1
|
Schmidt R, Welzel B, Löscher W. Animal welfare assessment after controlled cortical impact in CD-1 mice - A model of posttraumatic epilepsy. Epilepsy Behav 2025; 163:110214. [PMID: 39671736 DOI: 10.1016/j.yebeh.2024.110214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/05/2024] [Accepted: 12/06/2024] [Indexed: 12/15/2024]
Abstract
The ethical use of laboratory animals requires that the benefits of an experimental study are carefully weighed against potential harm to the animals. In traumatic brain injury (TBI) research, ethical concerns are especially relevant to severe TBI, after which animals may experience suffering, depending on the implementation of refinement measures such as (1) postsurgical analgesia during the initial period following TBI and (2) humane endpoints. However, despite the frequent use of rodent models such as fluid percussion injury (FPI) and controlled cortical impact (CCI) in rats or mice, there is only one recent study that applied assessment of welfare to a severe TBI model, the FPI model in rats. In the present pilot study in a CCI mouse model of posttraumatic epilepsy, we assessed animal welfare by a brain injury-specific severity scoresheet. Furthermore, nest building was used as a sensitive indicator of health and welfare in laboratory mice. Sham mice that underwent craniotomy but not CCI were used for comparison. Craniotomy and CCI were performed under anesthesia with isoflurane, followed by 3 days of postsurgical analgesia with the opioid l-methadone. Mannitol was used to prevent the head pain caused by increased intracranial pressure. Using the TBI-specific scoresheet to describe and monitor potential distress in animals, moderately increased scores were determined in CCI mice only over the first 2 days after surgery, indicating that animal suffering in this model is transitory. Similarly, significantly impaired nest building was observed at 1 but not 7 days after CCI. We conclude that with effective postsurgical analgesia and mannitol behavioral recovery is rapid in mice after CCI.
Collapse
Affiliation(s)
- Ricardo Schmidt
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany; Translational Neuropharmacology Lab, NIFE, Department of Experimental Otology of the ENT Clinics, Hannover Medical School, Hannover, Germany
| | - Björn Welzel
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany
| | - Wolfgang Löscher
- Translational Neuropharmacology Lab, NIFE, Department of Experimental Otology of the ENT Clinics, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
2
|
Meta-Analysis of Methamphetamine Modulation on Amyloid Precursor Protein through HMGB1 in Alzheimer's Disease. Int J Mol Sci 2021; 22:ijms22094781. [PMID: 33946401 PMCID: PMC8124433 DOI: 10.3390/ijms22094781] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/22/2021] [Accepted: 04/26/2021] [Indexed: 12/14/2022] Open
Abstract
The deposition of amyloid-beta (Aβ) through the cleavage of amyloid-beta precursor protein (APP) is a biomarker of Alzheimer’s disease (AD). This study used QIAGEN Ingenuity Pathway Analysis (IPA) to conduct meta-analysis on the molecular mechanisms by which methamphetamine (METH) impacts AD through modulating the expression of APP. All the molecules affected by METH and APP were collected from the QIAGEN Knowledge Base (QKB); 78 overlapping molecules were identified. Upon simulation of METH exposure using the “Molecule Activity Predictor” feature, eight molecules were found to be affected by METH and exhibited activation relationships on APP expression at a confidence of p = 0.000453 (Z-score = 3.51, two-tailed). Core Analysis of these eight molecules identified High Mobility Group Box protein 1 (HMGB1) signaling pathway among the top 5 canonical pathways with most overlap with the 8-molecule dataset. Simulated METH exposure increased APP expression through HMGB1 at a confidence of p < 0.00001 (Z-score = 7.64, two-tailed). HMGB1 is a pathogenic hallmark in AD progression. It not only increases the production of inflammatory mediators, but also mediates the disruption of the blood-brain barrier. Our analyses suggest the involvement of HMGB1 signaling pathway in METH-induced modulation of APP as a potential casual factor of AD.
Collapse
|
3
|
Shen S, Zhang M, Ma M, Rasam S, Poulsen D, Qu J. Potential Neuroprotective Mechanisms of Methamphetamine Treatment in Traumatic Brain Injury Defined by Large-Scale IonStar-Based Quantitative Proteomics. Int J Mol Sci 2021; 22:2246. [PMID: 33668155 PMCID: PMC7956755 DOI: 10.3390/ijms22052246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/18/2021] [Accepted: 02/20/2021] [Indexed: 12/15/2022] Open
Abstract
Although traumatic brain injury (TBI) causes hospitalizations and mortality worldwide, there are no approved neuroprotective treatments, partly due to a poor understanding of the molecular mechanisms underlying TBI neuropathology and neuroprotection. We previously reported that the administration of low-dose methamphetamine (MA) induced significant functional/cognitive improvements following severe TBI in rats. We further demonstrated that MA mediates neuroprotection in part, via dopamine-dependent activation of the PI3K-AKT pathway. Here, we further investigated the proteomic changes within the rat cortex and hippocampus following mild TBI (TM), severe TBI (TS), or severe TBI plus MA treatment (TSm) compared to sham operated controls. We identified 402 and 801 altered proteins (APs) with high confidence in cortical and hippocampal tissues, respectively. The overall profile of APs observed in TSm rats more closely resembled those seen in TM rather than TS rats. Pathway analysis suggested beneficial roles for acute signaling through IL-6, TGFβ, and IL-1β. Moreover, changes in fibrinogen levels observed in TSm rats suggested a potential role for these proteins in reducing/preventing TBI-induced coagulopathies. These data facilitate further investigations to identify specific pathways and proteins that may serve as key targets for the development of neuroprotective therapies.
Collapse
Affiliation(s)
- Shichen Shen
- Department of Pharmaceutical Sciences, University at Buffalo, Buffalo, NY 14214, USA; (S.S.); (M.Z.)
- New York State Center of Excellence in Bioinformatics and Life Sciences, Buffalo, NY 14203, USA; (M.M.); (S.R.)
| | - Ming Zhang
- Department of Pharmaceutical Sciences, University at Buffalo, Buffalo, NY 14214, USA; (S.S.); (M.Z.)
- New York State Center of Excellence in Bioinformatics and Life Sciences, Buffalo, NY 14203, USA; (M.M.); (S.R.)
| | - Min Ma
- New York State Center of Excellence in Bioinformatics and Life Sciences, Buffalo, NY 14203, USA; (M.M.); (S.R.)
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Institute, Buffalo, NY 14203, USA
| | - Sailee Rasam
- New York State Center of Excellence in Bioinformatics and Life Sciences, Buffalo, NY 14203, USA; (M.M.); (S.R.)
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA
| | - David Poulsen
- Department of Neurosurgery, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA
| | - Jun Qu
- Department of Pharmaceutical Sciences, University at Buffalo, Buffalo, NY 14214, USA; (S.S.); (M.Z.)
- New York State Center of Excellence in Bioinformatics and Life Sciences, Buffalo, NY 14203, USA; (M.M.); (S.R.)
| |
Collapse
|
4
|
Ahmari M, Sharafi A, Mahmoudi J, Jafari-Anarkoli I, Gharbavi M, Hosseini MJ. Selegiline (L-Deprenyl) Mitigated Oxidative Stress, Cognitive Abnormalities, and Histopathological Change in Rats: Alternative Therapy in Transient Global Ischemia. J Mol Neurosci 2020; 70:1639-1648. [PMID: 32488846 DOI: 10.1007/s12031-020-01544-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 04/13/2020] [Indexed: 12/16/2022]
Abstract
Selegiline (L-deprenyl) is the major drug which is used in the treatment of Parkinson's disease because of its neurotrophic and antiapoptotic properties. Previous studies suggested that low dose of L-methamphetamine (L-METH) caused lower mortality rate in patients with severe traumatic brain injury. As L-methamphetamine is one of the metabolites of selegiline, the present study aims to examine whether L-deprenyl can improve cognitive, biochemical, and histopathological injury in animal model of transient global ischemia. The animals were randomized in ten groups orally gavaged three times a week for 28 days. Then, novel object recognition (NOR) was conducted to assess their behavioral abnormality. After scarification of the rats, their brains were divided into two sections to measure oxidative stress parameters and perform pathological evaluations in rats. Our data revealed the involvement of oxidative stress, behavioral despair, and pathological data in transient global ischemia rats. Significant recovery in cognitive behavior, oxidative stress biomarker, and number of dead cell in histopathological assay was observed in rats treated with 1,2 and 4 mg/kg of selegiline. So, selegiline appears to be useful in alternative therapy of transient global ischemia.
Collapse
Affiliation(s)
- Mahroo Ahmari
- Zanjan Applied Pharmacology Research Center, Zanjan University of Medical sciences, Zanjan, Iran.,Department of Pharmacology and Toxicology, School of Pharmacy, Zanjan University of Medical Sciences, P.O. Box: 45139-56184, Zanjan, Iran
| | - Ali Sharafi
- Zanjan Applied Pharmacology Research Center, Zanjan University of Medical sciences, Zanjan, Iran.,Zanjan Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Javad Mahmoudi
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Iraj Jafari-Anarkoli
- Department of Anatomical Sciences, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mahmoud Gharbavi
- Zanjan Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mir-Jamal Hosseini
- Zanjan Applied Pharmacology Research Center, Zanjan University of Medical sciences, Zanjan, Iran. .,Department of Pharmacology and Toxicology, School of Pharmacy, Zanjan University of Medical Sciences, P.O. Box: 45139-56184, Zanjan, Iran.
| |
Collapse
|
5
|
Traumatic brain injury and methamphetamine: A double-hit neurological insult. J Neurol Sci 2020; 411:116711. [DOI: 10.1016/j.jns.2020.116711] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 11/27/2019] [Accepted: 01/29/2020] [Indexed: 11/17/2022]
|
6
|
Fan X, Yang J, Dong Y, Hou Y, Liu S, Wu C. Oxytocin inhibits methamphetamine-associated learning and memory alterations by regulating DNA methylation at the Synaptophysin promoter. Addict Biol 2020; 25:e12697. [PMID: 30585381 DOI: 10.1111/adb.12697] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 09/26/2018] [Accepted: 10/17/2018] [Indexed: 01/02/2023]
Abstract
Methamphetamine (METH) causes memory changes, but the underlying mechanisms are poorly understood. Epigenetic mechanisms, including DNA methylation, can potentially cause synaptic changes in the brain. Oxytocin (OT) plays a central role in learning and memory, but little is known of the impact of OT on METH-associated memory changes. Here, we explored the role of OT in METH-induced epigenetic alterations that underlie spatial and cognitive memory changes. METH (2.0 mg/kg, i.p.) was administered to male C57BL/6 mice once every other day for 8 days. OT (2.5 μg, i.c.v.) or aCSF was given prior to METH. Spatial and cognitive memory were assessed. In Hip and PFC, synaptic structures and proteins were examined, levels of DNA methyltransferases (DNMTs) and methyl CpG binding protein 2 (MECP2) were determined, and the DNA methylation status at the Synaptophysin (Syn) promoter was assessed. METH enhanced spatial memory, decreased synapse length, downregulated DNMT1, DNMT3A, DNMT3B, and MECP2, and induced DNA hypomethylation at the Syn promoter in Hip. In contrast, METH reduced cognitive memory, increased synapse thickness, upregulated DNMT1, DNMT3A, and MECP2, and induced DNA hypermethylation at the Syn promoter in PFC. OT pretreatment specifically ameliorated METH-induced learning and memory alterations, normalized synapse structures, and regulated DNMTs and MECP2 to reverse the DNA methylation status changes at the Syn promoter in Hip and PFC. DNA methylation is an important gene regulatory mechanism underlying METH-induced learning and memory alterations. OT can potentially be used to specifically manipulate METH-related memory changes.
Collapse
Affiliation(s)
- Xin‐Yu Fan
- Department of PharmacologyShenyang Pharmaceutical University Shenyang China
| | - Jing‐Yu Yang
- Department of PharmacologyShenyang Pharmaceutical University Shenyang China
| | - Ying‐Xu Dong
- Department of PharmacologyShenyang Pharmaceutical University Shenyang China
| | - Ying Hou
- Department of PharmacologyShenyang Pharmaceutical University Shenyang China
| | - Shuai Liu
- Department of PharmacologyShenyang Pharmaceutical University Shenyang China
| | - Chun‐Fu Wu
- Department of PharmacologyShenyang Pharmaceutical University Shenyang China
| |
Collapse
|
7
|
Lu S, Liao L, Zhang B, Yan W, Chen L, Yan H, Guo L, Lu S, Xiong K, Yan J. Antioxidant cascades confer neuroprotection in ethanol, morphine, and methamphetamine preconditioning. Neurochem Int 2019; 131:104540. [PMID: 31470038 DOI: 10.1016/j.neuint.2019.104540] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 08/06/2019] [Accepted: 08/23/2019] [Indexed: 12/22/2022]
Affiliation(s)
- Shuang Lu
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, Hunan, 410013, China; Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan, 410013, China
| | - Lvshuang Liao
- Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan, 410013, China
| | - Bing Zhang
- School of Basic Medical Science, Xinjiang Medical University, Urumqi, 830001, China
| | - Weitao Yan
- Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan, 410013, China
| | - Liangpei Chen
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, Hunan, 410013, China
| | - He Yan
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, Hunan, 410013, China
| | - Limin Guo
- Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan, 410013, China
| | - Shanshan Lu
- Histology and Embryology, School of Basic Medical Science, Central South University, Changsha, Hunan, 410013, China
| | - Kun Xiong
- Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan, 410013, China.
| | - Jie Yan
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, Hunan, 410013, China; School of Basic Medical Science, Xinjiang Medical University, Urumqi, 830001, China.
| |
Collapse
|
8
|
Schweser F, Kyyriäinen J, Preda M, Pitkänen A, Toffolo K, Poulsen A, Donahue K, Levy B, Poulsen D. Visualization of thalamic calcium influx with quantitative susceptibility mapping as a potential imaging biomarker for repeated mild traumatic brain injury. Neuroimage 2019; 200:250-258. [PMID: 31201986 DOI: 10.1016/j.neuroimage.2019.06.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 06/03/2019] [Accepted: 06/11/2019] [Indexed: 11/17/2022] Open
Abstract
A key event in the pathophysiology of traumatic brain injury (TBI) is the influx of substantial amounts of Ca2+ into neurons, particularly in the thalamus. Detection of this calcium influx in vivo would provide a window into the biochemical mechanisms of TBI with potentially significant clinical implications. In the present work, our central hypothesis was that the Ca2+ influx could be imaged in vivo with the relatively recent MRI technique of quantitative susceptibility mapping (QSM). Wistar rats were divided into five groups: naive controls, sham-operated experimental controls, single mild TBI, repeated mild TBI, and single severe TBI. We employed the lateral fluid percussion injury (FPI) model, which replicates clinical TBI without skull fracture, performed 9.4 Tesla MRI with a 3D multi-echo gradient-echo sequence at weeks 1 and 4 post-injury, computed susceptibility maps using V-SHARP and the QUASAR-HEIDI technique, and performed histology. Sham, experimental controls animals, and injured animals did not demonstrate calcifications at 1 week after the injury. At week 4, calcifications were found in the ipsilateral thalamus of 25-50% of animals after a single TBI and 83% of animals after repeated mild TBI. The location and appearance of calcifications on stained sections was consistent with the appearance on the in vivo susceptibility maps (correlation of volumes: r = 0.7). Our findings suggest that persistent calcium deposits represent a primary pathology of repeated injury and that FPI-QSM has the potential to become a sensitive tool for studying pathophysiology related to mild TBI in vivo.
Collapse
Affiliation(s)
- Ferdinand Schweser
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences at the University at Buffalo, The State University of New York, Buffalo, NY, USA; Center for Biomedical Imaging, Clinical and Translational Science Institute, University at Buffalo, The State University of New York, Buffalo, NY, USA.
| | - Jenni Kyyriäinen
- Epilepsy Research Laboratory, A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FI, 70211, Kuopio, Finland
| | - Marilena Preda
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences at the University at Buffalo, The State University of New York, Buffalo, NY, USA; Center for Biomedical Imaging, Clinical and Translational Science Institute, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Asla Pitkänen
- Epilepsy Research Laboratory, A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FI, 70211, Kuopio, Finland
| | - Kathryn Toffolo
- Department of Neurosurgery, Jacobs School of Medicine and Biomedical Sciences at the University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Austin Poulsen
- Department of Neurosurgery, Jacobs School of Medicine and Biomedical Sciences at the University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Kaitlynn Donahue
- Department of Neurosurgery, Jacobs School of Medicine and Biomedical Sciences at the University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Benett Levy
- Department of Neurosurgery, Jacobs School of Medicine and Biomedical Sciences at the University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - David Poulsen
- Department of Neurosurgery, Jacobs School of Medicine and Biomedical Sciences at the University at Buffalo, The State University of New York, Buffalo, NY, USA
| |
Collapse
|
9
|
Karttunen J, Heiskanen M, Lipponen A, Poulsen D, Pitkänen A. Extracellular Vesicles as Diagnostics and Therapeutics for Structural Epilepsies. Int J Mol Sci 2019; 20:E1259. [PMID: 30871144 PMCID: PMC6470789 DOI: 10.3390/ijms20061259] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 03/08/2019] [Accepted: 03/08/2019] [Indexed: 12/16/2022] Open
Abstract
Extracellular vesicles (EVs) are small vesicles involved in intercellular communication. Data is emerging that EVs and their cargo have potential as diagnostic biomarkers and treatments for brain diseases, including traumatic brain injury and epilepsy. Here, we summarize the current knowledge regarding changes in EV numbers and cargo in status epilepticus (SE) and traumatic brain injury (TBI), which are clinically significant etiologies for acquired epileptogenesis in animals and humans. We also review encouraging data, which suggests that EVs secreted by stem cells may serve as recovery-enhancing treatments for SE and TBI. Using Gene Set Enrichment Analysis, we show that brain EV-related transcripts are positively enriched in rodent models of epileptogenesis and epilepsy, and altered in response to anti-seizure drugs. These data suggest that EVs show promise as biomarkers, treatments and drug targets for epilepsy. In parallel to gathering conceptual knowledge, analytics platforms for the isolation and analysis of EV contents need to be further developed.
Collapse
Affiliation(s)
- Jenni Karttunen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland.
| | - Mette Heiskanen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland.
| | - Anssi Lipponen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland.
| | - David Poulsen
- University at Buffalo, Jacobs School of Medicine and Biomedical Sciences, Clinical and Translational Research Center (CTRC), Department of Neurosurgery, Buffalo, NY 14203, USA.
| | - Asla Pitkänen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland.
| |
Collapse
|
10
|
Methamphetamine regulates βAPP processing in human neuroblastoma cells. Neurosci Lett 2019; 701:20-25. [PMID: 30771376 DOI: 10.1016/j.neulet.2019.02.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 02/05/2019] [Accepted: 02/12/2019] [Indexed: 12/20/2022]
Abstract
Methamphetamine is a potent and highly addictive psychostimulant whose abuse has turned out to be a global health hazard. The multitudinous effects it exerts at the cellular level induces neurotoxic responses in the human brain, ultimately leading to neurocognitive disorders. Strikingly, brain changes, tissue damage and neuropsychological symptoms due to Meth exposure compels and necessitates to link the probability of risk of developing premature Alzheimer's disease, a progressive neurodegenerative disorder characterized by amyloid plaques composed of amyloid-β peptides and clinical dementia. These peptides are derived from sequential cleavages of the β-amyloid precursor protein by β- and γ-secretases. Previous studies reveals evidence for both positive and negative effects of Meth pertaining to cognitive functioning based on the dosage paradigm and duration of exposure revealing a beneficial psychotropic profile under some conditions and deleterious cognitive deficits under some others. In this context, we proposed to examine the effect of Meth on βAPP metabolism and βAPP-cleaving secretases in the human neuroblastoma SH-SY5Y cell line. Our results showed that Meth dose-dependently increases BACE1 expression and catalytic activity, while its effect on the α-cleavage of βAPP and on the expression and catalytic activity of the main α-secretase ADAM10 display a bell-curve shape. To our knowledge, the present study is the first to demonstrate that Meth can control βAPP-cleaving secretases. Moreover, we propose from these findings that the deleterious effect of Meth on cognitive decline might be an outcome of high dosage paradigm whereas acute and short-term drug use which stimulated sAPPα might produce improvements in cognition in disorders such as AD.
Collapse
|
11
|
Mohamadpour M, Whitney K, Bergold PJ. The Importance of Therapeutic Time Window in the Treatment of Traumatic Brain Injury. Front Neurosci 2019; 13:07. [PMID: 30728762 PMCID: PMC6351484 DOI: 10.3389/fnins.2019.00007] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 01/07/2019] [Indexed: 12/19/2022] Open
Abstract
Traumatic brain injury (TBI) is a major cause of death and disability. Despite its importance in public health, there are presently no drugs to treat TBI. Many reasons underlie why drugs have failed clinical trials, one reason is that most drugs to treat TBI lose much of their efficacy before patients are first treated. This review discusses the importance of therapeutic time window; the time interval between TBI onset and the initiation of treatment. Therapeutic time window is complex, as brain injury is both acute and chronic, resulting in multiple drug targets that appear and disappear with differing kinetics. The speed and increasing complexity of TBI pathophysiology is a major reason why drugs lose efficacy as time to first dose increases. Recent Phase III clinical trials treated moderate to severe TBI patients within 4–8 h after injury, yet they turned away many potential patients who could not be treated within these time windows. Additionally, most head trauma is mild TBI. Unlike moderate to severe TBI, patients with mild TBI often delay treatment until their symptoms do not abate. Thus, drugs to treat moderate to severe TBI likely will need to retain high efficacy for up to 12 h after injury; drugs for mild TBI, however, will likely need even longer windows. Early pathological events following TBI progress with similar kinetics in humans and animal TBI models suggesting that preclinical testing of time windows assists the design of clinical trials. We reviewed preclinical studies of drugs first dosed later than 4 h after injury. This review showed that therapeutic time window can differ depending upon the animal TBI model and the outcome measure. We identify the few drugs (methamphetamine, melanocortin, minocycline plus N-acetylcysteine, and cycloserine) that demonstrated good therapeutic windows with multiple outcome measures. On the basis of their therapeutic window, these drugs appear to be excellent candidates for clinical trials. In addition to further testing of these drugs, we recommend that the assessment of therapeutic time window with multiple outcome measures becomes a standard component of preclinical drug testing.
Collapse
Affiliation(s)
- Maliheh Mohamadpour
- Department of Neurology, State University of New York Downstate Medical Center, Brooklyn, NY, United States
| | - Kristen Whitney
- Department of Physiology and Pharmacology, State University of New York Downstate Medical Center, Brooklyn, NY, United States
| | - Peter J Bergold
- Department of Neurology, State University of New York Downstate Medical Center, Brooklyn, NY, United States.,Department of Physiology and Pharmacology, State University of New York Downstate Medical Center, Brooklyn, NY, United States
| |
Collapse
|
12
|
Osei J, Kelly W, Toffolo K, Donahue K, Levy B, Bard J, Wang J, Levy E, Nowak N, Poulsen D. Thymosin beta 4 induces significant changes in the plasma miRNA profile following severe traumatic brain injury in the rat lateral fluid percussion injury model. Expert Opin Biol Ther 2019; 18:159-164. [PMID: 29873258 DOI: 10.1080/14712598.2018.1484102] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVES Thymosin beta 4 (Tβ4) has demonstrated neuroprotective potential in models of neurlogical injury. The neuroprotective potential of Tβ4 has been associated with increased miR-200a and miR-200b within the brain following stroke. Here we tested the hypothesis that Tβ4 treatment could also alter miRNA profiles within the plasma following severe traumatic brain injury (TBI). METHODS We used the rat lateral fluid percusion injury model of severe TBI to test this hypothesis. Highly sensitive and quantitative droplet digital polymerase chain reaction (ddPCR) was used to measure the plasma concentrations of miR-200 family members. In addition, we conducted RNAseq analysis of plasma miRNA to further identify changes associated with TBI and treatment with Tβ4. RESULTS ddPCR demonstrated that miR-200a-3p andmiR-200b-3p were both significantly increased in plasma following treatment with Tβ4 after severe TBI. RNAseq analysis suggested that miR-300-3p and miR-598-3p increased while miR-450-3p and miR-194-5p significantly decreased following TBI. In contrast, miR-194-5p significantly increased in Tβ4 treated rats following TBI. In addition, we identified nine plasma miRNAs whose expression significantly changed following treatment with Tβ4. CONCLUSIONS Tβ4 treatment significantly increased plasma levels of miR-200a-3p and miR-200b-3p, while RNAseq analysis identified miR-194-5p as a candidate miRNA that may be critical for neuroprotection.
Collapse
Affiliation(s)
- Jennifer Osei
- a Department of Neurosrgery, Jacobs School of Medicine and Biomedical Sceinces , Univeristy at Buffalo , Buffalo , NY , USA
| | - William Kelly
- a Department of Neurosrgery, Jacobs School of Medicine and Biomedical Sceinces , Univeristy at Buffalo , Buffalo , NY , USA
| | - Kathryn Toffolo
- a Department of Neurosrgery, Jacobs School of Medicine and Biomedical Sceinces , Univeristy at Buffalo , Buffalo , NY , USA
| | - Kaitlynn Donahue
- a Department of Neurosrgery, Jacobs School of Medicine and Biomedical Sceinces , Univeristy at Buffalo , Buffalo , NY , USA
| | - Bennet Levy
- a Department of Neurosrgery, Jacobs School of Medicine and Biomedical Sceinces , Univeristy at Buffalo , Buffalo , NY , USA
| | - Jonathan Bard
- b New York State Center for Bioinformatics and Life Sciences , University at Buffalo , Buffalo , NY , USA
| | - Jianxin Wang
- c Center for Computational Research , University at Buffalo , Buffalo , NY , USA
| | - Elad Levy
- a Department of Neurosrgery, Jacobs School of Medicine and Biomedical Sceinces , Univeristy at Buffalo , Buffalo , NY , USA
| | - Norma Nowak
- b New York State Center for Bioinformatics and Life Sciences , University at Buffalo , Buffalo , NY , USA.,d Department of Biochemistry, School of Medicine and Biomedical Sciences , Univeristy at Buffalo , Buffalo , NY , USA
| | - David Poulsen
- a Department of Neurosrgery, Jacobs School of Medicine and Biomedical Sceinces , Univeristy at Buffalo , Buffalo , NY , USA
| |
Collapse
|
13
|
Zhou M, Lin K, Si Y, Ru Q, Chen L, Xiao H, Li C. Downregulation of HCN1 channels in hippocampus and prefrontal cortex in methamphetamine re-exposed mice with enhanced working memory. Physiol Res 2018; 68:107-117. [PMID: 30433806 DOI: 10.33549/physiolres.933873] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The hyperpolarization-activated cyclic-nucleotide-gated non-selective cation (HCN) channels play a potential role in the neurological basis underlying drug addiction. However, little is known about the role of HCN channels in methamphetamine (METH) abuse. In the present study, we examined the changes in working memory functions of METH re-exposed mice through Morris water maze test, and investigated the protein expression of HCN1 channels and potential mechanisms underlying the modulation of HCN channels by Western blotting analysis. Mice were injected with METH (1 mg/kg, i.p.) once per day for 6 consecutive days. After 5 days without METH, mice were re-exposed to METH at the same concentration. We found that METH re-exposure caused an enhancement of working memory, and a decrease in the HCN1 channels protein expression in both hippocampus and prefrontal cortex. The phosphorylated extracellular regulated protein kinase 1/2 (p-ERK1/2), an important regulator of HCN channels, was also obviously reduced in hippocampus and prefrontal cortex of mice with METH re-exposure. Meanwhile, acute METH exposure did not affect the working memory function and the protein expressions of HCN1 channels and p-ERK1/2. Overall, our data firstly showed the aberrant protein expression of HCN1 channels in METH re-exposed mice with enhanced working memory, which was probably related to the down-regulation of p-ERK1/2 protein expression.
Collapse
Affiliation(s)
- M Zhou
- Wuhan Institutes of Biomedical Sciences, Jianghan University, Wuhan, China.
| | | | | | | | | | | | | |
Collapse
|
14
|
Smith D, Rau T, Poulsen A, MacWilliams Z, Patterson D, Kelly W, Poulsen D. Convulsive seizures and EEG spikes after lateral fluid-percussion injury in the rat. Epilepsy Res 2018; 147:87-94. [PMID: 30286390 DOI: 10.1016/j.eplepsyres.2018.09.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 08/29/2018] [Accepted: 09/14/2018] [Indexed: 10/28/2022]
Abstract
The rat lateral fluid-percussion injury (FPI) model has been used extensively to study post-traumatic epilepsy (PTE). Epidemiological studies have reported that the risk of PTE is higher after more severe injury. Adult, male Wistar rats subjected to different atmospheric pressures of injury during FPI showed great variability in injury severity when functional behavior was determined based on the Neurological Severity Score (NSS) assessment. When NSS was used to select rats with the most severe FPI-induced brain injury, 63% of rats experienced at least one convulsive seizure 2-5 weeks after FPI. This same cohort of rats (i.e., selected for severe TBI based on NSS) were significantly more susceptible to PTZ-induced seizures compared to sham controls. Video/EEG recordings from a second cohort of rats with severe FPI-induced injury (based on NSS) showed a similar incidence and frequency of spike wave discharges between rats with severe TBI and sham controls. However, the rate of isolated EEG spikes was greater in rats with severe FPI-induced injury compared to sham controls. These data suggest that convulsive seizures can be obtained in FPI-treated rats when NSS is used as an inclusion criterion to select rats with severe injury. Furthermore, although spike-wave discharges were equally prevalent in rats with severe FPI and sham controls, spontaneous spikes were more prevalent in the rats with severe FPI.
Collapse
Affiliation(s)
- Debbie Smith
- University of Montana, Department of Biomedical and Pharmaceutical Sciences, Missoula, MT, United States
| | - Thomas Rau
- University of Montana, Department of Biomedical and Pharmaceutical Sciences, Missoula, MT, United States
| | - Austin Poulsen
- University of Montana, Department of Biomedical and Pharmaceutical Sciences, Missoula, MT, United States
| | - Ziven MacWilliams
- University of Montana, Department of Biomedical and Pharmaceutical Sciences, Missoula, MT, United States
| | - David Patterson
- University of Montana, Department of Mathematics, Missoula, MT, United States
| | - William Kelly
- University at Buffalo, Jacobs School of Medicine and Biomedical Sciences, Department of Neurosurgery, Buffalo, NY, United States
| | - David Poulsen
- University at Buffalo, Jacobs School of Medicine and Biomedical Sciences, Department of Neurosurgery, Buffalo, NY, United States.
| |
Collapse
|
15
|
Toffolo K, Osei J, Kelly W, Poulsen A, Donahue K, Wang J, Hunter M, Bard J, Wang J, Poulsen D. Circulating microRNAs as biomarkers in traumatic brain injury. Neuropharmacology 2018; 145:199-208. [PMID: 30195586 DOI: 10.1016/j.neuropharm.2018.08.028] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 08/13/2018] [Accepted: 08/23/2018] [Indexed: 12/22/2022]
Abstract
Preclinical and clinical studies can be greatly improved through the inclusion of diagnostic, prognostic, predictive or pharmacodynamics biomarkers. Circulating microRNAs (miRNAs) represent highly stable targets that respond to physiological and pathological changes. MicroRNA biomarkers can be detected by highly sensitive and absolutely quantitative methods currently available in most clinical laboratories. Here we review preclinical and clinical studies that have examined circulating miRNAs as potential diagnostic and prognostic biomarkers. We also present data that suggests pharmacodynamics biomarkers can be identified that are associated with neuroprotection in general. Although circulating miRNA can serve as useful tools, it is clear their expression profiles are highly sensitive to changing conditions and are influenced by a broad range of parameters including age, sex, body mass index, injury severity, time of collection, as well as methods of processing, purification and detection. Thus, considerable effort will be required to standardize methods and experimental design conditions before circulating miRNAs can prove useful in a heterologous injury like TBI. This article is part of the Special Issue entitled "Novel Treatments for Traumatic Brain Injury".
Collapse
Affiliation(s)
- Kathryn Toffolo
- Neurosurgery Department, Jacobs School of Medicine and Biomedical Sciences, Clinical and Translational Research Center, University at Buffalo, Buffalo, NY, 14203, USA
| | - Jennifer Osei
- Neurosurgery Department, Jacobs School of Medicine and Biomedical Sciences, Clinical and Translational Research Center, University at Buffalo, Buffalo, NY, 14203, USA
| | - William Kelly
- Neurosurgery Department, Jacobs School of Medicine and Biomedical Sciences, Clinical and Translational Research Center, University at Buffalo, Buffalo, NY, 14203, USA
| | - Austin Poulsen
- Neurosurgery Department, Jacobs School of Medicine and Biomedical Sciences, Clinical and Translational Research Center, University at Buffalo, Buffalo, NY, 14203, USA
| | - Kaitlynn Donahue
- Neurosurgery Department, Jacobs School of Medicine and Biomedical Sciences, Clinical and Translational Research Center, University at Buffalo, Buffalo, NY, 14203, USA
| | - Jiefei Wang
- Department of Biostatistics, University at Buffalo, Buffalo, NY, USA
| | - Madison Hunter
- Neurosurgery Department, Jacobs School of Medicine and Biomedical Sciences, Clinical and Translational Research Center, University at Buffalo, Buffalo, NY, 14203, USA
| | - Jonathan Bard
- New York State Center for Bioinformatics and Life Sciences, Buffalo, NY, USA
| | - Jianxin Wang
- New York State Center for Bioinformatics and Life Sciences, Buffalo, NY, USA
| | - David Poulsen
- Neurosurgery Department, Jacobs School of Medicine and Biomedical Sciences, Clinical and Translational Research Center, University at Buffalo, Buffalo, NY, 14203, USA.
| |
Collapse
|
16
|
IonStar enables high-precision, low-missing-data proteomics quantification in large biological cohorts. Proc Natl Acad Sci U S A 2018; 115:E4767-E4776. [PMID: 29743190 DOI: 10.1073/pnas.1800541115] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Reproducible quantification of large biological cohorts is critical for clinical/pharmaceutical proteomics yet remains challenging because most prevalent methods suffer from drastically declined commonly quantified proteins and substantially deteriorated quantitative quality as cohort size expands. MS2-based data-independent acquisition approaches represent tremendous advancements in reproducible protein measurement, but often with limited depth. We developed IonStar, an MS1-based quantitative approach enabling in-depth, high-quality quantification of large cohorts by combining efficient/reproducible experimental procedures with unique data-processing components, such as efficient 3D chromatographic alignment, sensitive and selective direct ion current extraction, and stringent postfeature generation quality control. Compared with several popular label-free methods, IonStar exhibited far lower missing data (0.1%), superior quantitative accuracy/precision [∼5% intragroup coefficient of variation (CV)], the widest protein abundance range, and the highest sensitivity/specificity for identifying protein changes (<5% false altered-protein discovery) in a benchmark sample set (n = 20). We demonstrated the usage of IonStar by a large-scale investigation of traumatic injuries and pharmacological treatments in rat brains (n = 100), quantifying >7,000 unique protein groups (>99.8% without missing data across the 100 samples) with a low false discovery rate (FDR), two or more unique peptides per protein, and high quantitative precision. IonStar represents a reliable and robust solution for precise and reproducible protein measurement in large cohorts.
Collapse
|
17
|
The impact of methamphetamines in patients with traumatic brain injury, a retrospective review. Clin Neurol Neurosurg 2018; 170:99-101. [PMID: 29763809 DOI: 10.1016/j.clineuro.2018.04.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 04/13/2018] [Accepted: 04/26/2018] [Indexed: 11/21/2022]
Abstract
OBJECTIVE Both neurotoxic and neuroprotective effects of methamphetamines (METH) are being studied. There are few studies evaluating the effects of METH on patients with traumatic brain injury (TBI). The objective of this study is to compare clinical outcomes after TBI in METH users versus non-METH users. PATIENT AND METHODS A retrospective review of 304 patients with severe traumatic head injury were performed. Patients were evaluated and stratified based on toxicology screening for methamphetamines (METH) or none. Of the patients reviewed with a full toxicology, 24 of those patients were positive for METH, and 60 patients were negative. Patients were evaluated based on demographics, type of injury, Glasgow Coma Scale (GCS), and Glasgow Outcome Scale (GOS). RESULTS METH patients were younger upon presentation (43.5 versus 55.8, p = 0.003), with a larger improvement in GCS and GOS upon discharge (P = 0.012, 0.0001 respectively). There was no significant difference in length of hospital stay, initial presenting GCS and GOS, or discharge GCS and GOS. CONCLUSIONS Our findings demonstrate an improved change in GCS and GOS for those positive with METH than those without. Surprisingly, substance positive patients did not have a worse outcome score. Further investigation is necessary to evaluate the potential neuro-protective effects of METH in TBI.
Collapse
|
18
|
Abstract
INTRODUCTION Brain injuries are one of the leading causes of disability worldwide. It is estimated that nearly half of patients who develop severe sequelae will continue with a chronic severe disability despite having received an appropriate rehabilitation program. For more than 3 decades, there has been a worldwide effort to investigate the possibility of pharmacologically stimulating the neuroplasticity process for enhancing the recovery of these patients. OBJECTIVE The objective of this article is to make a critical and updated review of the available evidence that supports the positive effect of different drugs on the recovery from brain injury. METHOD To date, there have been several clinical trials that tested different drugs that act on different neurotransmitter systems: catecholaminergic, cholinergic, serotonergic, and glutamatergic. There is both basic and clinical evidence that may support some positive effect of these drugs on motor, cognitive, and language skills; however, only few of the available studies are of sufficient methodological quality (placebo controlled, randomized, blinded, multicenter, etc) to make solid conclusions about their beneficial effects. CONCLUSIONS Currently, the pharmacological stimulation of neuroplasticity still does not have enough scientific evidence to make a systematic therapeutic recommendation for all patients, but it certainly is a feasible and very promising field for future research.
Collapse
|
19
|
Brooks DM, Patel SA, Wohlgehagen ED, Semmens EO, Pearce A, Sorich EA, Rau TF. Multiple mild traumatic brain injury in the rat produces persistent pathological alterations in the brain. Exp Neurol 2017; 297:62-72. [PMID: 28756201 DOI: 10.1016/j.expneurol.2017.07.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 07/24/2017] [Accepted: 07/25/2017] [Indexed: 12/17/2022]
Abstract
Multiple mild traumatic brain injury (mmTBI), in certain cases, produces persistent symptoms. However, the molecular mechanisms underlying these symptoms remain unclear. Here, we demonstrate extended pathological changes in the rat brain following mmTBI. Using the lateral fluid percussion (LFP) technique we exposed adult male Wistar rats to a mild TBI (mTBI) once a week for four weeks and compared them to surgical shams. At 90days following the last TBI or sham procedure the animals were cognitively tested in the Morris Water Maze (MWM), euthanized, and the brains removed for immunohistochemistry. At 90days following the last mTBI, NRF-2 staining was significantly decreased in the hilus of the hippocampus and cortex on the injured side, but did not significantly differ from shams on the un-injured side. CD68 positive microglia were significantly increased in the ipsilateral corpus callosum, cortex, and internal capsule of injured animals. Reactive astrocytosis, determined by increased GFAP staining, was also evident in the corpus callosum, cortex, internal capsule and thalamus on the injured side. Interestingly, the corpus callosum thickness at the midline was decreased in injured animals and had evident demyelination when compared to sham animals. Despite these findings, there were no significant differences in neurological assessments at 90days following the last injury. In MWM testing there were not significant differences in the training phase, the time spent in the thigmotaxia zone, or the target quadrant during the probe trial. However, there were significant differences between shams and injured animals in platform zone crossings during the probe trial. These results demonstrate that repetitive head trauma may produce persistent, long-term pathological alterations in brain architecture that may be difficult to detect using standard cognitive and neurological assessments.
Collapse
Affiliation(s)
- Diane M Brooks
- The Neural Injury Center, University of Montana, Missoula, MT 59812, United States
| | - Sarjubhai A Patel
- The Neural Injury Center, University of Montana, Missoula, MT 59812, United States
| | - Eric D Wohlgehagen
- The Neural Injury Center, University of Montana, Missoula, MT 59812, United States
| | - Erin O Semmens
- School of Public and Community Health Sciences, University of Montana, Missoula, MT 59812, United States
| | - Alan Pearce
- Melbourne School of Health Sciences, The University of Melbourne, Victoria 3010, Australia; Faculty of Health, Arts and Design, Swinburne University of Technology, Melbourne, Victoria 3122, Australia
| | - Edmond A Sorich
- GLIA Diagnostics, PO Box 138N, Armadale, VIC 3143, Australia
| | - Thomas F Rau
- The Neural Injury Center, University of Montana, Missoula, MT 59812, United States.
| |
Collapse
|
20
|
Byard RW, Donkin J, Vink R. The Forensic Implications of Amphetamine Intoxication in Cases of Inflicted Blunt Craniocerebral Trauma. J Forensic Sci 2017; 63:151-153. [PMID: 28383154 DOI: 10.1111/1556-4029.13509] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 03/07/2017] [Accepted: 03/07/2017] [Indexed: 11/27/2022]
Abstract
The effects of D-amphetamine on outcome after blunt craniocerebral trauma are characterized and the potential legal implications discussed. Traumatic brain injury (TBI) was induced under general anesthesia in adult, male Sprague Dawley rats using the impact acceleration model. At 10 min prior to injury, D-amphetamine (5 mg/kg) or saline vehicle was administered subcutaneously; animals were subsequently assessed over a 7-day period post-trauma for motor outcome using a rotarod device. D-amphetamine treated animals performed significantly better (p < 0.001; ANOVA) than vehicle treated controls on their motor assessment, suggesting that D-amphetamine exposure prior to injury either is neuroprotective or enhances motor performance. It is possible, therefore, that an individual who has taken amphetamines may function at a better motor level after head trauma than one who has not been exposed to the drug. Future interpretations of the potential effects of amphetamines on TBI should include this possibility.
Collapse
Affiliation(s)
- Roger W Byard
- School of Medicine, The University of Adelaide, Frome Road, Level 3 Medical School North Building, Adelaide, SA, 5005, Australia
| | - James Donkin
- University of the Sunshine Coast, Maroochydore DC, QLD, 4558, Australia
| | - Robert Vink
- Sansom Institute for Health Research, The University of South Australia, Adelaide, SA, 5000, Australia
| |
Collapse
|
21
|
Bortell N, Basova L, Semenova S, Fox HS, Ravasi T, Marcondes MCG. Astrocyte-specific overexpressed gene signatures in response to methamphetamine exposure in vitro. J Neuroinflammation 2017; 14:49. [PMID: 28279172 PMCID: PMC5345234 DOI: 10.1186/s12974-017-0825-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 02/27/2017] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Astrocyte activation is one of the earliest findings in the brain of methamphetamine (Meth) abusers. Our goal in this study was to identify the characteristics of the astrocytic acute response to the drug, which may be critical in pathogenic outcomes secondary to the use. METHODS We developed an integrated analysis of gene expression data to study the acute gene changes caused by the direct exposure to Meth treatment of astrocytes in vitro, and to better understand how astrocytes respond, what are the early molecular markers associated with this response. We examined the literature in search of similar changes in gene signatures that are found in central nervous system disorders. RESULTS We identified overexpressed gene networks represented by genes of an inflammatory and immune nature and that are implicated in neuroactive ligand-receptor interactions. The overexpressed networks are linked to molecules that were highly upregulated in astrocytes by all doses of methamphetamine tested and that could play a role in the central nervous system. The strongest overexpressed signatures were the upregulation of MAP2K5, GPR65, and CXCL5, and the gene networks individually associated with these molecules. Pathway analysis revealed that these networks are involved both in neuroprotection and in neuropathology. We have validated several targets associated to these genes. CONCLUSIONS Gene signatures for the astrocytic response to Meth were identified among the upregulated gene pool, using an in vitro system. The identified markers may participate in dysfunctions of the central nervous system but could also provide acute protection to the drug exposure. Further in vivo studies are necessary to establish the role of these gene networks in drug abuse pathogenesis.
Collapse
Affiliation(s)
- Nikki Bortell
- Cellular and Molecular Neurosciences Department, The Scripps Research Institute, La Jolla, CA, 92037, USA.,Anschutz Medical Campus, University of Colorado, Denver, CO, USA
| | - Liana Basova
- Cellular and Molecular Neurosciences Department, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Svetlana Semenova
- Department of Psychiatry, University of California San Diego, San Diego, CA, 92093, USA
| | - Howard S Fox
- Department of Experimental Pharmacology, University of Nebraska Medical School, Omaha, NE, 68198, USA
| | - Timothy Ravasi
- KAUST Environmental Epigenetic Program (KEEP), Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955, Kingdom of Saudi Arabia.,Department of Medicine, Division of Genetic, University of California San Diego, 9500 Gilman Drive, La Jolla, California, 92093, USA
| | - Maria Cecilia G Marcondes
- Cellular and Molecular Neurosciences Department, The Scripps Research Institute, La Jolla, CA, 92037, USA. .,Present address: San Diego Biomedical Research Institute, 10865 Road to the Cure, Suite 100 - San Diego, San Diego, CA, 92121, USA.
| |
Collapse
|
22
|
Rau T, Ziemniak J, Poulsen D. The neuroprotective potential of low-dose methamphetamine in preclinical models of stroke and traumatic brain injury. Prog Neuropsychopharmacol Biol Psychiatry 2016; 64:231-6. [PMID: 25724762 DOI: 10.1016/j.pnpbp.2015.02.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 02/16/2015] [Accepted: 02/17/2015] [Indexed: 01/06/2023]
Abstract
Methamphetamine is a psychostimulant that was initially synthesized in 1920. Since then it has been used to treat attention deficit hyperactive disorder (ADHD), obesity and narcolepsy. However, methamphetamine has also become a major drug of abuse worldwide. Under conditions of abuse, which involve the administration of high repetitive doses, methamphetamine can produce considerable neurotoxic effects. However, recent evidence from our laboratory indicates that low doses of methamphetamine can produce robust neuroprotection when administered within 12h after severe traumatic brain injury (TBI) in rodents. Thus, it appears that methamphetamine under certain circumstances and correct dosing can produce a neuroprotective effect. This review addresses the neuroprotective potential of methamphetamine and focuses on the potential beneficial application for TBI.
Collapse
Affiliation(s)
- Thomas Rau
- Dept. Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT, United States
| | - John Ziemniak
- Gwynedd Pharmaceutical Consulting, Gwynedd Valley, PA, United States
| | - David Poulsen
- Neurosurgery Dept., University at Buffalo, SUNY-School of Medicine and Biomedical Sciences, Buffalo, NY, United States.
| |
Collapse
|
23
|
Methamphetamine is not Toxic but Disrupts the Cell Cycle of Blood-Brain Barrier Endothelial Cells. Neurotox Res 2015; 28:8-17. [PMID: 25666340 DOI: 10.1007/s12640-015-9520-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 01/01/2015] [Accepted: 01/22/2015] [Indexed: 01/07/2023]
Abstract
The cytotoxic effects of methamphetamine (MA) are well established to be caused via induced oxidative stress which in turn compromises the core function of the blood-brain barrier (BBB) by reducing its ability to regulate the homeostatic environment of the brain. While most studies were conducted over a period of 24-48 h, this study investigated the mechanisms by which chronic exposure of MA adversely affect the endothelial cells of BBB over an extended period of 96 h. MA induced significant depression of cell numbers at 96 h. This result was supported by flow cytometric data on the cell cycle which showed that brain endothelial cells (bEnd5) at 96 h were significantly suppressed in the S-phase of the cell cycle. In contrast, at 24-72 h control cell numbers for G1, S and G2-M phases were similar to MA-exposed cells. MA (0-1,000 µM) did not, however, statistically affect the viability and cytotoxicity of the bEnd5 cells, and the profile of ATP production and DNA synthesis (BrdU) across 96 h did not provide a rationale for the suppression of cell division. Our study reports for the first time that chronic exposure to MA results in long-term disruption of the cell cycle phases which eventuates in the attenuation of brain capillary endothelial cell growth after 96 h, compounding and contributing to the already well-known adverse short-term permeability effects of MA exposure on the BBB.
Collapse
|
24
|
Abstract
Effective traumatic brain injury (TBI) therapeutics remains stubbornly elusive. Efforts in the field have been challenged by the heterogeneity of clinical TBI, with greater complexity among underlying molecular phenotypes than initially conceived. Future research must confront the multitude of factors comprising this heterogeneity, representing a big data challenge befitting the coming informatics age. Proteomics is poised to serve a central role in prescriptive therapeutic development because it offers an efficient endpoint within which to assess post-TBI biochemistry. We examine rationale for multifactor TBI proteomic studies and the particular importance of temporal profiling in defining biochemical sequences and guiding therapeutic development. Finally, we offer perspective on repurposing biofluid proteomics to develop theragnostic assays with which to prescribe, monitor and assess pharmaceutics for improved translation and outcome for patients with TBI.
Collapse
Affiliation(s)
- Pavel N. Lizhnyak
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | - Andrew K. Ottens
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| |
Collapse
|
25
|
Smith D, Brooks D, Wohlgehagen E, Rau T, Poulsen D. Temporal and Spatial Changes in the Pattern of Iba1 and CD68 Staining in the Rat Brain Following Severe Traumatic Brain Injury. ACTA ACUST UNITED AC 2015. [DOI: 10.4236/mri.2015.42002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|