1
|
Kanayama T, Hatakeyama M, Akiyama N, Otsu Y, Onodera O, Shimohata T, Kanazawa M. Oxygen-glucose-deprived peripheral blood mononuclear cells act on hypoxic lesions after ischemia-reperfusion injury. Exp Neurol 2025; 385:115121. [PMID: 39710242 DOI: 10.1016/j.expneurol.2024.115121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 12/14/2024] [Accepted: 12/16/2024] [Indexed: 12/24/2024]
Abstract
BACKGROUND Despite advances in reperfusion therapies, ischemic stroke remains a major cause of long-term disability due to residual hypoxic lesions persisting after macrovascular reperfusion. These residual hypoxic lesions, caused by microvascular dysfunction, represent an important therapeutic target. We previously demonstrated that oxygen-glucose-deprived peripheral blood mononuclear cells (OGD-PBMCs) migrate to ischemic brain regions and promote functional recovery after stroke. This recovery occurs through mechanisms involving hypoxia-inducible factor-1α, exosomal miR-155-5p, and vascular endothelial growth factor (VEGF). However, it remains unclear whether OGD-PBMCs target hypoxic regions. METHODS We evaluated cerebral blood flow using a laser speckle flow imaging system. Next, we utilized pimonidazole to investigate the presence of hypoxic lesions after ischemia-reperfusion injury in a rat suture occlusion model in immunohistochemical analyses. We also compared levels of a cell surface receptor in human PBMCs by flow cytometric analysis under normoxic and OGD conditions. RESULTS We found persistent pimonidazole-positive hypoxic lesions at 10- and 28-days post-reperfusion despite restored gross cerebral perfusion. Treatment with the C-X-C motif chemokine receptor 4 (CXCR4) inhibitor AMD3100 before and after OGD-PBMCs administration reduced the number of OGD-PBMCs in the brain parenchyma compared to the control group (P = 0.018). Administered OGD-PBMCs localized within these hypoxic regions via the stromal cell-derived factor-1/CXCR4 chemotactic axis. OGD-PBMCs enhanced VEGF expression, specifically within hypoxic lesions, compared to the phosphate-buffered saline group (P < 0.01). Furthermore, OGD-PBMCs reduced the number of pimonidazole-positive hypoxic cells in the ischemic core on 28 days. These findings demonstrate that OGD-PBMCs selectively migrate to and modulate the microenvironment of hypoxic lesions following cerebral ischemia-reperfusion injury. CONCLUSION Targeting these residual hypoxic regions may underline the therapeutic effects of OGD-PBMC treatment and represent a promising strategy for improving stroke recovery despite successful recanalization.
Collapse
Affiliation(s)
- Takeshi Kanayama
- Department of Neurology, Brain Research Institute, Niigata University, 1-757 Asahimachi-dori, Chuoku, Niigata 951-8585, Japan
| | - Masahiro Hatakeyama
- Department of Neurology, Brain Research Institute, Niigata University, 1-757 Asahimachi-dori, Chuoku, Niigata 951-8585, Japan
| | - Natsuki Akiyama
- Department of Neurology, Brain Research Institute, Niigata University, 1-757 Asahimachi-dori, Chuoku, Niigata 951-8585, Japan
| | - Yutaka Otsu
- Department of Neurology, Brain Research Institute, Niigata University, 1-757 Asahimachi-dori, Chuoku, Niigata 951-8585, Japan
| | - Osamu Onodera
- Department of Neurology, Brain Research Institute, Niigata University, 1-757 Asahimachi-dori, Chuoku, Niigata 951-8585, Japan
| | - Takayoshi Shimohata
- Department of Neurology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu 501-1194, Japan
| | - Masato Kanazawa
- Department of Neurology, Brain Research Institute, Niigata University, 1-757 Asahimachi-dori, Chuoku, Niigata 951-8585, Japan.
| |
Collapse
|
2
|
Haupeltshofer S, Mencl S, Szepanowski RD, Hansmann C, Casas AI, Abberger H, Hansen W, Blusch A, Deuschl C, Forsting M, Hermann DM, Langhauser F, Kleinschnitz C. Delayed plasma kallikrein inhibition fosters post-stroke recovery by reducing thrombo-inflammation. J Neuroinflammation 2024; 21:155. [PMID: 38872149 PMCID: PMC11177352 DOI: 10.1186/s12974-024-03149-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/06/2024] [Indexed: 06/15/2024] Open
Abstract
Activation of the kallikrein-kinin system promotes vascular leakage, inflammation, and neurodegeneration in ischemic stroke. Inhibition of plasma kallikrein (PK) - a key component of the KKS - in the acute phase of ischemic stroke has been reported to reduce thrombosis, inflammation, and damage to the blood-brain barrier. However, the role of PK during the recovery phase after cerebral ischemia is unknown. To this end, we evaluated the effect of subacute PK inhibition starting from day 3 on the recovery process after transient middle artery occlusion (tMCAO). Our study demonstrated a protective effect of PK inhibition by reducing infarct volume and improving functional outcome at day 7 after tMCAO. In addition, we observed reduced thrombus formation in cerebral microvessels, fewer infiltrated immune cells, and an improvement in blood-brain barrier integrity. This protective effect was facilitated by promoting tight junction reintegration, reducing detrimental matrix metalloproteinases, and upregulating regenerative angiogenic markers. Our findings suggest that PK inhibition in the subacute phase might be a promising approach to accelerate the post-stroke recovery process.
Collapse
Affiliation(s)
- Steffen Haupeltshofer
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, Hufelandstr. 55, D-45147, Essen, Germany.
| | - Stine Mencl
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, Hufelandstr. 55, D-45147, Essen, Germany
| | - Rebecca D Szepanowski
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, Hufelandstr. 55, D-45147, Essen, Germany
| | - Christina Hansmann
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, Hufelandstr. 55, D-45147, Essen, Germany
| | - Ana I Casas
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, Hufelandstr. 55, D-45147, Essen, Germany
- Department of Pharmacology & Personalized Medicine, MeHNS, Faculty of Health, Medicine & Life Science, Maastricht University, Maastricht, The Netherlands
| | - Hanna Abberger
- Institute of Medical Microbiology, University Hospital Essen, Virchowstr. 179, D-45147, Essen, Germany
- Division of Immunology, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Wiebke Hansen
- Institute of Medical Microbiology, University Hospital Essen, Virchowstr. 179, D-45147, Essen, Germany
| | - Alina Blusch
- Department of Neurology, Center for Huntington's Disease NRW, St. Josef-Hospital, Ruhr-University Bochum, Gudrunstr. 56, D-44791, Bochum, Germany
| | - Cornelius Deuschl
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Hufelandstr. 55, D-45147, Essen, Germany
| | - Michael Forsting
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Hufelandstr. 55, D-45147, Essen, Germany
| | - Dirk M Hermann
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, Hufelandstr. 55, D-45147, Essen, Germany
- Chair of Vascular Neurology, Dementia and Ageing, Department of Neurology, Medical Research Centre, University Hospital Essen, Hufelandstr. 55, D-45147, Essen, Germany
| | - Friederike Langhauser
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, Hufelandstr. 55, D-45147, Essen, Germany
| | - Christoph Kleinschnitz
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, Hufelandstr. 55, D-45147, Essen, Germany
| |
Collapse
|
3
|
Szepanowski RD, Haupeltshofer S, Vonhof SE, Frank B, Kleinschnitz C, Casas AI. Thromboinflammatory challenges in stroke pathophysiology. Semin Immunopathol 2023:10.1007/s00281-023-00994-4. [PMID: 37273022 DOI: 10.1007/s00281-023-00994-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 04/27/2023] [Indexed: 06/06/2023]
Abstract
Despite years of encouraging translational research, ischemic stroke still remains as one of the highest unmet medical needs nowadays, causing a tremendous burden to health care systems worldwide. Following an ischemic insult, a complex signaling pathway emerges leading to highly interconnected thrombotic as well as neuroinflammatory signatures, the so-called thromboinflammatory cascade. Here, we thoroughly review the cell-specific and time-dependent role of different immune cell types, i.e., neutrophils, macrophages, T and B cells, as key thromboinflammatory mediators modulating the neuroinflammatory response upon stroke. Similarly, the relevance of platelets and their tight crosstalk with a variety of immune cells highlights the relevance of this cell-cell interaction during microvascular dysfunction, neovascularization, and cellular adhesion. Ultimately, we provide an up-to-date overview of therapeutic approaches mechanistically targeting thromboinflammation currently under clinical translation, especially focusing on phase I to III clinical trials.
Collapse
Affiliation(s)
- R D Szepanowski
- Department of Neurology, University Hospital Essen, Essen, Germany
- Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen, Germany
| | - S Haupeltshofer
- Department of Neurology, University Hospital Essen, Essen, Germany
- Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen, Germany
| | - S E Vonhof
- Department of Neurology, University Hospital Essen, Essen, Germany
- Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen, Germany
| | - B Frank
- Department of Neurology, University Hospital Essen, Essen, Germany
- Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen, Germany
| | - C Kleinschnitz
- Department of Neurology, University Hospital Essen, Essen, Germany.
- Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen, Germany.
| | - A I Casas
- Department of Neurology, University Hospital Essen, Essen, Germany
- Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen, Germany
- Department of Pharmacology and Personalised Medicine, Faculty of Health, Medicine, and Life Sciences, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
4
|
Steubing RD, Szepanowski F, David C, Mohamud Yusuf A, Mencl S, Mausberg AK, Langer HF, Sauter M, Deuschl C, Forsting M, Fender AC, Hermann DM, Casas AI, Langhauser F, Kleinschnitz C. Platelet depletion does not alter long-term functional outcome after cerebral ischaemia in mice. Brain Behav Immun Health 2022; 24:100493. [PMID: 35928516 PMCID: PMC9343933 DOI: 10.1016/j.bbih.2022.100493] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/11/2022] [Accepted: 07/18/2022] [Indexed: 11/12/2022] Open
Abstract
Platelets are key mediators of thrombus formation and inflammation during the acute phase of ischaemic stroke. Particularly, the platelet glycoprotein (GP) receptors GPIbα and GPVI have been shown to mediate platelet adhesion and activation in the ischaemic brain. GPIbα and GPVI blockade could reduce infarct volumes and improve functional outcome in mouse models of acute ischaemic stroke, without concomitantly increasing intracerebral haemorrhage. However, the functional role of platelets during long-term stroke recovery has not been elucidated so far. Thus, we here examined the impact of platelet depletion on post-stroke recovery after transient middle cerebral artery occlusion (tMCAO) in adult male mice. Platelet depleting antibodies or isotype control were applied from day 3–28 after tMCAO in mice matched for infarct size. Long-term functional recovery was assessed over the course of 28 days by behavioural testing encompassing motor and sensorimotorical functions, as well as anxiety-like or spontaneous behaviour. Whole brain flow cytometry and light sheet fluorescent microscopy were used to identify resident and infiltrated immune cell types, and to determine the effects of platelet depletion on the cerebral vascular architecture, respectively. We found that delayed platelet depletion does not improve long-term functional outcome in the tMCAO stroke model. Immune cell abundance, the extent of thrombosis and the organisation of the cerebral vasculature were also comparable between platelet-depleted and control mice. Our study demonstrates that, despite their critical role in the acute stroke setting, platelets appear to contribute only marginally to tissue reorganisation and functional recovery at later stroke stages. Stable and safe global platelet depletion can be achieved for a prolonged period. Platelets only play a minor role in neurological recovery during the chronic phase. Platelet depletion after infarct maturation does not alter inflammatory response. Cerebral architecture after stroke is not influenced by delayed platelet depletion.
Collapse
|
5
|
Wang J, Li Y, Yu H, Li G, Bai S, Chen S, Zhang P, Tang Z. Dl-3-N-Butylphthalide Promotes Angiogenesis in an Optimized Model of Transient Ischemic Attack in C57BL/6 Mice. Front Pharmacol 2021; 12:751397. [PMID: 34658892 PMCID: PMC8513739 DOI: 10.3389/fphar.2021.751397] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 09/15/2021] [Indexed: 11/16/2022] Open
Abstract
Transient ischemic attack (TIA) has been widely regarded as a clinical entity. Even though magnetic resonance imaging (MRI) results of TIA patients are negative, potential neurovascular damage might be present, and may account for long-term cognitive impairment. Animal models that simulate human diseases are essential tools for in-depth study of TIA. Previous studies have clarified that Dl-3-N-butylphthalide (NBP) promotes angiogenesis after stroke. However, the effects of NBP on TIA remain unknown. This study aims to develop an optimized TIA model in C57BL/6 mice to explore the microscopic evidence of ischemic injury after TIA, and investigate the therapeutic effects of NBP on TIA. C57BL/6 mice underwent varying durations (7, 8, 9 or 10 min) of middle cerebral artery occlusion (MCAO). Cerebral artery occlusion and reperfusion were assessed by laser speckle contrast imaging. TIA and ischemic stroke were distinguished by neurological testing and MRI examination at 24 h post-operation. Neuronal apoptosis was examined by TUNEL staining. Images of submicron cerebrovascular networks were obtained via micro-optical sectioning tomography. Subsequently, the mice were randomly assigned to a sham-operated group, a vehicle-treated TIA group or an NBP-treated TIA group. Vascular density was determined by immunofluorescent staining and fluorescein isothiocyanate method, and the expression of angiogenic growth factors were detected by western blot analysis. We found that an 8-min or shorter period of ischemia induced neither permanent neurological deficits nor MRI detectable brain lesions in C57BL/6 mice, but histologically caused neuronal apoptosis and cerebral vasculature abnormalities. NBP treatment increased the number of CD31+ microvessels and perfused microvessels after TIA. NBP also up-regulated the expression of VEGF, Ang-1 and Ang-2 and improved the cerebrovascular network. In conclusion, 8 min or shorter cerebral ischemia induced by the suture MCAO method is an appropriate TIA model in C57BL/6 mice, which conforms to the definition of human TIA, but causes microscopic neurovascular impairment. NBP treatment increased the expression of angiogenic growth factors, promoted angiogenesis and improved cerebral microvessels after TIA. Our study provides new insights on the pathogenesis and potential treatments of TIA.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ping Zhang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhouping Tang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
6
|
Wang J, Zhang P, Tang Z. Animal models of transient ischemic attack: a review. Acta Neurol Belg 2020; 120:267-275. [PMID: 32048230 PMCID: PMC7083805 DOI: 10.1007/s13760-020-01295-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 01/30/2020] [Indexed: 12/29/2022]
Abstract
Transient ischemic attack (TIA) is defined as a brief episode of neurological dysfunction caused by focal cerebral ischemia. TIA is a critical early warning signal of stroke. Patients with TIA may have long-term cognitive decline. The pathogenesis and pathological changes of TIA have not been fully elucidated. Animal models can simulate the process of human diseases and are essential tools to investigate injury mechanisms and therapeutic approaches of TIA. Most TIA animal models are based on ischemic stroke models and the definition of TIA. Each model has unique strengths and weaknesses. The establishment of a successful and reliable TIA model should follow three criteria: (1) objective evidence of cerebral arteries occlusion and reperfusion, (2) no permanent neurological deficit, and (3) no acute cerebral infarction. However, experimental animal models are impossible to be completely consistent with human TIA, because TIA itself is a heterogeneous disease. In the present review, the selection of animals, methodological development, and evaluation of cerebral blood flow of animal models of TIA are comprehensively evaluated.
Collapse
Affiliation(s)
- Jiahui Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Road, Wuhan, 430030 China
| | - Ping Zhang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Road, Wuhan, 430030 China
| | - Zhouping Tang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Road, Wuhan, 430030 China
| |
Collapse
|
7
|
Nesterov SV, Yaguzhinsky LS, Podoprigora GI, Nartsissov YR. Autocatalytic cycle in the pathogenesis of diabetes mellitus: biochemical and pathophysiological aspects of metabolic therapy with natural amino acids on the example of glycine. DIABETES MELLITUS 2018. [DOI: 10.14341/dm9529] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In this work systematization (classification) of biochemical and physiological processes that cause disorders in the human body during the development of diabetes mellitus is carried out. The development of the disease is considered as the interaction and mutual reinforcement of two groups of parallel processes. The first group has a molecular nature and it is associated with impairment of ROS-regulation system which includes NADPH oxidases, RAGE receptors, mitochondria, cellular peroxireductase system and the immune system. The second group has a pathophysiological nature and it is associated with impairment of microcirculation and liver metabolism. The analysis of diabetes biochemistry based on different published references yields a creation of a block diagram evaluating the disease development over time. Two types of autocatalytic processes were identified: autocatalysis in the cascade of biochemical reactions and "cross-section" catalysis, in which biochemical and pathophysiological processes reinforce each other. The developed model has shown the possibility of using pharmacologically active natural metabolite glycine as a medicine inhibiting the development of diabetes. Despite the fact that glycine is a substitute amino acid the drop in the glycine blood concentration occurs even in the early stages of diabetes development and can aggravate the disease. It is shown that glycine is a potential blocker of key autocatalytic cycles, including biochemical and pathophysiological processes. The analysis of the glycine action based on the developed model is in complete agreement with the results of clinical trials in which glycine has improved blood biochemistry of diabetic patients and thereby it prevents the development of diabetic complications.
Collapse
|
8
|
Gillespie S, Holloway PM, Becker F, Rauzi F, Vital SA, Taylor KA, Stokes KY, Emerson M, Gavins FNE. The isothiocyanate sulforaphane modulates platelet function and protects against cerebral thrombotic dysfunction. Br J Pharmacol 2018; 175:3333-3346. [PMID: 29797311 DOI: 10.1111/bph.14368] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 04/30/2018] [Accepted: 05/04/2018] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND AND PURPOSE Platelet activation provides a critical link between inflammation and thrombosis. Sulforaphane (SFN), a naturally occurring isothiocyanate, has been shown to display both anti-inflammatory and anti-thrombotic actions in the systemic microvasculature. As inflammation promotes thrombosis and vice versa, in this study we investigated whether SFN is able to reduce inflammatory potentiation of thrombotic events, suppress platelet activation and thrombus formation in the cerebral microvasculature. EXPERIMENTAL APPROACH Thrombosis was induced in the murine brain using the light/dye-injury model, in conjunction with LPS treatment, with and without SFN treatment. In vitro and in vivo platelet assays (aggregation, flow and other functional tests) were also employed, using both human and murine platelets. KEY RESULTS SFN was found to reduce LPS-mediated enhancement of thrombus formation in the cerebral microcirculation. In tail-bleed experiments, LPS treatment prolonged bleeding time, and SFN treatment was found to protect against this LPS-induced derangement of platelet function. SFN inhibited collagen-mediated platelet aggregation in vitro and in vivo and the associated adhesion and impaired calcium signalling. Furthermore, glycoprotein VI was shown to be involved in the protective effects observed with SFN treatment. CONCLUSIONS AND IMPLICATIONS The data presented here provide evidence for the use of SFN in preventing stroke in selected high-risk patient cohorts.
Collapse
Affiliation(s)
| | - Paul M Holloway
- Division of Brain Sciences, Imperial College London, London, UK.,Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center - Shreveport, Shreveport, LA, USA
| | - Felix Becker
- Department of General, Visceral and Transplant Surgery, University Hospital Muenster, Muenster, Germany
| | - Francesca Rauzi
- Platelet Biology Group, National Heart and Lung Institute, Imperial College London, London, UK
| | - Shantel A Vital
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center - Shreveport, Shreveport, LA, USA
| | - Kirk A Taylor
- Platelet Biology Group, National Heart and Lung Institute, Imperial College London, London, UK
| | - Karen Y Stokes
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center - Shreveport, Shreveport, LA, USA
| | - Michael Emerson
- Platelet Biology Group, National Heart and Lung Institute, Imperial College London, London, UK
| | - Felicity N E Gavins
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center - Shreveport, Shreveport, LA, USA.,Department of Neurology, Louisiana State University Health Sciences Center - Shreveport, Shreveport, LA, USA
| |
Collapse
|
9
|
Granger DN, Kvietys PR. Reperfusion therapy-What's with the obstructed, leaky and broken capillaries? ACTA ACUST UNITED AC 2017; 24:213-228. [PMID: 29102280 DOI: 10.1016/j.pathophys.2017.09.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Microvascular dysfunction is well established as an early and rate-determining factor in the injury response of tissues to ischemia and reperfusion (I/R). Severe endothelial cell dysfunction, which can develop without obvious morphological cell injury, is a major underlying cause of the microvascular abnormalities that accompany I/R. While I/R-induced microvascular dysfunction is manifested in different ways, two responses that have received much attention in both the experimental and clinical setting are impaired capillary perfusion (no-reflow) and endothelial barrier failure with a transition to hemorrhage. These responses are emerging as potentially important determinants of the severity of the tissue injury response, and there is growing clinical evidence that they are predictive of clinical outcome following reperfusion therapy. This review provides a summary of animal studies that have focused on the mechanisms that may underlie the genesis of no-reflow and hemorrhage following reperfusion of ischemic tissues, and addresses the clinical evidence that implicates these vascular events in the responses of the ischemic brain (stroke) and heart (myocardial infarction) to reperfusion therapy. Inasmuch as reactive oxygen species (ROS) and matrix metalloproteinases (MMP) are frequently invoked as triggers of the microvascular dysfunction elicited by I/R, the potential roles and sources of these mediators are also discussed. The available evidence in the literature justifies the increased interest in the development of no-reflow and hemorrhage in heart and brain following reperfusion therapy, and suggests that these vascular events may be predictive of poor clinical outcome and warrant the development of targeted treatment strategies.
Collapse
Affiliation(s)
- D Neil Granger
- Department of Molecular & Cellular Physiology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130-3932, United States.
| | - Peter R Kvietys
- Department of Physiological Sciences, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| |
Collapse
|
10
|
Sun YY, Li Y, Wali B, Li Y, Lee J, Heinmiller A, Abe K, Stein DG, Mao H, Sayeed I, Kuan CY. Prophylactic Edaravone Prevents Transient Hypoxic-Ischemic Brain Injury: Implications for Perioperative Neuroprotection. Stroke 2015; 46:1947-55. [PMID: 26060244 DOI: 10.1161/strokeaha.115.009162] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 05/11/2015] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND PURPOSE Hypoperfusion-induced thrombosis is an important mechanism for postsurgery stroke and cognitive decline, but there are no perioperative neuroprotectants to date. This study investigated whether prophylactic application of Edaravone, a free radical scavenger already used in treating ischemic stroke in Japan, can prevent infarct and cognitive deficits in a murine model of transient cerebral hypoxia-ischemia. METHODS Adult male C57BL/6 mice were subjected to transient hypoxic-ischemic (tHI) insult that consists of 30-minute occlusion of the unilateral common carotid artery and exposure to 7.5% oxygen. Edaravone or saline was prophylactically applied to compare their effects on cortical oxygen saturation, blood flow, coagulation, oxidative stress, metabolites, and learning-memory using methods that include photoacoustic imaging, laser speckle contrast imaging, solid-state NMR, and Morris water maze. The effects on infarct size by Edaravone application at different time points after tHI were also compared. RESULTS Prophylactic administration of Edaravone (4.5 mg/kg×2, IP, 1 hour before and 1 hour after tHI) improved vascular reperfusion, oxygen saturation, and the maintenance of brain metabolites, reducing oxidative stress, thrombosis, white-matter injury, and learning impairment after tHI insult. Delayed Edaravone treatment after 3 h post-tHI became unable to reduce infarct size. CONCLUSIONS Acute application of Edaravone may be a useful strategy to prevent postsurgery stroke and cognitive impairment, especially in patients with severe carotid stenosis.
Collapse
Affiliation(s)
- Yu-Yo Sun
- From the Department of Pediatrics and Center for Neurodegenerative Diseases, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA (Y.-Y.S., Y.L., J.L., C.-Y.K.); Department of Emergency Medicine, Brain Research Laboratory, Emory University School of Medicine, Atlanta, GA (B.W., D.G.S., I.S.); Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA (Y.L., H.M.); VisualSonics Inc. Toronto, ON, Canada (A.H.); and Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan (K.A.)
| | - Yikun Li
- From the Department of Pediatrics and Center for Neurodegenerative Diseases, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA (Y.-Y.S., Y.L., J.L., C.-Y.K.); Department of Emergency Medicine, Brain Research Laboratory, Emory University School of Medicine, Atlanta, GA (B.W., D.G.S., I.S.); Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA (Y.L., H.M.); VisualSonics Inc. Toronto, ON, Canada (A.H.); and Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan (K.A.)
| | - Bushra Wali
- From the Department of Pediatrics and Center for Neurodegenerative Diseases, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA (Y.-Y.S., Y.L., J.L., C.-Y.K.); Department of Emergency Medicine, Brain Research Laboratory, Emory University School of Medicine, Atlanta, GA (B.W., D.G.S., I.S.); Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA (Y.L., H.M.); VisualSonics Inc. Toronto, ON, Canada (A.H.); and Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan (K.A.)
| | - Yuancheng Li
- From the Department of Pediatrics and Center for Neurodegenerative Diseases, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA (Y.-Y.S., Y.L., J.L., C.-Y.K.); Department of Emergency Medicine, Brain Research Laboratory, Emory University School of Medicine, Atlanta, GA (B.W., D.G.S., I.S.); Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA (Y.L., H.M.); VisualSonics Inc. Toronto, ON, Canada (A.H.); and Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan (K.A.)
| | - Jolly Lee
- From the Department of Pediatrics and Center for Neurodegenerative Diseases, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA (Y.-Y.S., Y.L., J.L., C.-Y.K.); Department of Emergency Medicine, Brain Research Laboratory, Emory University School of Medicine, Atlanta, GA (B.W., D.G.S., I.S.); Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA (Y.L., H.M.); VisualSonics Inc. Toronto, ON, Canada (A.H.); and Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan (K.A.)
| | - Andrew Heinmiller
- From the Department of Pediatrics and Center for Neurodegenerative Diseases, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA (Y.-Y.S., Y.L., J.L., C.-Y.K.); Department of Emergency Medicine, Brain Research Laboratory, Emory University School of Medicine, Atlanta, GA (B.W., D.G.S., I.S.); Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA (Y.L., H.M.); VisualSonics Inc. Toronto, ON, Canada (A.H.); and Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan (K.A.)
| | - Koji Abe
- From the Department of Pediatrics and Center for Neurodegenerative Diseases, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA (Y.-Y.S., Y.L., J.L., C.-Y.K.); Department of Emergency Medicine, Brain Research Laboratory, Emory University School of Medicine, Atlanta, GA (B.W., D.G.S., I.S.); Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA (Y.L., H.M.); VisualSonics Inc. Toronto, ON, Canada (A.H.); and Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan (K.A.)
| | - Donald G Stein
- From the Department of Pediatrics and Center for Neurodegenerative Diseases, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA (Y.-Y.S., Y.L., J.L., C.-Y.K.); Department of Emergency Medicine, Brain Research Laboratory, Emory University School of Medicine, Atlanta, GA (B.W., D.G.S., I.S.); Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA (Y.L., H.M.); VisualSonics Inc. Toronto, ON, Canada (A.H.); and Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan (K.A.)
| | - Hui Mao
- From the Department of Pediatrics and Center for Neurodegenerative Diseases, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA (Y.-Y.S., Y.L., J.L., C.-Y.K.); Department of Emergency Medicine, Brain Research Laboratory, Emory University School of Medicine, Atlanta, GA (B.W., D.G.S., I.S.); Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA (Y.L., H.M.); VisualSonics Inc. Toronto, ON, Canada (A.H.); and Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan (K.A.)
| | - Iqbal Sayeed
- From the Department of Pediatrics and Center for Neurodegenerative Diseases, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA (Y.-Y.S., Y.L., J.L., C.-Y.K.); Department of Emergency Medicine, Brain Research Laboratory, Emory University School of Medicine, Atlanta, GA (B.W., D.G.S., I.S.); Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA (Y.L., H.M.); VisualSonics Inc. Toronto, ON, Canada (A.H.); and Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan (K.A.)
| | - Chia-Yi Kuan
- From the Department of Pediatrics and Center for Neurodegenerative Diseases, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA (Y.-Y.S., Y.L., J.L., C.-Y.K.); Department of Emergency Medicine, Brain Research Laboratory, Emory University School of Medicine, Atlanta, GA (B.W., D.G.S., I.S.); Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA (Y.L., H.M.); VisualSonics Inc. Toronto, ON, Canada (A.H.); and Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan (K.A.).
| |
Collapse
|
11
|
Interleukin-6 mediates enhanced thrombus development in cerebral arterioles following a brief period of focal brain ischemia. Exp Neurol 2015; 271:351-7. [PMID: 26054883 DOI: 10.1016/j.expneurol.2015.06.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 05/29/2015] [Accepted: 06/03/2015] [Indexed: 12/14/2022]
Abstract
OBJECTIVE The cerebral microvasculature is rendered more vulnerable to thrombus formation following a brief (5.0 min) period of focal ischemia. This study examined the contribution of interleukin-6 (IL-6), a neuroprotective and prothrombotic cytokine produced by the brain, to transient ischemia-induced thrombosis in cerebral arterioles. APPROACH & RESULTS The middle cerebral artery of C57BL/6J mice was occluded for 5 min, followed by 24h of reperfusion (MCAo/R). Intravital fluorescence microscopy was used to monitor thrombus development in cerebral arterioles induced by light/dye photoactivation. Thrombosis was quantified as the time of onset of platelet aggregation on the vessel wall and the time for complete blood flow cessation. MCAo/R in wild type (WT) mice yielded an acceleration of thrombus formation that was accompanied by increased IL-6 levels in plasma and in post-ischemic brain tissue. The exaggerated thrombosis response to MCAo/R was blunted in WT mice receiving an IL-6 receptor-blocking antibody and in IL-6 deficient (IL-6(-/-)) mice. Bone marrow chimeras, produced by transplanting IL-6(-/-) marrow into WT recipients, did not exhibit protection against MCAo/R-induced thrombosis. CONCLUSIONS The increased vulnerability of the cerebral vasculature to thrombus development after MCAo/R is mediated by IL-6, which is likely derived from brain cells rather than circulating blood cells. These findings suggest that anti-IL-6 therapy may reduce the likelihood of cerebral thrombus development after a transient ischemic attack.
Collapse
|
12
|
Sullivan R, Duncan K, Dailey T, Kaneko Y, Tajiri N, Borlongan CV. A possible new focus for stroke treatment - migrating stem cells. Expert Opin Biol Ther 2015; 15:949-58. [PMID: 25943632 DOI: 10.1517/14712598.2015.1043264] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Stroke is a leading cause of mortality in the US. More so, its infliction often leaves patients with lasting morbidity and deficits. Ischemic stroke comprises nearly 90% of incidents and the majority of medical treatment aims at reestablishing perfusion and preventing recurrence. AREAS COVERED Long-term options for neurorestoration are limited by the infancy of their innovative approach. Accumulating evidence suggests the therapeutic potential of stem cells in neurorestoration, however, proper stem cell migration remains a challenge in translating stem cell therapy from the laboratory to the clinic. In this paper, we propose the role that exogenous stem cell transplantation may serve in facilitating the migration of endogenous stem cells to the site of injury, an idea termed 'biobridge'. EXPERT OPINION Recent research in the field of traumatic brain injury has provided a foundational understanding that, through the use of exogenous stem cells, native tissue architecture may be manipulated by proteinases to allow better communication between the endogenous sites of neural stem cells and the regions of injury. There is still much to be learned about these mechanisms, though it is the devastating nature of stroke that necessitates continued research into the prospective therapeutic potential of this novel approach.
Collapse
Affiliation(s)
- Robert Sullivan
- University of South Florida College of Medicine, Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair , 12901 Bruce B. Downs Blvd, Tampa, FL , USA +1 813 974 3154 ; +1 813 974 3078 ;
| | | | | | | | | | | |
Collapse
|
13
|
Liu B, Li Z, Xie P. Angioplasty and stenting for severe vertebral artery orifice stenosis: effects on cerebellar function remodeling verified by blood oxygen level-dependent functional magnetic resonance imaging. Neural Regen Res 2015; 9:2095-101. [PMID: 25657727 PMCID: PMC4316475 DOI: 10.4103/1673-5374.147937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2014] [Indexed: 01/13/2023] Open
Abstract
Vertebral artery orifice stenting may improve blood supply of the posterior circulation of the brain to regions such as the cerebellum and brainstem. However, previous studies have mainly focused on recovery of cerebral blood flow and perfusion in the posterior circulation after interventional therapy. This study examined the effects of functional recovery of local brain tissue on cerebellar function remodeling using blood oxygen level-dependent functional magnetic resonance imaging before and after interventional therapy. A total of 40 Chinese patients with severe unilateral vertebral artery orifice stenosis were enrolled in this study. Patients were equally and randomly assigned to intervention and control groups. The control group received drug treatment only. The intervention group received vertebral artery orifice angioplasty and stenting + identical drug treatment to the control group. At 13 days after treatment, the Dizziness Handicap Inventory score was compared between the intervention and control groups. Cerebellar function remodeling was observed between the two groups using blood oxygen level-dependent functional magnetic resonance imaging. The improvement in dizziness handicap and cerebellar function was more obvious in the intervention group than in the control group. Interventional therapy for severe vertebral artery orifice stenosis may effectively promote cerebellar function remodeling and exert neuroprotective effects.
Collapse
Affiliation(s)
- Bo Liu
- Department of Neurology, Yongchuan Hospital, Chongqing Medical University, Chongqing, China ; Institute of Neuroscience, Chongqing Medical University, Chongqing, China ; Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, China
| | - Zhiwei Li
- Department of Neurology, Yongchuan Hospital, Chongqing Medical University, Chongqing, China
| | - Peng Xie
- Department of Neurology, Yongchuan Hospital, Chongqing Medical University, Chongqing, China ; Institute of Neuroscience, Chongqing Medical University, Chongqing, China ; Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, China ; Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|