulu Chen
- Department of Surgery, Children's Hospital of Soochow University, Suzhou, China
| | - Jie Zhu
- Department of Surgery, Children's Hospital of Soochow University, Suzhou, China
| | - Yifang Ding
- Department of Pediatrics, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou, China
| | - Yuan Gong
- Department of Surgery, Children's Hospital of Soochow University, Suzhou, China
| | - Fangjie Hu
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - Zhenzhen Dong
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - Rui Zhang
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - Jiang Huai Wang
- Department of Academic Surgery, University College Cork, Cork University Hospital, Cork, Ireland
| | - Jian Wang
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China.
- Department of Surgery, Children's Hospital of Soochow University, Suzhou, China.
| | - Huiting Zhou
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
3
|
Liu C, Xie J, Sun S, Li H, Li T, Jiang C, Chen X, Wang J, Le A, Wang J, Li Z, Wang J, Wang W. Hemorrhagic Transformation After Tissue Plasminogen Activator Treatment in Acute Ischemic Stroke. Cell Mol Neurobiol 2022; 42:621-646. [PMID: 33125600 PMCID: PMC11441267 DOI: 10.1007/s10571-020-00985-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 10/22/2020] [Indexed: 12/17/2022]
Abstract
Hemorrhagic transformation (HT) is a common complication after thrombolysis with recombinant tissue-type plasminogen activator (rt-PA) in ischemic stroke. In this article, recent research progress of HT in vivo and in vitro studies was reviewed. We have discussed new potential mechanisms and possible experimental models of HT development, as well as possible biomarkers and treatment methods. Meanwhile, we compared and analyzed rodent models, large animal models and in vitro BBB models of HT, and the limitations of these models were discussed. The molecular mechanism of HT was investigated in terms of BBB disruption, rt-PA neurotoxicity and the effect of neuroinflammation, matrix metalloproteinases, reactive oxygen species. The clinical features to predict HT were represented including blood biomarkers and clinical factors. Recent progress in neuroprotective strategies to improve HT after stroke treated with rt-PA is outlined. Further efforts need to be made to reduce the risk of HT after rt-PA therapy and improve the clinical prognosis of patients with ischemic stroke.
Collapse
Affiliation(s)
- Chengli Liu
- Department of Traumatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Jie Xie
- Department of Traumatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Shanshan Sun
- Department of Ultrasound Imaging, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Hui Li
- Department of Traumatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Tianyu Li
- Department of Traumatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Chao Jiang
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
| | - Xuemei Chen
- Department of Anatomy, College of Basic Medical Sciences, Zhengzhou University, Henan, 450000, People's Republic of China
| | - Junmin Wang
- Department of Anatomy, College of Basic Medical Sciences, Zhengzhou University, Henan, 450000, People's Republic of China
| | - Anh Le
- Washington University in St. Louis, Saint Louis, MO, 63130, USA
| | - Jiarui Wang
- The Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Zhanfei Li
- Department of Traumatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Jian Wang
- Department of Anatomy, College of Basic Medical Sciences, Zhengzhou University, Henan, 450000, People's Republic of China.
| | - Wei Wang
- Department of Traumatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.
| |
Collapse
|
4
|
Qiu YM, Zhang CL, Chen AQ, Wang HL, Zhou YF, Li YN, Hu B. Immune Cells in the BBB Disruption After Acute Ischemic Stroke: Targets for Immune Therapy? Front Immunol 2021; 12:678744. [PMID: 34248961 PMCID: PMC8260997 DOI: 10.3389/fimmu.2021.678744] [Citation(s) in RCA: 202] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 05/31/2021] [Indexed: 12/15/2022] Open
Abstract
Blood-Brain Barrier (BBB) disruption is an important pathophysiological process of acute ischemic stroke (AIS), resulting in devastating malignant brain edema and hemorrhagic transformation. The rapid activation of immune cells plays a critical role in BBB disruption after ischemic stroke. Infiltrating blood-borne immune cells (neutrophils, monocytes, and T lymphocytes) increase BBB permeability, as they cause microvascular disorder and secrete inflammation-associated molecules. In contrast, they promote BBB repair and angiogenesis in the latter phase of ischemic stroke. The profound immunological effects of cerebral immune cells (microglia, astrocytes, and pericytes) on BBB disruption have been underestimated in ischemic stroke. Post-stroke microglia and astrocytes can adopt both an M1/A1 or M2/A2 phenotype, which influence BBB integrity differently. However, whether pericytes acquire microglia phenotype and exert immunological effects on the BBB remains controversial. Thus, better understanding the inflammatory mechanism underlying BBB disruption can lead to the identification of more promising biological targets to develop treatments that minimize the onset of life-threatening complications and to improve existing treatments in patients. However, early attempts to inhibit the infiltration of circulating immune cells into the brain by blocking adhesion molecules, that were successful in experimental stroke failed in clinical trials. Therefore, new immunoregulatory therapeutic strategies for acute ischemic stroke are desperately warranted. Herein, we highlight the role of circulating and cerebral immune cells in BBB disruption and the crosstalk between them following acute ischemic stroke. Using a robust theoretical background, we discuss potential and effective immunotherapeutic targets to regulate BBB permeability after acute ischemic stroke.
Collapse
Affiliation(s)
| | | | | | | | | | - Ya-nan Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bo Hu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
5
|
Koehler RC, Dawson VL, Dawson TM. Targeting Parthanatos in Ischemic Stroke. Front Neurol 2021; 12:662034. [PMID: 34025565 PMCID: PMC8131834 DOI: 10.3389/fneur.2021.662034] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 04/01/2021] [Indexed: 12/14/2022] Open
Abstract
Parthanatos is a cell death signaling pathway in which excessive oxidative damage to DNA leads to over-activation of poly(ADP-ribose) polymerase (PARP). PARP then generates the formation of large poly(ADP-ribose) polymers that induce the release of apoptosis-inducing factor from the outer mitochondrial membrane. In the cytosol, apoptosis-inducing factor forms a complex with macrophage migration inhibitory factor that translocates into the nucleus where it degrades DNA and produces cell death. In a review of the literature, we identified 24 publications from 13 laboratories that support a role for parthanatos in young male mice and rats subjected to transient and permanent middle cerebral artery occlusion (MCAO). Investigators base their conclusions on the use of nine different PARP inhibitors (19 studies) or PARP1-null mice (7 studies). Several studies indicate a therapeutic window of 4-6 h after MCAO. In young female rats, two studies using two different PARP inhibitors from two labs support a role for parthanatos, whereas two studies from one lab do not support a role in young female PARP1-null mice. In addition to parthanatos, a body of literature indicates that PARP inhibitors can reduce neuroinflammation by interfering with NF-κB transcription, suppressing matrix metaloproteinase-9 release, and limiting blood-brain barrier damage and hemorrhagic transformation. Overall, most of the literature strongly supports the scientific premise that a PARP inhibitor is neuroprotective, even when most did not report behavior outcomes or address the issue of randomization and treatment concealment. Several third-generation PARP inhibitors entered clinical oncology trials without major adverse effects and could be repurposed for stroke. Evaluation in aged animals or animals with comorbidities will be important before moving into clinical stroke trials.
Collapse
Affiliation(s)
- Raymond C Koehler
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University, Baltimore, MD, United States
| | - Valina L Dawson
- Neuroregeneration and Stem Cell Programs, The Institute of Cell Engineering, The Johns Hopkins University, Baltimore, MD, United States.,Department of Neurology, The Johns Hopkins University, Baltimore, MD, United States.,Department of Neuroscience, The Johns Hopkins University, Baltimore, MD, United States.,Department of Physiology, The Johns Hopkins University, Baltimore, MD, United States
| | - Ted M Dawson
- Neuroregeneration and Stem Cell Programs, The Institute of Cell Engineering, The Johns Hopkins University, Baltimore, MD, United States.,Department of Neurology, The Johns Hopkins University, Baltimore, MD, United States.,Department of Neuroscience, The Johns Hopkins University, Baltimore, MD, United States.,Department of Pharmacology and Molecular Sciences, The Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
6
|
Chen H, He Y, Chen S, Qi S, Shen J. Therapeutic targets of oxidative/nitrosative stress and neuroinflammation in ischemic stroke: Applications for natural product efficacy with omics and systemic biology. Pharmacol Res 2020; 158:104877. [PMID: 32407958 DOI: 10.1016/j.phrs.2020.104877] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/27/2020] [Accepted: 04/28/2020] [Indexed: 12/11/2022]
Abstract
Oxidative/nitrosative stress and neuroinflammation are critical pathological processes in cerebral ischemia-reperfusion injury, and their intimate interactions mediate neuronal damage, blood-brain barrier (BBB) damage and hemorrhagic transformation (HT) during ischemic stroke. We review current progress towards understanding the interactions of oxidative/nitrosative stress and inflammatory responses in ischemic brain injury. The interactions between reactive oxygen species (ROS)/reactive nitrogen species (RNS) and innate immune receptors such as TLR2/4, NOD-like receptor, RAGE, and scavenger receptors are crucial pathological mechanisms that amplify brain damage during cerebral ischemic injury. Furthermore, we review the current progress of omics and systematic biology approaches for studying complex network regulations related to oxidative/nitrosative stress and inflammation in the pathology of ischemic stroke. Targeting oxidative/nitrosative stress and neuroinflammation could be a promising therapeutic strategy for ischemic stroke treatment. We then review recent advances in discovering compounds from medicinal herbs with the bioactivities of simultaneously regulating oxidative/nitrosative stress and pro-inflammatory molecules for minimizing ischemic brain injury. These compounds include sesamin, baicalin, salvianolic acid A, 6-paradol, silymarin, apocynin, 3H-1,2-Dithiole-3-thione, (-)-epicatechin, rutin, Dl-3-N-butylphthalide, and naringin. We finally summarize recent developments of the omics and systematic biology approaches for exploring the molecular mechanisms and active compounds of Traditional Chinese Medicine (TCM) formulae with the properties of antioxidant and anti-inflammation for neuroprotection. The comprehensive omics and systematic biology approaches provide powerful tools for exploring therapeutic principles of TCM formulae and developing precision medicine for stroke treatment.
Collapse
Affiliation(s)
- Hansen Chen
- School of Chinese Medicine, The University of Hong Kong, Hong Kong Special Administrative Region; The University of Hong Kong-Shenzhen Institute of Research and Innovation (HKU-SIRI), China
| | - Yacong He
- School of Chinese Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Shuang Chen
- School of Chinese Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Suhua Qi
- School of Medical Technology, Xuzhou Medical University, Xuzhou, 221002, China
| | - Jiangang Shen
- School of Chinese Medicine, The University of Hong Kong, Hong Kong Special Administrative Region; The University of Hong Kong-Shenzhen Institute of Research and Innovation (HKU-SIRI), China; School of Medical Technology, Xuzhou Medical University, Xuzhou, 221002, China.
| |
Collapse
|
7
|
Chen J, Li X, Xu S, Zhang M, Wu Z, Zhang X, Xu Y, Chen Y. Delayed PARP-1 Inhibition Alleviates Post-stroke Inflammation in Male Versus Female Mice: Differences and Similarities. Front Cell Neurosci 2020; 14:77. [PMID: 32317937 PMCID: PMC7146057 DOI: 10.3389/fncel.2020.00077] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 03/17/2020] [Indexed: 12/12/2022] Open
Abstract
Post-stroke inflammation is almost involved in the whole process of stroke pathogenesis, which serves as a prime target for developing new stroke therapies. Despite known sex differences in the incidence and outcome of stroke, few preclinical or clinical studies take into account sex bias in treatment. Recent evidence suggests that poly (ADP-ribose) polymerase (PARP)-1 inhibitor exerts sex-specific neuroprotection in the ischemic stroke. This study was aimed to investigate the effects of delayed PARP-1 inhibition on post-stroke inflammation and possible sexual dimorphism, and explore the possible relevant mediators. In male and female C57BL/6 mice subjected to transit middle cerebral artery occlusion (MCAO), we found that delayed treatment of PARP-1 inhibitor at 48 h following reperfusion could comparably alleviate neuro-inflammation at 72 h after stroke. Whereas, more remarkable reduction of iNOS and MMP9 induced by PARP-1 inhibition were found in male MCAO mice, and the improvement of behavioral outcomes was more prominent in male MCAO mice. In addition, we further identified that PARP-1 inhibitor might equivalently suppress microglial activation in males and females in vivo and in vitro. With proteomic analysis and western blotting assay, it was found that stroke-induced peroxiredoxin-1 (Prx1) expression was significantly affected by PARP-1 inhibition. Interestingly, injection of recombinant Prx1 into the ischemic core could block the anti-inflammatory effects of PARP-1 inhibitor in the experimental stroke. These findings suggest that PARP-1 inhibitor has effects on regulating microglial activation and post-stroke inflammation in males and females, and holds promise as a novel therapeutic agent for stroke with extended therapeutic time window. Efforts need to be made to delineate the actions of PARP-1 inhibition in stroke, and here we propose that Prx1 might be a critical mediator.
Collapse
Affiliation(s)
- Jian Chen
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China.,Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China
| | - Xiaoxi Li
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China.,Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China
| | - Siyi Xu
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China.,Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China
| | - Meijuan Zhang
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China.,Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China
| | - Zhengzheng Wu
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Xi Zhang
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yun Xu
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China.,Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China
| | - Yanting Chen
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China.,Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China
| |
Collapse
|
8
|
Berndt P, Winkler L, Cording J, Breitkreuz-Korff O, Rex A, Dithmer S, Rausch V, Blasig R, Richter M, Sporbert A, Wolburg H, Blasig IE, Haseloff RF. Tight junction proteins at the blood-brain barrier: far more than claudin-5. Cell Mol Life Sci 2019; 76:1987-2002. [PMID: 30734065 PMCID: PMC11105330 DOI: 10.1007/s00018-019-03030-7] [Citation(s) in RCA: 141] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 01/15/2019] [Accepted: 01/28/2019] [Indexed: 10/27/2022]
Abstract
At the blood-brain barrier (BBB), claudin (Cldn)-5 is thought to be the dominant tight junction (TJ) protein, with minor contributions from Cldn3 and -12, and occludin. However, the BBB appears ultrastructurally normal in Cldn5 knock-out mice, suggesting that further Cldns and/or TJ-associated marvel proteins (TAMPs) are involved. Microdissected human and murine brain capillaries, quickly frozen to recapitulate the in vivo situation, showed high transcript expression of Cldn5, -11, -12, and -25, and occludin, but also abundant levels of Cldn1 and -27 in man. Protein levels were quantified by a novel epitope dilution assay and confirmed the respective mRNA data. In contrast to the in vivo situation, Cldn5 dominates BBB expression in vitro, since all other TJ proteins are at comparably low levels or are not expressed. Cldn11 was highly abundant in vivo and contributed to paracellular tightness by homophilic oligomerization, but almost disappeared in vitro. Cldn25, also found at high levels, neither tightened the paracellular barrier nor interconnected opposing cells, but contributed to proper TJ strand morphology. Pathological conditions (in vivo ischemia and in vitro hypoxia) down-regulated Cldn1, -3, and -12, and occludin in cerebral capillaries, which was paralleled by up-regulation of Cldn5 after middle cerebral artery occlusion in rats. Cldn1 expression increased after Cldn5 knock-down. In conclusion, this complete Cldn/TAMP profile demonstrates the presence of up to a dozen TJ proteins in brain capillaries. Mouse and human share a similar and complex TJ profile in vivo, but this complexity is widely lost under in vitro conditions.
Collapse
Affiliation(s)
- Philipp Berndt
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Lars Winkler
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125, Berlin, Germany.
| | - Jimmi Cording
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Olga Breitkreuz-Korff
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - André Rex
- Department of Experimental Neurology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Sophie Dithmer
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Valentina Rausch
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Rosel Blasig
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Matthias Richter
- Max-Delbrück-Centrum für Molekulare Medizin, Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Anje Sporbert
- Max-Delbrück-Centrum für Molekulare Medizin, Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Hartwig Wolburg
- Institut für Pathologie und Neuropathologie, Universität Tübingen, Liebermeisterstraße 8, 72076, Tübingen, Germany
| | - Ingolf E Blasig
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Reiner F Haseloff
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125, Berlin, Germany.
| |
Collapse
|
9
|
Fréchou M, Margaill I, Marchand-Leroux C, Beray-Berthat V. Behavioral tests that reveal long-term deficits after permanent focal cerebral ischemia in mouse. Behav Brain Res 2018; 360:69-80. [PMID: 30500429 DOI: 10.1016/j.bbr.2018.11.040] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 11/26/2018] [Accepted: 11/26/2018] [Indexed: 01/10/2023]
Abstract
Efforts are still needed regarding the research of therapeutics for ischemic stroke. While in experimental studies the protective effect of pharmacological agents is often highlighted by a reduction of the lesion size evaluated in the short term (days), in clinical studies a functional recovery of patients suffering from stroke is expected on the long-term (months and years). Long-term functional preclinical studies are highly recommended to evaluate potential neuroprotective agents for stroke, rather than an assessment of the infarction size at a short time point. The present study thus aimed to select among various behavioral tests those able to highlight long-term deficits (3 months) after cerebral ischemia in mice. Permanent focal cerebral ischemia was carried out in male Swiss mice by intraluminal occlusion of the left middle cerebral artery (MCA). Fourteen behavioral tests were assessed from 7 days to 90 days after ischemia (locomotor activity, neurological score, exit circle test, grip and string tests, chimney test, adhesive removal test, pole test, beam-walking tests, elevated plus maze, marble burying test, forced swimming test, novel object recognition test). The present study clearly identified a battery of behavioral tests able to highlight deficits up to 3 months in our mouse model of permanent MCA occlusion (locomotor activity, neurological score, adhesive removal test, pole test, beam-walking tests, elevated plus maze, marble burying test, forced swimming test and novel object recognition test). This battery of behavioral tests highlighting long-term deficits is useful to study future neuroprotective strategies for stroke treatment.
Collapse
Affiliation(s)
- Magalie Fréchou
- Equipe de recherche "Pharmacologie de la Circulation Cérébrale" EA 4475, Université Paris Descartes, Sorbonne Paris Cité, Faculté de Pharmacie de Paris, 75006 Paris, France.
| | - Isabelle Margaill
- Equipe de recherche "Pharmacologie de la Circulation Cérébrale" EA 4475, Université Paris Descartes, Sorbonne Paris Cité, Faculté de Pharmacie de Paris, 75006 Paris, France.
| | - Catherine Marchand-Leroux
- Equipe de recherche "Pharmacologie de la Circulation Cérébrale" EA 4475, Université Paris Descartes, Sorbonne Paris Cité, Faculté de Pharmacie de Paris, 75006 Paris, France.
| | - Virginie Beray-Berthat
- Equipe de recherche "Pharmacologie de la Circulation Cérébrale" EA 4475, Université Paris Descartes, Sorbonne Paris Cité, Faculté de Pharmacie de Paris, 75006 Paris, France.
| |
Collapse
|
10
|
Chen H, Chen X, Luo Y, Shen J. Potential molecular targets of peroxynitrite in mediating blood–brain barrier damage and haemorrhagic transformation in acute ischaemic stroke with delayed tissue plasminogen activator treatment. Free Radic Res 2018; 52:1220-1239. [PMID: 30468092 DOI: 10.1080/10715762.2018.1521519] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Hansen Chen
- School of Chinese Medicine, the University of Hong Kong, PR China
- Shenzhen Institute of Research and Innovation (HKU-SIRI), University of Hong Kong, Hong Kong, PR China
| | - Xi Chen
- Department of Core Facility, the People’s Hospital of Bao-an Shenzhen, Shenzhen, PR China
- The 8th People’s Hospital of Shenzhen, the Affiliated Bao-an Hospital of Southern Medical University, Shenzhen, PR China
| | - Yunhao Luo
- School of Chinese Medicine, the University of Hong Kong, PR China
| | - Jiangang Shen
- School of Chinese Medicine, the University of Hong Kong, PR China
- Shenzhen Institute of Research and Innovation (HKU-SIRI), University of Hong Kong, Hong Kong, PR China
| |
Collapse
|
11
|
Noh MY, Lee WM, Lee SJ, Kim HY, Kim SH, Kim YS. Regulatory T cells increase after treatment with poly (ADP-ribose) polymerase-1 inhibitor in ischemic stroke patients. Int Immunopharmacol 2018; 60:104-110. [PMID: 29709770 DOI: 10.1016/j.intimp.2018.04.043] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 04/04/2018] [Accepted: 04/24/2018] [Indexed: 01/26/2023]
Abstract
BACKGROUND Regulatory T cells (Tregs) are thought to play a modulatory role in immune responses and to improve outcomes after ischemic stroke. Thus, various strategies for increasing Tregs in animal models of ischemic stroke have yielded successful results. The aim of this study was to examine the potential effect of poly (ADP-ribose) polymerase-1 (PARP-1) inhibitor on Treg proportion in stroke patients. METHODS Peripheral blood samples were collected from 12 ischemic stroke patients (within 72 h of stroke onset) and 5 healthy control subjects. Flow cytometry analyses and quantitative reverse transcription polymerase chain reactions (qRT-PCR) were performed on peripheral blood mononuclear cells (PBMCs) before and after treating them with PARP-1 inhibitor (3-AB; JPI-289 1 μm, JPI-289 10 μm) for 24 h. RESULTS Treg proportions were significantly higher in healthy controls (median 2.8%, IQR 2.6-5.0%) than ischemic stroke patients (median 1.6%, IQR 1.25-2.2%) (p < 0.001). In the latter, Treg proportions were positively correlated with age (r = 0.595, p = 0.041), but not with infarct volume (r = 0.367, p = 0.241). After PARP-1 inhibitor treatment, Treg proportions among PBMCs increased in response to high dose (10 μm) JPI-289 (median 2.3%, IQR 2.0-2.9%) as did Treg-associated transcription factors such as FoxP3 and CTLA-4 mRNA. PARP-1 inhibitor treatment also decreased pro-inflammatory cytokines (IFN-γ, TNF-α, and IL-17) and increased anti-inflammatory cytokines (IL-4, IL-10, and TGF-β1). CONCLUSION Treg proportions are reduced in ischemic stroke patients and increased by treatment with high-dose PARP-1 inhibitor JPI-289. The PARP-1 inhibitor also had a possible anti-inflammatory effect on cytokine levels, and may ameliorate the outcome of ischemic stroke by up-regulating Tregs.
Collapse
Affiliation(s)
- Min-Young Noh
- Department of Neurology, College of Medicine, Hanyang University, Seoul, Republic of Korea
| | - Won Moo Lee
- Department of Obstetrics and Gynecology, College of Medicine, Hanyang University, Seoul, Republic of Korea
| | - Su-Jung Lee
- Department of Neurology, College of Medicine, Hanyang University, Seoul, Republic of Korea
| | - Hyun Young Kim
- Department of Neurology, College of Medicine, Hanyang University, Seoul, Republic of Korea
| | - Seung Hyun Kim
- Department of Neurology, College of Medicine, Hanyang University, Seoul, Republic of Korea
| | - Young Seo Kim
- Department of Neurology, College of Medicine, Hanyang University, Seoul, Republic of Korea.
| |
Collapse
|
12
|
El Amki M, Lerouet D, Garraud M, Teng F, Beray-Berthat V, Coqueran B, Barsacq B, Abbou C, Palmier B, Marchand-Leroux C, Margaill I. Improved Reperfusion and Vasculoprotection by the Poly(ADP-Ribose)Polymerase Inhibitor PJ34 After Stroke and Thrombolysis in Mice. Mol Neurobiol 2018; 55:9156-9168. [PMID: 29651748 DOI: 10.1007/s12035-018-1063-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Accepted: 04/03/2018] [Indexed: 10/17/2022]
Abstract
Benefits from thrombolysis with recombinant tissue plasminogen activator (rt-PA) after ischemic stroke remain limited due to a narrow therapeutic window, low reperfusion rates, and increased risk of hemorrhagic transformations (HT). Experimental data showed that rt-PA enhances the post-ischemic activation of poly(ADP-ribose)polymerase (PARP) which in turn contributes to blood-brain barrier injury. The aim of the present study was to evaluate whether PJ34, a potent PARP inhibitor, improves poor reperfusion induced by delayed rt-PA administration, exerts vasculoprotective effects, and finally increases the therapeutic window of rt-PA. Stroke was induced by thrombin injection (0.75 UI in 1 μl) in the left middle cerebral artery (MCA) of male Swiss mice. Administration of rt-PA (0.9 mg kg-1) or saline was delayed for 4 h after ischemia onset. Saline or PJ34 (3 mg kg-1) was given intraperitoneally twice, just after thrombin injection and 3 h later, or once, 3 h after ischemia onset. Reperfusion was evaluated by laser Doppler, vascular inflammation by immunohistochemistry of vascular cell adhesion molecule-1 (VCAM-1) expression, and vasospasm by morphometric measurement of the MCA. Edema, cortical lesion, and sensorimotor deficit were evaluated. Treatment with PJ34 improved rt-PA-induced reperfusion and promoted vascular protection including reduction in vascular inflammation (decrease in VCAM-1 expression), HT, and MCA vasospasm. Additionally, the combined treatment significantly reduced brain edema, cortical lesion, and sensorimotor deficit. In conclusion, the combination of the PARP inhibitor PJ34 with rt-PA after cerebral ischemia may be of particular interest in order to improve thrombolysis with an extended therapeutic window.
Collapse
Affiliation(s)
- Mohamad El Amki
- EA4475 - "Pharmacologie de la Circulation Cérébrale", Faculté de Pharmacie de Paris, Université Paris Descartes, Université Sorbonne Paris Cité, 4 avenue de l'Observatoire, 75006, Paris, France
| | - Dominique Lerouet
- EA4475 - "Pharmacologie de la Circulation Cérébrale", Faculté de Pharmacie de Paris, Université Paris Descartes, Université Sorbonne Paris Cité, 4 avenue de l'Observatoire, 75006, Paris, France
| | - Marie Garraud
- EA4475 - "Pharmacologie de la Circulation Cérébrale", Faculté de Pharmacie de Paris, Université Paris Descartes, Université Sorbonne Paris Cité, 4 avenue de l'Observatoire, 75006, Paris, France
| | - Fei Teng
- EA4475 - "Pharmacologie de la Circulation Cérébrale", Faculté de Pharmacie de Paris, Université Paris Descartes, Université Sorbonne Paris Cité, 4 avenue de l'Observatoire, 75006, Paris, France
| | - Virginie Beray-Berthat
- EA4475 - "Pharmacologie de la Circulation Cérébrale", Faculté de Pharmacie de Paris, Université Paris Descartes, Université Sorbonne Paris Cité, 4 avenue de l'Observatoire, 75006, Paris, France
| | - Bérard Coqueran
- EA4475 - "Pharmacologie de la Circulation Cérébrale", Faculté de Pharmacie de Paris, Université Paris Descartes, Université Sorbonne Paris Cité, 4 avenue de l'Observatoire, 75006, Paris, France
| | - Benoît Barsacq
- EA4475 - "Pharmacologie de la Circulation Cérébrale", Faculté de Pharmacie de Paris, Université Paris Descartes, Université Sorbonne Paris Cité, 4 avenue de l'Observatoire, 75006, Paris, France
| | - Charlotte Abbou
- EA4475 - "Pharmacologie de la Circulation Cérébrale", Faculté de Pharmacie de Paris, Université Paris Descartes, Université Sorbonne Paris Cité, 4 avenue de l'Observatoire, 75006, Paris, France
| | - Bruno Palmier
- EA4475 - "Pharmacologie de la Circulation Cérébrale", Faculté de Pharmacie de Paris, Université Paris Descartes, Université Sorbonne Paris Cité, 4 avenue de l'Observatoire, 75006, Paris, France
| | - Catherine Marchand-Leroux
- EA4475 - "Pharmacologie de la Circulation Cérébrale", Faculté de Pharmacie de Paris, Université Paris Descartes, Université Sorbonne Paris Cité, 4 avenue de l'Observatoire, 75006, Paris, France
| | - Isabelle Margaill
- EA4475 - "Pharmacologie de la Circulation Cérébrale", Faculté de Pharmacie de Paris, Université Paris Descartes, Université Sorbonne Paris Cité, 4 avenue de l'Observatoire, 75006, Paris, France.
| |
Collapse
|
13
|
Early Treatment with Poly(ADP-Ribose) Polymerase-1 Inhibitor (JPI-289) Reduces Infarct Volume and Improves Long-Term Behavior in an Animal Model of Ischemic Stroke. Mol Neurobiol 2018; 55:7153-7163. [DOI: 10.1007/s12035-018-0910-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 01/11/2018] [Indexed: 12/22/2022]
|
14
|
El Amki M, Wegener S. Improving Cerebral Blood Flow after Arterial Recanalization: A Novel Therapeutic Strategy in Stroke. Int J Mol Sci 2017; 18:ijms18122669. [PMID: 29232823 PMCID: PMC5751271 DOI: 10.3390/ijms18122669] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 11/30/2017] [Accepted: 12/06/2017] [Indexed: 12/14/2022] Open
Abstract
Ischemic stroke is caused by a disruption in blood supply to a region of the brain. It induces dysfunction of brain cells and networks, resulting in sudden neurological deficits. The cause of stroke is vascular, but the consequences are neurological. Decades of research have focused on finding new strategies to reduce the neural damage after cerebral ischemia. However, despite the incredibly huge investment, all strategies targeting neuroprotection have failed to demonstrate clinical efficacy. Today, treatment for stroke consists of dealing with the cause, attempting to remove the occluding blood clot and recanalize the vessel. However, clinical evidence suggests that the beneficial effect of post-stroke recanalization may be hampered by the occurrence of microvascular reperfusion failure. In short: recanalization is not synonymous with reperfusion. Today, clinicians are confronted with several challenges in acute stroke therapy, even after successful recanalization: (1) induce reperfusion, (2) avoid hemorrhagic transformation (HT), and (3) avoid early or late vascular reocclusion. All these parameters impact the restoration of cerebral blood flow after stroke. Recent advances in understanding the molecular consequences of recanalization and reperfusion may lead to innovative therapeutic strategies for improving reperfusion after stroke. In this review, we will highlight the importance of restoring normal cerebral blood flow after stroke and outline molecular mechanisms involved in blood flow regulation.
Collapse
Affiliation(s)
- Mohamad El Amki
- Department of Neurology, University Hospital Zurich and University of Zurich, 8091 Zürich, Switzerland.
| | - Susanne Wegener
- Department of Neurology, University Hospital Zurich and University of Zurich, 8091 Zürich, Switzerland.
| |
Collapse
|
15
|
Lv J, Hu W, Yang Z, Li T, Jiang S, Ma Z, Chen F, Yang Y. Focusing on claudin-5: A promising candidate in the regulation of BBB to treat ischemic stroke. Prog Neurobiol 2017; 161:79-96. [PMID: 29217457 DOI: 10.1016/j.pneurobio.2017.12.001] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 10/20/2017] [Accepted: 12/03/2017] [Indexed: 12/11/2022]
Abstract
Claudin-5 is a tight junction (TJ) protein in the blood-brain barrier (BBB) that has recently attracted increased attention. Numerous studies have demonstrated that claudin-5 regulates the integrity and permeability of the BBB. Increased claudin-5 expression plays a neuroprotective role in neurological diseases, particularly in cerebral ischemic stroke. Moreover, claudin-5 might be a potential marker for early hemorrhagic transformation detection in ischemic stroke. In light of the distinctive effects of claudin-5 on the nervous system, we present the elaborate network of roles that claudin-5 plays in ischemic stroke. In this review, we first introduce basic knowledge regarding the BBB and the claudin family, the characterization and regulation of claudin-5, and association between claudin-5 and other TJ proteins. Subsequently, we describe BBB dysfunction and neuron-specific drivers of pathogenesis of ischemic stroke, including inflammatory disequilibrium and oxidative stress. Furthermore, we summarize promising ischemic stroke treatments that target the BBB via claudin-5, including modified rt-PA therapy, pharmacotherapy, hormone treatment, receptor-targeted therapy, gene therapy, and physical therapy. This review highlights recent advances and provides a comprehensive summary of claudin-5 in the regulation of the BBB and may be helpful for drug design and clinical therapy for treatment of ischemic stroke.
Collapse
Affiliation(s)
- Jianjun Lv
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an 710069, China; Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
| | - Wei Hu
- Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China; Department of Immunology, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
| | - Zhi Yang
- Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
| | - Tian Li
- Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
| | - Shuai Jiang
- Department of Aerospace Medicine, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
| | - Zhiqiang Ma
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, 1 Xinsi Road, Xi'an 710038, China
| | - Fulin Chen
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Yang Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an 710069, China; Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China.
| |
Collapse
|
16
|
Narne P, Pandey V, Simhadri PK, Phanithi PB. Poly(ADP-ribose)polymerase-1 hyperactivation in neurodegenerative diseases: The death knell tolls for neurons. Semin Cell Dev Biol 2016; 63:154-166. [PMID: 27867042 DOI: 10.1016/j.semcdb.2016.11.007] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 10/31/2016] [Accepted: 11/15/2016] [Indexed: 12/21/2022]
Abstract
Neurodegeneration is a salient feature of chronic refractory brain disorders like Alzheimer's, Parkinson's, Huntington's, amyotropic lateral sclerosis and acute conditions like cerebral ischemia/reperfusion etc. The pathological protein aggregates, mitochondrial mutations or ischemic insults typifying these disease conditions collude with and intensify existing oxidative stress and attendant mitochondrial dysfunction. Interlocking these mechanisms is poly(ADP-ribose) polymerase (PARP-1) hyperactivation that invokes a distinct form of neuronal cell death viz., 'parthanatos'. PARP-1, a typical 'moonlighting protein' by virtue of its ability to poly(ADP-ribosyl)ate a plethora of cellular proteins exerts diverse functions that impinge significantly on cellular processes. In addition, its interactions with various nuclear proteins like transcription factors and chromatin modifiers elicit varied transcriptional outcomes that wield pathological cellular responses. Further, emerging leitmotifs like mitochondrial and nucleolar PARPs and the novel aspects of gene expression regulation by PARP-1 and poly(ADP-ribosyl)ation can provide a holistic view of PARP-1's influence on cell vitality. In this review, we discuss the pathological underpinnings of PARP-1, with a special emphasis on mitochondrial dysfunction and cell death subroutines, in the realm of neurodegeneration. This would provide a deeper insight into the functions of PARP-1 in neurodegenerative conditions that would enable the development of more effective therapeutic strategies.
Collapse
Affiliation(s)
- Parimala Narne
- Laboratory of Neuroscience, Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Vimal Pandey
- Laboratory of Neuroscience, Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Praveen Kumar Simhadri
- Laboratory of Neuroscience, Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Prakash Babu Phanithi
- Laboratory of Neuroscience, Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India.
| |
Collapse
|
17
|
Garraud M, Khacef K, Vion AC, Leconte C, Yin M, Renard JM, Marchand-Leroux C, Boulanger CM, Margaill I, Beray-Berthat V. Recombinant tissue plasminogen activator enhances microparticle release from mouse brain-derived endothelial cells through plasmin. J Neurol Sci 2016; 370:187-195. [PMID: 27772757 DOI: 10.1016/j.jns.2016.09.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 09/14/2016] [Accepted: 09/15/2016] [Indexed: 02/07/2023]
Abstract
Thrombolysis with recombinant tissue plasminogen activator (rt-PA) is currently the only approved pharmacological strategy for acute ischemic stroke. However, rt-PA exhibits vascular toxicity mainly due to endothelial damage. To investigate the mechanisms underlying rt-PA-induced endothelial alterations, we assessed the role of rt-PA in the generation of endothelial microparticles (EMPs), emerging biological markers and effectors of endothelial dysfunction. The mouse brain-derived endothelial cell line bEnd.3 was used. Cells were treated with rt-PA at 20, 40 or 80μg/ml for 15 or 24h, and EMPs were quantified in the culture media using Annexin-V staining coupled with flow cytometry. Rt-PA enhanced EMP release from bEnd.3 cells with a maximal increase at the 40μg/ml dose for 24h (+78% compared to controls). Using tranexamic acid and aprotinin we demonstrated that plasmin is responsible for rt-PA-induced EMP release. The p38 MAPK inhibitor SB203580 and the poly(ADP-ribose)polymerase (PARP) inhibitor PJ34 also reduced rt-PA-induced EMP production, suggesting that p38 MAPK and PARP are downstream intracellular effectors of rt-PA/plasmin. Rt-PA also altered through plasmin the morphology and the confluence of bEnd.3 cells. By contrast, these changes did not implicate p38 MAPK and PARP. This study demonstrates that rt-PA induces the production of microparticles by cerebral endothelial cells, through plasmin, p38 MAPK and PARP pathways. Determining the phenotype of these EMPs to clarify their role on the endothelium in ischemic conditions could thus be of particular interest.
Collapse
Affiliation(s)
- Marie Garraud
- Equipe de recherche "Pharmacologie de la Circulation Cérébrale" EA4475, Faculté de Pharmacie de Paris, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Kahina Khacef
- Equipe de recherche "Pharmacologie de la Circulation Cérébrale" EA4475, Faculté de Pharmacie de Paris, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Anne-Clémence Vion
- INSERM, U970, Paris Cardiovascular Research Center, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Claire Leconte
- Equipe de recherche "Pharmacologie de la Circulation Cérébrale" EA4475, Faculté de Pharmacie de Paris, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Min Yin
- INSERM, U970, Paris Cardiovascular Research Center, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Jean-Marie Renard
- INSERM, U970, Paris Cardiovascular Research Center, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Catherine Marchand-Leroux
- Equipe de recherche "Pharmacologie de la Circulation Cérébrale" EA4475, Faculté de Pharmacie de Paris, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Chantal M Boulanger
- INSERM, U970, Paris Cardiovascular Research Center, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Isabelle Margaill
- Equipe de recherche "Pharmacologie de la Circulation Cérébrale" EA4475, Faculté de Pharmacie de Paris, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Virginie Beray-Berthat
- Equipe de recherche "Pharmacologie de la Circulation Cérébrale" EA4475, Faculté de Pharmacie de Paris, Université Paris Descartes, Sorbonne Paris Cité, Paris, France.
| |
Collapse
|
18
|
Partial loss of VE-cadherin improves long-term outcome and cerebral blood flow after transient brain ischemia in mice. BMC Neurol 2016; 16:144. [PMID: 27538712 PMCID: PMC4991103 DOI: 10.1186/s12883-016-0670-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 08/10/2016] [Indexed: 01/02/2023] Open
Abstract
Background VE-cadherin is the chief constituent of endothelial adherens junctions. However, the role of VE-cadherin in the pathogenesis of cerebrovascular diseases including brain ischemia has not yet been investigated. Methods VE-cadherin heterozygous (VEC+/-) mice and wildtype controls were subjected to transient brain ischemia by 30 min filamentous middle cerebral artery occlusion (MCAo)/reperfusion. Results Acute lesion sizes as assessed by MR-imaging on day 3 did not differ between genotypes. Unexpectedly, however, partial loss of VE-cadherin resulted in long-term stroke protection measured histologically on day 28. Equally surprisingly, VEC+/- mice displayed no differences in post-stroke angiogenesis compared to littermate controls, but showed increased absolute regional cerebral blood flow in ischemic striatum at four weeks. The early induction of VE-cadherin mRNA transcription after stroke was reduced in VEC+/- mice. By contrast, N-cadherin and β-catenin mRNA expression showed a delayed, but sustained, upregulation up to 28 days after MCAo, which was increased in VEC+/- mice. Furthermore, partial loss of VE-cadherin resulted in a pattern of elevated ischemia-triggered mRNA transcription of pericyte-related molecules α-smooth muscle actin (α-SMA), aminopeptidase N (CD13), and platelet-derived growth factor receptor β (PDGFR-β). Conclusions Partial loss of VE-cadherin results in long term stroke protection. On the cellular and molecular level, this effect appears to be mediated by improved endothelial/pericyte interactions and the resultant increase in cerebral blood flow. Our study reinforces accumulating evidence that long-term stroke outcome depends critically on vascular mechanisms.
Collapse
|
19
|
Dong MX, Hu QC, Shen P, Pan JX, Wei YD, Liu YY, Ren YF, Liang ZH, Wang HY, Zhao LB, Xie P. Recombinant Tissue Plasminogen Activator Induces Neurological Side Effects Independent on Thrombolysis in Mechanical Animal Models of Focal Cerebral Infarction: A Systematic Review and Meta-Analysis. PLoS One 2016; 11:e0158848. [PMID: 27387385 PMCID: PMC4936748 DOI: 10.1371/journal.pone.0158848] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Accepted: 06/22/2016] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND AND PURPOSE Recombinant tissue plasminogen activator (rtPA) is the only effective drug approved by US FDA to treat ischemic stroke, and it contains pleiotropic effects besides thrombolysis. We performed a meta-analysis to clarify effect of tissue plasminogen activator (tPA) on cerebral infarction besides its thrombolysis property in mechanical animal stroke. METHODS Relevant studies were identified by two reviewers after searching online databases, including Pubmed, Embase, and ScienceDirect, from 1979 to 2016. We identified 6, 65, 17, 12, 16, 12 and 13 comparisons reporting effect of endogenous tPA on infarction volume and effects of rtPA on infarction volume, blood-brain barrier, brain edema, intracerebral hemorrhage, neurological function and mortality rate in all 47 included studies. Standardized mean differences for continuous measures and risk ratio for dichotomous measures were calculated to assess the effects of endogenous tPA and rtPA on cerebral infarction in animals. The quality of included studies was assessed using the Stroke Therapy Academic Industry Roundtable score. Subgroup analysis, meta-regression and sensitivity analysis were performed to explore sources of heterogeneity. Funnel plot, Trim and Fill method and Egger's test were obtained to detect publication bias. RESULTS We found that both endogenous tPA and rtPA had not enlarged infarction volume, or deteriorated neurological function. However, rtPA would disrupt blood-brain barrier, aggravate brain edema, induce intracerebral hemorrhage and increase mortality rate. CONCLUSIONS This meta-analysis reveals rtPA can lead to neurological side effects besides thrombolysis in mechanical animal stroke, which may account for clinical exacerbation for stroke patients that do not achieve vascular recanalization with rtPA.
Collapse
Affiliation(s)
- Mei-Xue Dong
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Neurobiology, Chongqing, China
| | - Qing-Chuan Hu
- Chongqing Key Laboratory of Neurobiology, Chongqing, China
| | - Peng Shen
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jun-Xi Pan
- Chongqing Key Laboratory of Neurobiology, Chongqing, China
| | - You-Dong Wei
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yi-Yun Liu
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yi-Fei Ren
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zi-Hong Liang
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hai-Yang Wang
- Chongqing Key Laboratory of Neurobiology, Chongqing, China
| | - Li-Bo Zhao
- Department of Neurology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Peng Xie
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Neurobiology, Chongqing, China
| |
Collapse
|
20
|
Teng F, Zhu L, Su J, Zhang X, Li N, Nie Z, Jin L. Neuroprotective Effects of Poly(ADP-ribose)polymerase Inhibitor Olaparib in Transient Cerebral Ischemia. Neurochem Res 2016; 41:1516-26. [PMID: 26869042 DOI: 10.1007/s11064-016-1864-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Revised: 01/30/2016] [Accepted: 02/04/2016] [Indexed: 10/22/2022]
Abstract
Olaparib was the first poly(ADP-ribose)polymerase inhibitor approved by Food and Drug Administration for oncology treatment. However, its neuroprotective effects have not been elucidated. This study aimed to evaluate the effects of olaparib in transient cerebral ischemia. A mouse model of transient middle cerebral artery occlusion was used. Reperfusion was performed at 2 h after ischemia. Different doses of olaparib (1, 3, 5, 10 and 25 mg/kg) were administered intraperitoneally immediately after reperfusion. Twenty-four hours after ischemia, the neurological score was assessed, and grip and string tests were performed to evaluate the behavioral deficits in the mice. Cresyl violet staining was used to assess cerebral edema and the lesion volume. Immunohistochemistry was performed to evaluate the expression of blood-brain barrier proteins collagen IV and claudin-5, as well as extravasation of IgG. Ischemia induced a neurological deficit, which was significantly ameliorated by olaparib at 3 and 5 mg/kg. However, this neuroprotective effect was not observed in mice treated with either low-dose or high-dose olaparib. Both 3 and 5 mg/kg olaparib markedly reduced cerebral infarction volume, but not cerebral edema. The expression of collagen IV decreased after cerebral ischemia, which was improved by olaparib at 3 and 5 mg/kg. These results were confirmed by the reduction of IgG extravasation with olaparib. Olaparib showed clear neuroprotective effects in transient ischemic mice mainly through the reduction of cerebral infarction and blood-brain barrier damage.
Collapse
Affiliation(s)
- Fei Teng
- Department of Neurology, Shanghai Tongji Hospital, Tongji University School of Medicine, 389, Xincun Road, Shanghai, 200065, China
| | - Ling Zhu
- Department of Neurology, Shanghai Tongji Hospital, Tongji University School of Medicine, 389, Xincun Road, Shanghai, 200065, China.,Department of Neurology, Shanghai Liqun Hospital, Shanghai, China
| | - Junhui Su
- Department of Neurology, Shanghai Tongji Hospital, Tongji University School of Medicine, 389, Xincun Road, Shanghai, 200065, China
| | - Xi Zhang
- Department of Neurology, Shanghai Tongji Hospital, Tongji University School of Medicine, 389, Xincun Road, Shanghai, 200065, China
| | - Ning Li
- Department of Neurology, Shanghai Tongji Hospital, Tongji University School of Medicine, 389, Xincun Road, Shanghai, 200065, China
| | - Zhiyu Nie
- Department of Neurology, Shanghai Tongji Hospital, Tongji University School of Medicine, 389, Xincun Road, Shanghai, 200065, China
| | - Lingjing Jin
- Department of Neurology, Shanghai Tongji Hospital, Tongji University School of Medicine, 389, Xincun Road, Shanghai, 200065, China.
| |
Collapse
|
21
|
Retinoic acid ameliorates blood–brain barrier disruption following ischemic stroke in rats. Pharmacol Res 2015; 99:125-36. [DOI: 10.1016/j.phrs.2015.05.014] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Revised: 05/30/2015] [Accepted: 05/31/2015] [Indexed: 01/28/2023]
|
22
|
Protection of the brain following cerebral ischemia through the attenuation of PARP-1-induced neurovascular unit damage in rats. Brain Res 2015. [PMID: 26220474 DOI: 10.1016/j.brainres.2015.07.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Cerebral ischemia is a major health crisis throughout the world, and the currently available thrombolytic therapy is unsatisfactory. Cell death following cerebral ischemia is mediated by a complex pathophysiological interaction of various mechanisms. During an ischemic insult, not only neurons but all of the components of the neurovascular unit, such as glia, endothelia, pericytes and basal membranes, are destroyed. Previous studies have shown that excessive stimulation of poly (ADP-ribose) polymerase (PARP-1) is crucial for cerebral injury after ischemic insult, which is an important cause of cell death in all cell types within the neurovascular unit. To investigate whether PARP-1 plays an important role in protecting the neurovascular unit following cerebral ischemia, we evaluated neurobehavioral deficits, PARP-1 activity, blood brain barrier (BBB) disruption and neurovascular unit deficits using Western blot analysis, TTC staining and electron microscopy in an MCAO rat model. The results revealed that PARP-1 enzymatic activity was dramatically increased after ischemia. Inhibition of PARP-1 significantly reduced the extent of both cerebral infarction and edema, improved neurological scores, and attenuated the damage to the neurovascular unit in cerebral ischemia. Collectively, these findings demonstrate that the down-regulation of PARP-1 activity contributes to reducing post-ischemic brain damage via protection of the neurovascular unit.
Collapse
|
23
|
The fibrinolytic system-more than fibrinolysis? Transfus Med Rev 2014; 29:102-9. [PMID: 25576010 DOI: 10.1016/j.tmrv.2014.09.006] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 09/08/2014] [Accepted: 09/12/2014] [Indexed: 01/05/2023]
Abstract
The fibrinolytic system, known for its ability to regulate the activation of the zymogen plasminogen into active plasmin, has been primarily associated with the removal of fibrin and blood clots. Tissue-type plasminogen activator, the most well-recognized plasminogen activator, was harnessed for therapeutic benefit against thromboembolic disorders more than 30 years ago, whereas inhibition of this system has been proven effective for certain bleeding disorders. However, in recent years, new and unexpected functional roles for this system have been identified mostly in relation to the central nervous system that are both unrelated and independent of fibrin degradation and clot removal. Hence, it seems reasonable to ask whether agents used to modify components or activities of the fibrinolytic system have any clinical consequences unrelated to their intended use in hemostasis. This review will provide an overview of these new features of the fibrinolytic system and will also focus on prospective considerations in the use of fibrinolytic and antifibrinolytic agents.
Collapse
|
24
|
Lechaftois M, Dreano E, Palmier B, Margaill I, Marchand-Leroux C, Bachelot-Loza C, Lerouet D. Another "string to the bow" of PJ34, a potent poly(ADP-Ribose)polymerase inhibitor: an antiplatelet effect through P2Y12 antagonism? PLoS One 2014; 9:e110776. [PMID: 25329809 PMCID: PMC4203827 DOI: 10.1371/journal.pone.0110776] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 09/16/2014] [Indexed: 11/25/2022] Open
Abstract
Background Neuro- and vasoprotective effects of poly(ADP-ribose)polymerase (PARP) inhibition have been largely documented in models of cerebral ischemia, particularly with the potent PARP inhibitor PJ34. Furthermore, after ischemic stroke, physicians are faced with incomplete tissue reperfusion and reocclusion, in which platelet activation/aggregation plays a key role. Data suggest that certain PARP inhibitors could act as antiplatelet agents. In that context, the present in vitro study investigated on human blood the potential antiplatelet effect of PJ34 and two structurally different PARP inhibitors, DPQ and INO-1001. Methods and results ADP concentrations were chosen to induce a biphasic aggregation curve resulting from the successive activation of both its receptors P2Y1 and P2Y12. In these experimental conditions, PJ34 inhibited the second phase of aggregation; this effect was reduced by incremental ADP concentrations. In addition, in line with a P2Y12 pathway inhibitory effect, PJ34 inhibited the dephosphorylation of the vasodilator stimulated phosphoprotein (VASP) in a concentration-dependent manner. Besides, PJ34 had no effect on platelet aggregation induced by collagen or PAR1 activating peptide, used at concentrations inducing a strong activation independent on secreted ADP. By contrast, DPQ and INO-1001 were devoid of any effect whatever the platelet agonist used. Conclusions We showed that, in addition to its already demonstrated beneficial effects in in vivo models of cerebral ischemia, the potent PARP inhibitor PJ34 exerts in vitro an antiplatelet effect. Moreover, this is the first study to report that PJ34 could act via a competitive P2Y12 antagonism. Thus, this antiplatelet effect could improve post-stroke reperfusion and/or prevent reocclusion, which reinforces the interest of this drug for stroke treatment.
Collapse
Affiliation(s)
- Marie Lechaftois
- EA4475-“Pharmacologie de la Circulation Cérébrale”, Faculté des Sciences Pharmaceutiques et Biologiques, Université Paris Descartes, Comue Sorbonne Paris Cité, Paris, France
| | - Elise Dreano
- Inserm UMR S1140, Paris, France
- Faculté des Sciences Pharmaceutiques et Biologiques, Université Paris Descartes, Comue Sorbonne Paris Cité, Paris, France
| | - Bruno Palmier
- EA4475-“Pharmacologie de la Circulation Cérébrale”, Faculté des Sciences Pharmaceutiques et Biologiques, Université Paris Descartes, Comue Sorbonne Paris Cité, Paris, France
| | - Isabelle Margaill
- EA4475-“Pharmacologie de la Circulation Cérébrale”, Faculté des Sciences Pharmaceutiques et Biologiques, Université Paris Descartes, Comue Sorbonne Paris Cité, Paris, France
| | - Catherine Marchand-Leroux
- EA4475-“Pharmacologie de la Circulation Cérébrale”, Faculté des Sciences Pharmaceutiques et Biologiques, Université Paris Descartes, Comue Sorbonne Paris Cité, Paris, France
| | - Christilla Bachelot-Loza
- Inserm UMR S1140, Paris, France
- Faculté des Sciences Pharmaceutiques et Biologiques, Université Paris Descartes, Comue Sorbonne Paris Cité, Paris, France
| | - Dominique Lerouet
- EA4475-“Pharmacologie de la Circulation Cérébrale”, Faculté des Sciences Pharmaceutiques et Biologiques, Université Paris Descartes, Comue Sorbonne Paris Cité, Paris, France
- * E-mail:
| |
Collapse
|
25
|
Plasmin-dependent modulation of the blood-brain barrier: a major consideration during tPA-induced thrombolysis? J Cereb Blood Flow Metab 2014; 34:1283-96. [PMID: 24896566 PMCID: PMC4126105 DOI: 10.1038/jcbfm.2014.99] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Revised: 05/09/2014] [Accepted: 05/09/2014] [Indexed: 01/16/2023]
Abstract
Plasmin, the principal downstream product of tissue-type plasminogen activator (tPA), is known for its potent fibrin-degrading capacity but is also recognized for many non-fibrinolytic activities. Curiously, plasmin has not been conclusively linked to blood-brain barrier (BBB) disruption during recombinant tPA (rtPA)-induced thrombolysis in ischemic stroke. This is surprising given the substantial involvement of tPA in the modulation of BBB permeability and the co-existence of tPA and plasminogen in both blood and brain throughout the ischemic event. Here, we review the work that argues a role for plasmin together with endogenous tPA or rtPA in BBB alteration, presenting the overall controversy around the topic yet creating a rational case for an involvement of plasmin in this process.
Collapse
|
26
|
Lin SY, Liu CL, Chang YM, Zhao J, Perlman S, Hou MH. Structural basis for the identification of the N-terminal domain of coronavirus nucleocapsid protein as an antiviral target. J Med Chem 2014; 57:2247-57. [PMID: 24564608 PMCID: PMC3983370 DOI: 10.1021/jm500089r] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
![]()
Coronaviruses
(CoVs) cause numerous diseases, including Middle
East respiratory syndrome and severe acute respiratory syndrome, generating
significant health-related and economic consequences. CoVs encode
the nucleocapsid (N) protein, a major structural protein that plays
multiple roles in the virus replication cycle and forms a ribonucleoprotein
complex with the viral RNA through the N protein’s N-terminal
domain (N-NTD). Using human CoV-OC43 (HCoV-OC43) as a model for CoV,
we present the 3D structure of HCoV-OC43 N-NTD complexed with ribonucleoside
5′-monophosphates to identify a distinct ribonucleotide-binding
pocket. By targeting this pocket, we identified and developed a new
coronavirus N protein inhibitor, N-(6-oxo-5,6-dihydrophenanthridin-2-yl)(N,N-dimethylamino)acetamide hydrochloride
(PJ34), using virtual screening; this inhibitor reduced the N protein’s
RNA-binding affinity and hindered viral replication. We also determined
the crystal structure of the N-NTD–PJ34 complex. On the basis
of these findings, we propose guidelines for developing new N protein-based
antiviral agents that target CoVs.
Collapse
Affiliation(s)
- Shing-Yen Lin
- College of Life Science, ‡Institute of Genomics and Bioinformatics, and §Agriculture Biotechnology Center, National Chung Hsing University , Taichung 40254, Taiwan
| | | | | | | | | | | |
Collapse
|
27
|
Ying W. Roles of NAD (+) , PARP-1, and Sirtuins in Cell Death, Ischemic Brain Injury, and Synchrotron Radiation X-Ray-Induced Tissue Injury. SCIENTIFICA 2013; 2013:691251. [PMID: 24386592 PMCID: PMC3872437 DOI: 10.1155/2013/691251] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 11/18/2013] [Indexed: 06/03/2023]
Abstract
NAD(+) plays crucial roles in a variety of biological processes including energy metabolism, aging, and calcium homeostasis. Multiple studies have also shown that NAD(+) administration can profoundly decrease oxidative cell death and ischemic brain injury. A number of recent studies have further indicated that NAD(+) administration can decrease ischemic brain damage, traumatic brain damage and synchrotron radiation X-ray-induced tissue injury by such mechanisms as inhibiting inflammation, decreasing autophagy, and reducing DNA damage. Our latest study that applies nano-particles as a NAD(+) carrier has also provided first direct evidence demonstrating a key role of NAD(+) depletion in oxidative stress-induced ATP depletion. Poly(ADP-ribose) polymerase-1 (PARP-1) and sirtuins are key NAD(+)-consuming enzymes that mediate multiple biological processes. Recent studies have provided new information regarding PARP-1 and sirtuins in cell death, ischemic brain damage and synchrotron radiation X-ray-induced tissue damage. These findings have collectively supported the hypothesis that NAD(+) metabolism, PARP-1 and sirtuins play fundamental roles in oxidative stress-induced cell death, ischemic brain injury, and radiation injury. The findings have also supported "the Central Regulatory Network Hypothesis", which proposes that a fundamental network that consists of ATP, NAD(+) and Ca(2+) as its key components is the essential network regulating various biological processes.
Collapse
Affiliation(s)
- Weihai Ying
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai 200032, China
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| |
Collapse
|