1
|
Melrose J. Glycosaminoglycans, Instructive Biomolecules That Regulate Cellular Activity and Synaptic Neuronal Control of Specific Tissue Functional Properties. Int J Mol Sci 2025; 26:2554. [PMID: 40141196 PMCID: PMC11942259 DOI: 10.3390/ijms26062554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/22/2025] [Accepted: 03/04/2025] [Indexed: 03/28/2025] Open
Abstract
Glycosaminoglycans (GAGs) are a diverse family of ancient biomolecules that evolved over millennia as key components in the glycocalyx that surrounds all cells. GAGs have molecular recognition and cell instructive properties when attached to cell surface and extracellular matrix (ECM) proteoglycans (PGs), which act as effector molecules that regulate cellular behavior. The perception of mechanical cues which arise from perturbations in the ECM microenvironment allow the cell to undertake appropriate biosynthetic responses to maintain ECM composition and tissue function. ECM PGs substituted with GAGs provide structural support to weight-bearing tissues and an ability to withstand shear forces in some tissue contexts. This review outlines the structural complexity of GAGs and the diverse functional properties they convey to cellular and ECM PGs. PGs have important roles in cartilaginous weight-bearing tissues and fibrocartilages subject to tension and high shear forces and also have important roles in vascular and neural tissues. Specific PGs have roles in synaptic stabilization and convey specificity and plasticity in the regulation of neurophysiological responses in the CNS/PNS that control tissue function. A better understanding of GAG instructional roles over cellular behavior may be insightful for the development of GAG-based biotherapeutics designed to treat tissue dysfunction in disease processes and in novel tissue repair strategies following trauma. GAGs have a significant level of sophistication over the control of cellular behavior in many tissue contexts, which needs to be fully deciphered in order to achieve a useful therapeutic product. GAG biotherapeutics offers exciting opportunities in the modern glycomics arena.
Collapse
Affiliation(s)
- James Melrose
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia;
- Raymond Purves Bone and Joint Research Laboratories, Kolling Institute of Medical Research, Northern Sydney Local Health District, Royal North Shore Hospital, St. Leonards, NSW 2065, Australia
- Sydney Medical School, Northern, University of Sydney at Royal North Shore Hospital, St. Leonards, NSW 2065, Australia
| |
Collapse
|
2
|
Melrose J. Keratan sulfate, an electrosensory neurosentient bioresponsive cell instructive glycosaminoglycan. Glycobiology 2024; 34:cwae014. [PMID: 38376199 PMCID: PMC10987296 DOI: 10.1093/glycob/cwae014] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 02/21/2024] Open
Abstract
The roles of keratan sulfate (KS) as a proton detection glycosaminoglycan in neurosensory processes in the central and peripheral nervous systems is reviewed. The functional properties of the KS-proteoglycans aggrecan, phosphacan, podocalyxcin as components of perineuronal nets in neurosensory processes in neuronal plasticity, cognitive learning and memory are also discussed. KS-glycoconjugate neurosensory gels used in electrolocation in elasmobranch fish species and KS substituted mucin like conjugates in some tissue contexts in mammals need to be considered in sensory signalling. Parallels are drawn between KS's roles in elasmobranch fish neurosensory processes and its roles in mammalian electro mechanical transduction of acoustic liquid displacement signals in the cochlea by the tectorial membrane and stereocilia of sensory inner and outer hair cells into neural signals for sound interpretation. The sophisticated structural and functional proteins which maintain the unique high precision physical properties of stereocilia in the detection, transmittance and interpretation of acoustic signals in the hearing process are important. The maintenance of the material properties of stereocilia are essential in sound transmission processes. Specific, emerging roles for low sulfation KS in sensory bioregulation are contrasted with the properties of high charge density KS isoforms. Some speculations are made on how the molecular and electrical properties of KS may be of potential application in futuristic nanoelectronic, memristor technology in advanced ultrafast computing devices with low energy requirements in nanomachines, nanobots or molecular switches which could be potentially useful in artificial synapse development. Application of KS in such innovative areas in bioregulation are eagerly awaited.
Collapse
Affiliation(s)
- James Melrose
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
- Raymond Purves Laboratory, Institute of Bone and Joint Research, Kolling Institute of Medical Research, Northern Sydney Local Health District, Royal North Shore Hospital, St. Leonards, NSW 2065, Australia
- Sydney Medical School, Northern, University of Sydney at Royal North Shore Hospital, St. Leonards, NSW 2065, Australia
| |
Collapse
|
3
|
Takeda-Uchimura Y, Ikezaki M, Akama TO, Ihara Y, Allain F, Nishitsuji K, Uchimura K. GlcNAc6ST2/CHST4 Is Essential for the Synthesis of R-10G-Reactive Keratan Sulfate/Sulfated N-Acetyllactosamine Oligosaccharides in Mouse Pleural Mesothelium. Molecules 2024; 29:764. [PMID: 38398516 PMCID: PMC10893525 DOI: 10.3390/molecules29040764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/25/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
We recently showed that 6-sulfo sialyl N-acetyllactosamine (LacNAc) in O-linked glycans recognized by the CL40 antibody is abundant in the pleural mesothelium under physiological conditions and that these glycans undergo complementary synthesis by GlcNAc6ST2 (encoded by Chst4) and GlcNAc6ST3 (encoded by Chst5) in mice. GlcNAc6ST3 is essential for the synthesis of R-10G-positive keratan sulfate (KS) in the brain. The predicted minimum epitope of the R-10G antibody is a dimeric asialo 6-sulfo LacNAc. Whether R-10G-reactive KS/sulfated LacNAc oligosaccharides are also present in the pleural mesothelium was unknown. The question of which GlcNAc6STs are responsible for R-10G-reactive glycans was an additional issue to be clarified. Here, we show that R-10G-reactive glycans are as abundant in the pulmonary pleura as CL40-reactive glycans and that GlcNAc6ST3 is only partially involved in the synthesis of these pleural R-10G glycans, unlike in the adult brain. Unexpectedly, GlcNAc6ST2 is essential for the synthesis of R-10G-positive KS/sulfated LacNAc oligosaccharides in the lung pleura. The type of GlcNAc6ST and the magnitude of its contribution to KS glycan synthesis varied among tissues in vivo. We show that GlcNAc6ST2 is required and sufficient for R-10G-reactive KS synthesis in the lung pleura. Interestingly, R-10G immunoreactivity in KSGal6ST (encoded by Chst1) and C6ST1 (encoded by Chst3) double-deficient mouse lungs was markedly increased. MUC16, a mucin molecule, was shown to be a candidate carrier protein for pleural R-10G-reactive glycans. These results suggest that R-10G-reactive KS/sulfated LacNAc oligosaccharides may play a role in mesothelial cell proliferation and differentiation. Further elucidation of the functions of sulfated glycans synthesized by GlcNAc6ST2 and GlcNAc6ST3, such as R-10G and CL40 glycans, in pathological conditions may lead to a better understanding of the underlying mechanisms of the physiopathology of the lung mesothelium.
Collapse
Affiliation(s)
- Yoshiko Takeda-Uchimura
- Univ. Lille, CNRS, UMR 8576—UGSF—Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France; (Y.T.-U.); (F.A.); or (K.N.)
| | - Midori Ikezaki
- Department of Biochemistry, School of Medicine, Wakayama Medical University, Wakayama 641-8509, Japan; (M.I.); (Y.I.)
| | - Tomoya O. Akama
- Department of Pharmacology, Kansai Medical University, Osaka 570-8506, Japan;
| | - Yoshito Ihara
- Department of Biochemistry, School of Medicine, Wakayama Medical University, Wakayama 641-8509, Japan; (M.I.); (Y.I.)
| | - Fabrice Allain
- Univ. Lille, CNRS, UMR 8576—UGSF—Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France; (Y.T.-U.); (F.A.); or (K.N.)
| | - Kazuchika Nishitsuji
- Univ. Lille, CNRS, UMR 8576—UGSF—Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France; (Y.T.-U.); (F.A.); or (K.N.)
- Department of Biochemistry, School of Medicine, Wakayama Medical University, Wakayama 641-8509, Japan; (M.I.); (Y.I.)
| | - Kenji Uchimura
- Univ. Lille, CNRS, UMR 8576—UGSF—Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France; (Y.T.-U.); (F.A.); or (K.N.)
| |
Collapse
|
4
|
Chemistry and Function of Glycosaminoglycans in the Nervous System. ADVANCES IN NEUROBIOLOGY 2023; 29:117-162. [DOI: 10.1007/978-3-031-12390-0_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
5
|
Takeda-Uchimura Y, Nishitsuji K, Ikezaki M, Akama TO, Ihara Y, Allain F, Uchimura K. Beta3Gn-T7 Is a Keratan Sulfate β1,3 N-Acetylglucosaminyltransferase in the Adult Brain. Front Neuroanat 2022; 16:813841. [PMID: 35221933 PMCID: PMC8863611 DOI: 10.3389/fnana.2022.813841] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 01/07/2022] [Indexed: 11/13/2022] Open
Abstract
Keratan sulfate (KS) glycan is covalently attached to a core protein of proteoglycans. KS is abundant in neuropils and presents densely in close proximity to the perineuronal region of the perineuronal net-positive neurons in the adult brain under physiological conditions. We previously showed that the synthesis of KS positive for the R-10G antibody in the adult brain is mediated by GlcNAc-6-sulfotransferase 3 (GlcNAc6ST3; encoded by Chst5). Deficiency in both GlcNAc6ST3 and GlcNAc6ST1, encoded by Chst2, completely abolished KS. Protein-tyrosine phosphatase receptor type z1 (Ptprz1)/phosphacan was identified as a KS scaffold. KS requires the extension of GlcNAc by β1,3 N-acetylglucosaminyltransferase (Beta3Gn-T). Members of the Beta3Gn-T family involved in the synthesis of adult brain KS have not been identified. In this study, we show by a method of gene targeting that Beta3Gn-T7, encoded by B3gnt7, is a major Beta3Gn-T for the synthesis of KS in neuropils and the perineuronal region in the adult brain. Intriguingly, the B3gnt7 gene is selectively expressed in oligodendrocyte precursor cells (OPCs) and oligodendrocytes similar to that of GlcNAc6ST3. These results indicate that Beta3Gn-T7 in oligodendrocyte lineage cells may play a role in the formation of neuropils and perineuronal nets in the adult brain through the synthesis of R-10G-positive KS-modified proteoglycan.
Collapse
Affiliation(s)
- Yoshiko Takeda-Uchimura
- Univ. Lille, CNRS, UMR 8576 – UGSF – Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | | | - Midori Ikezaki
- Department of Biochemistry, Wakayama Medical University, Wakayama, Japan
| | - Tomoya O. Akama
- Department of Pharmacology, Kansai Medical University, Osaka, Japan
| | - Yoshito Ihara
- Department of Biochemistry, Wakayama Medical University, Wakayama, Japan
| | - Fabrice Allain
- Univ. Lille, CNRS, UMR 8576 – UGSF – Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Kenji Uchimura
- Univ. Lille, CNRS, UMR 8576 – UGSF – Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
- *Correspondence: Kenji Uchimura,
| |
Collapse
|
6
|
Nagai Y, Nakao H, Kojima A, Komatsubara Y, Ohta Y, Kawasaki N, Kawasaki N, Toyoda H, Kawasaki T. Glycan Epitopes on 201B7 Human-Induced Pluripotent Stem Cells Using R-10G and R-17F Marker Antibodies. Biomolecules 2021; 11:508. [PMID: 33805466 PMCID: PMC8065539 DOI: 10.3390/biom11040508] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 03/23/2021] [Indexed: 11/17/2022] Open
Abstract
We developed two human-induced pluripotent stem cell (hiPSC)/human embryonic stem cell (hESC)-specific glycan-recognizing mouse antibodies, R-10G and R-17F, using the Tic (JCRB1331) hiPSC line as an antigen. R-10G recognizes a low-sulfate keratan sulfate, and R-17F recognizes lacto-N-fucopentaose-1. To evaluate the general characteristics of stem cell glycans, we investigated the hiPSC line 201B7 (HPS0063), a prototype iPSC line. Using an R-10G affinity column, an R-10G-binding protein was isolated from 201B7 cells. The protein yielded a single but very broad band from 480 to 1236 kDa by blue native gel electrophoresis. After trypsin digestion, the protein was identified as podocalyxin by liquid chromatography/mass spectrometry. According to Western blotting, the protein reacted with R-10G and R-17F. The R-10G-positive band was resistant to digestion with glycan-degrading enzymes, including peptide N-glycanase, but the intensity of the band was decreased significantly by digestion with keratanase, keratanase II, and endo-β-galactosidase, suggesting the R-10G epitope to be a keratan sulfate. These results suggest that keratan sulfate-type epitopes are shared by hiPSCs. However, the keratan sulfate from 201B7 cells contained a polylactosamine disaccharide unit (Galβ1-4GlcNAc) at a significant frequency, whereas that from Tic cells consisted mostly of keratan sulfate disaccharide units (Galβ1-4GlcNAc(6S)). In addition, the abundance of the R-10G epitope was significantly lower in 201B7 cells than in Tic cells.
Collapse
Affiliation(s)
- Yuko Nagai
- Laboratory of Bio-analytical Chemistry, College of Pharmaceutical Sciences, Ritsumeikan University, Shiga 525-8577, Japan; (Y.N.); (A.K.); (Y.K.); (H.T.)
| | - Hiromi Nakao
- Glycobiotechnology Laboratory, Ritsumeikan University, Shiga 525-8577, Japan; (H.N.); (N.K.)
| | - Aya Kojima
- Laboratory of Bio-analytical Chemistry, College of Pharmaceutical Sciences, Ritsumeikan University, Shiga 525-8577, Japan; (Y.N.); (A.K.); (Y.K.); (H.T.)
| | - Yuka Komatsubara
- Laboratory of Bio-analytical Chemistry, College of Pharmaceutical Sciences, Ritsumeikan University, Shiga 525-8577, Japan; (Y.N.); (A.K.); (Y.K.); (H.T.)
| | - Yuki Ohta
- Department of Medical Life Science, Yokohama City University, Kanagawa 230-0045, Japan; (Y.O.); (N.K.)
| | - Nana Kawasaki
- Department of Medical Life Science, Yokohama City University, Kanagawa 230-0045, Japan; (Y.O.); (N.K.)
| | - Nobuko Kawasaki
- Glycobiotechnology Laboratory, Ritsumeikan University, Shiga 525-8577, Japan; (H.N.); (N.K.)
| | - Hidenao Toyoda
- Laboratory of Bio-analytical Chemistry, College of Pharmaceutical Sciences, Ritsumeikan University, Shiga 525-8577, Japan; (Y.N.); (A.K.); (Y.K.); (H.T.)
| | - Toshisuke Kawasaki
- Glycobiotechnology Laboratory, Ritsumeikan University, Shiga 525-8577, Japan; (H.N.); (N.K.)
| |
Collapse
|
7
|
Ocampo Daza D, Haitina T. Reconstruction of the Carbohydrate 6-O Sulfotransferase Gene Family Evolution in Vertebrates Reveals Novel Member, CHST16, Lost in Amniotes. Genome Biol Evol 2020; 12:993-1012. [PMID: 32652010 PMCID: PMC7353957 DOI: 10.1093/gbe/evz274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/10/2019] [Indexed: 12/24/2022] Open
Abstract
Glycosaminoglycans are sulfated polysaccharide molecules, essential for many biological processes. The 6-O sulfation of glycosaminoglycans is carried out by carbohydrate 6-O sulfotransferases (C6OSTs), previously named Gal/GalNAc/GlcNAc 6-O sulfotransferases. Here, for the first time, we present a detailed phylogenetic reconstruction, analysis of gene synteny conservation and propose an evolutionary scenario for the C6OST family in major vertebrate groups, including mammals, birds, nonavian reptiles, amphibians, lobe-finned fishes, ray-finned fishes, cartilaginous fishes, and jawless vertebrates. The C6OST gene expansion likely started early in the chordate lineage, giving rise to four ancestral genes after the divergence of tunicates and before the emergence of extant vertebrates. The two rounds of whole-genome duplication in early vertebrate evolution (1R/2R) only contributed two additional C6OST subtype genes, increasing the vertebrate repertoire from four genes to six, divided into two branches. The first branch includes CHST1 and CHST3 as well as a previously unrecognized subtype, CHST16 that was lost in amniotes. The second branch includes CHST2, CHST7, and CHST5. Subsequently, local duplications of CHST5 gave rise to CHST4 in the ancestor of tetrapods, and to CHST6 in the ancestor of primates. The teleost-specific gene duplicates were identified for CHST1, CHST2, and CHST3 and are result of whole-genome duplication (3R) in the teleost lineage. We could also detect multiple, more recent lineage-specific duplicates. Thus, the vertebrate repertoire of C6OST genes has been shaped by gene duplications and gene losses at several stages of vertebrate evolution, with implications for the evolution of skeleton, nervous system, and cell-cell interactions.
Collapse
Affiliation(s)
- Daniel Ocampo Daza
- Department of Organismal Biology, Uppsala University, Sweden
- School of Natural Sciences, University of California Merced
| | - Tatjana Haitina
- Department of Organismal Biology, Uppsala University, Sweden
| |
Collapse
|
8
|
Bartholome O, de la Brassinne Bonardeaux O, Neirinckx V, Rogister B. A Composite Sketch of Fast-Spiking Parvalbumin-Positive Neurons. Cereb Cortex Commun 2020; 1:tgaa026. [PMID: 34296100 PMCID: PMC8153048 DOI: 10.1093/texcom/tgaa026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/15/2020] [Accepted: 06/15/2020] [Indexed: 01/28/2023] Open
Abstract
Parvalbumin-positive neurons are inhibitory neurons that release GABA and are mostly represented by fast-spiking basket or chandelier cells. They constitute a minor neuronal population, yet their peculiar profiles allow them to react quickly to any event in the brain under normal or pathological conditions. In this review, we will summarize the current knowledge about the fundamentals of fast-spiking parvalbumin-positive neurons, focusing on their morphology and specific channel/protein content. Next, we will explore their development, maturation, and migration in the brain. Finally, we will unravel their potential contribution to the physiopathology of epilepsy.
Collapse
Affiliation(s)
| | | | | | - Bernard Rogister
- GIGA-Neurosciences, University of Liege, 4000 Liège, Belgium
- Neurology Department, CHU, Academic Hospital, University of Liege, 4000 Liège, Belgium
| |
Collapse
|
9
|
Hayes AJ, Melrose J. Keratan Sulphate in the Tumour Environment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1245:39-66. [PMID: 32266652 DOI: 10.1007/978-3-030-40146-7_2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Keratan sulphate (KS) is a bioactive glycosaminoglycan (GAG) of some complexity composed of the repeat disaccharide D-galactose β1→4 glycosidically linked to N-acetyl glucosamine. During the biosynthesis of KS, a family of glycosyltransferase and sulphotransferase enzymes act sequentially and in a coordinated fashion to add D-galactose (D-Gal) then N-acetyl glucosamine (GlcNAc) to a GlcNAc acceptor residue at the reducing terminus of a nascent KS chain to effect chain elongation. D-Gal and GlcNAc can both undergo sulphation at C6 but this occurs more frequently on GlcNAc than D-Gal. Sulphation along the developing KS chain is not uniform and contains regions of variable length where no sulphation occurs, regions which are monosulphated mainly on GlcNAc and further regions of high sulphation where both of the repeat disaccharides are sulphated. Each of these respective regions in the KS chain can be of variable length leading to KS complexity in terms of chain length and charge localization along the KS chain. Like other GAGs, it is these variably sulphated regions in KS which define its interactive properties with ligands such as growth factors, morphogens and cytokines and which determine the functional properties of tissues containing KS. Further adding to KS complexity is the identification of three different linkage structures in KS to asparagine (N-linked) or to threonine or serine residues (O-linked) in proteoglycan core proteins which has allowed the categorization of KS into three types, namely KS-I (corneal KS, N-linked), KS-II (skeletal KS, O-linked) or KS-III (brain KS, O-linked). KS-I to -III are also subject to variable addition of L-fucose and sialic acid groups. Furthermore, the GlcNAc residues of some members of the mucin-like glycoprotein family can also act as acceptor molecules for the addition of D-Gal and GlcNAc residues which can also be sulphated leading to small low sulphation glycoforms of KS. These differ from the more heavily sulphated KS chains found on proteoglycans. Like other GAGs, KS has evolved molecular recognition and information transfer properties over hundreds of millions of years of vertebrate and invertebrate evolution which equips them with cell mediatory properties in normal cellular processes and in aberrant pathological situations such as in tumourogenesis. Two KS-proteoglycans in particular, podocalyxin and lumican, are cell membrane, intracellular or stromal tissue-associated components with roles in the promotion or regulation of tumour development, mucin-like KS glycoproteins may also contribute to tumourogenesis. A greater understanding of the biology of KS may allow better methodology to be developed to more effectively combat tumourogenic processes.
Collapse
Affiliation(s)
- Anthony J Hayes
- Bioimaging Research Hub, Cardiff School of Biosciences, Cardiff University, Cardiff, Wales, UK
| | - James Melrose
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, Australia. .,Raymond Purves Laboratory, Institute of Bone and Joint Research, Kolling Institute, Northern Sydney Local Health District, Royal North Shore Hospital, St. Leonards, NSW, Australia. .,Sydney Medical School, Northern, The University of Sydney, Faculty of Medicine and Health at Royal North Shore Hospital, St. Leonards, NSW, Australia.
| |
Collapse
|
10
|
The roles of perineuronal nets and the perinodal extracellular matrix in neuronal function. Nat Rev Neurosci 2019; 20:451-465. [PMID: 31263252 DOI: 10.1038/s41583-019-0196-3] [Citation(s) in RCA: 341] [Impact Index Per Article: 56.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2019] [Indexed: 01/09/2023]
Abstract
Perineuronal nets (PNNs) are extracellular matrix (ECM) chondroitin sulfate proteoglycan (CSPG)-containing structures that surround the soma and dendrites of various mammalian neuronal cell types. PNNs appear during development around the time that the critical periods for developmental plasticity end and are important for both their onset and closure. A similar structure - the perinodal ECM - surrounds the axonal nodes of Ranvier and appears as myelination is completed, acting as an ion-diffusion barrier that affects axonal conduction speed. Recent work has revealed the importance of PNNs in controlling plasticity in the CNS. Digestion, blocking or removal of PNNs influences functional recovery after a variety of CNS lesions. PNNs have further been shown to be involved in the regulation of memory and have been implicated in a number of psychiatric disorders.
Collapse
|
11
|
Melrose J. Functional Consequences of Keratan Sulfate Sulfation in Electrosensory Tissues and in Neuronal Regulation. ACTA ACUST UNITED AC 2019; 3:e1800327. [PMID: 32627425 DOI: 10.1002/adbi.201800327] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/16/2019] [Indexed: 12/20/2022]
Abstract
Keratan sulfate (KS) is a functional electrosensory and neuro-instructive molecule. Recent studies have identified novel low sulfation KS in auditory and sensory tissues such as the tectorial membrane of the organ of Corti and the Ampullae of Lorenzini in elasmobranch fish. These are extremely sensitive proton gradient detection systems that send signals to neural interfaces to facilitate audition and electrolocation. High and low sulfation KS have differential functional roles in song learning in the immature male zebra song-finch with high charge density KS in song nuclei promoting brain development and cognitive learning. The conductive properties of KS are relevant to the excitable neural phenotype. High sulfation KS interacts with a large number of guidance and neuroregulatory proteins. The KS proteoglycan microtubule associated protein-1B (MAP1B) stabilizes actin and tubulin cytoskeletal development during neuritogenesis. A second 12 span transmembrane synaptic vesicle associated KS proteoglycan (SV2) provides a smart gel storage matrix for the storage of neurotransmitters. MAP1B and SV2 have prominent roles to play in neuroregulation. Aggrecan and phosphacan have roles in perineuronal net formation and in neuroregulation. A greater understanding of the biology of KS may be insightful as to how neural repair might be improved.
Collapse
Affiliation(s)
- James Melrose
- Raymond Purves Bone and Joint Research Laboratories, Kolling Institute of Medical Research, Royal North Shore Hospital and University of Sydney, St. Leonards, NSW, 2065, Australia.,Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia.,Sydney Medical School, Northern, Sydney University, Royal North Shore Hospital, St. Leonards, NSW, 2065, Australia.,Faculty of Medicine and Health, University of Sydney, Royal North Shore Hospital, St. Leonards, NSW, 2065, Australia
| |
Collapse
|
12
|
Narentuya, Takeda-Uchimura Y, Foyez T, Zhang Z, Akama TO, Yagi H, Kato K, Komatsu Y, Kadomatsu K, Uchimura K. GlcNAc6ST3 is a keratan sulfate sulfotransferase for the protein-tyrosine phosphatase PTPRZ in the adult brain. Sci Rep 2019; 9:4387. [PMID: 30867513 PMCID: PMC6416290 DOI: 10.1038/s41598-019-40901-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 02/04/2019] [Indexed: 01/06/2023] Open
Abstract
Keratan sulfate (KS) is a carbohydrate side chain covalently attached to extracellular proteoglycans. KS is composed of disaccharide units of 6-sulfated N-acetylglucosamine (GlcNAc) and galactose. We have previously shown that GlcNAc-6-O-sulfotransferase (GlcNAc6ST) 1 encoded by Chst2 is an enzyme necessary for the synthesis of GlcNAc-6-sulfated KS chains that are required for neuronal plasticity in the visual cortex of the mouse brain during the critical period, but not in adulthood. Here, we show that GlcNAc-6-sulfated KS recognized by the R-10G anti-KS antibody, of which the minimum epitope structure is Galß1-4GlcNAc(6S)ß1-3Galß1-4GlcNAc(6S), distributes diffusely in neuropils and presents densely in close proximity to the perineuronal region of the perineuronal net (PNN)-positive neurons in the adult visual cortex. Surprisingly, GlcNAc6ST3, which was discovered as an intestinal GlcNAc6ST encoded by Chst5, is a major brain KS sulfotransferase expressed in oligodendrocytes in adulthood. Moreover, we identified an isoform of the protein-tyrosine phosphatase PTPRZ as a R-10G-reactive KS proteoglycan. These results indicate that GlcNAc6ST3 may play a role in synthesis of a component of PNN in the adult brain, and that the KS-modified isoform of PTPRZ encoded by Ptprz1 could be an extracellular molecule associated with PNNs.
Collapse
Affiliation(s)
- Narentuya
- Department of Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Yoshiko Takeda-Uchimura
- Department of Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
- Department of Neuroscience, Research Institute of Environmental Medicine, Nagoya University, Nagoya, 464-8601, Japan
| | - Tahmina Foyez
- Department of Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
- Department of Pharmaceutical Sciences, North South University, Dhaka-1229, Bashundhara, Bangladesh
| | - Zui Zhang
- Department of Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Tomoya O Akama
- Department of Pharmacology, Kansai Medical University, Osaka, 570-8506, Japan
| | - Hirokazu Yagi
- Nagoya City University Graduate School of Pharmaceutical Sciences, Nagoya, 467-8603, Japan
| | - Koichi Kato
- Nagoya City University Graduate School of Pharmaceutical Sciences, Nagoya, 467-8603, Japan
- Institute for Molecular Science and Okazaki Institute for Integrative Bioscience, Okazaki, 444-8787, Japan
| | - Yukio Komatsu
- Department of Neuroscience, Research Institute of Environmental Medicine, Nagoya University, Nagoya, 464-8601, Japan
- National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, 444-8585, Japan
| | - Kenji Kadomatsu
- Department of Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Kenji Uchimura
- Department of Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan.
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR 8576 CNRS, Université de Lille, 59655, Villeneuve d'Ascq, France.
| |
Collapse
|
13
|
Melrose J. Keratan sulfate (KS)-proteoglycans and neuronal regulation in health and disease: the importance of KS-glycodynamics and interactive capability with neuroregulatory ligands. J Neurochem 2019; 149:170-194. [PMID: 30578672 DOI: 10.1111/jnc.14652] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 11/26/2018] [Accepted: 12/13/2018] [Indexed: 12/18/2022]
Abstract
Compared to the other classes of glycosaminoglycans (GAGs), that is, chondroitin/dermatan sulfate, heparin/heparan sulfate and hyaluronan, keratan sulfate (KS), have the least known of its interactive properties. In the human body, the cornea and the brain are the two most abundant tissue sources of KS. Embryonic KS is synthesized as a linear poly-N-acetyllactosamine chain of d-galactose-GlcNAc repeat disaccharides which become progressively sulfated with development, sulfation of GlcNAc is more predominant than galactose. KS contains multi-sulfated high-charge density, monosulfated and non-sulfated poly-N-acetyllactosamine regions and thus is a heterogeneous molecule in terms of chain length and charge distribution. A recent proteomics study on corneal KS demonstrated its interactivity with members of the Slit-Robbo and Ephrin-Ephrin receptor families and proteins which regulate Rho GTPase signaling and actin polymerization/depolymerization in neural development and differentiation. KS decorates a number of peripheral nervous system/CNS proteoglycan (PG) core proteins. The astrocyte KS-PG abakan defines functional margins of the brain and is up-regulated following trauma. The chondroitin sulfate/KS PG aggrecan forms perineuronal nets which are dynamic neuroprotective structures with anti-oxidant properties and roles in neural differentiation, development and synaptic plasticity. Brain phosphacan a chondroitin sulfate, KS, HNK-1 PG have roles in neural development and repair. The intracellular microtubule and synaptic vesicle KS-PGs MAP1B and SV2 have roles in metabolite transport, storage, and export of neurotransmitters and cytoskeletal assembly. MAP1B has binding sites for tubulin and actin through which it promotes cytoskeletal development in growth cones and is highly expressed during neurite extension. The interactive capability of KS with neuroregulatory ligands indicate varied roles for KS-PGs in development and regenerative neural processes.
Collapse
Affiliation(s)
- James Melrose
- Raymond Purves Bone and Joint Research Laboratory, Kolling Institute, St. Leonards, New South Wales, Australia.,Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales, Australia.,Sydney Medical School, Northern Campus, Royal North Shore Hospital, The University of Sydney, New South Wales, Australia.,Faculty of Medicine and Health, Royal North Shore Hospital, The University of Sydney, St. Leonards, New South Wales, Australia
| |
Collapse
|
14
|
Glycans and glycosaminoglycans in neurobiology: key regulators of neuronal cell function and fate. Biochem J 2018; 475:2511-2545. [PMID: 30115748 DOI: 10.1042/bcj20180283] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 07/14/2018] [Accepted: 07/18/2018] [Indexed: 12/16/2022]
Abstract
The aim of the present study was to examine the roles of l-fucose and the glycosaminoglycans (GAGs) keratan sulfate (KS) and chondroitin sulfate/dermatan sulfate (CS/DS) with selected functional molecules in neural tissues. Cell surface glycans and GAGs have evolved over millions of years to become cellular mediators which regulate fundamental aspects of cellular survival. The glycocalyx, which surrounds all cells, actuates responses to growth factors, cytokines and morphogens at the cellular boundary, silencing or activating downstream signaling pathways and gene expression. In this review, we have focused on interactions mediated by l-fucose, KS and CS/DS in the central and peripheral nervous systems. Fucose makes critical contributions in the area of molecular recognition and information transfer in the blood group substances, cytotoxic immunoglobulins, cell fate-mediated Notch-1 interactions, regulation of selectin-mediated neutrophil extravasation in innate immunity and CD-34-mediated new blood vessel development, and the targeting of neuroprogenitor cells to damaged neural tissue. Fucosylated glycoproteins regulate delivery of synaptic neurotransmitters and neural function. Neural KS proteoglycans (PGs) were examined in terms of cellular regulation and their interactive properties with neuroregulatory molecules. The paradoxical properties of CS/DS isomers decorating matrix and transmembrane PGs and the positive and negative regulatory cues they provide to neurons are also discussed.
Collapse
|
15
|
Structural Characterization and Interaction with RCA 120 of a Highly Sulfated Keratan Sulfate from Blue Shark (Prionace glauca) Cartilage. Mar Drugs 2018; 16:md16040128. [PMID: 29662015 PMCID: PMC5923415 DOI: 10.3390/md16040128] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 04/08/2018] [Accepted: 04/10/2018] [Indexed: 01/21/2023] Open
Abstract
As an important glycosaminoglycan, keratan sulfate (KS) mainly exists in corneal and cartilage, possessing various biological activities. In this study, we purified KS from blue shark (Prionace glauca) cartilage and prepared KS oligosaccharides (KSO) through keratanase II-catalyzed hydrolysis. The structures of KS and KSO were characterized using multi-dimensional nuclear magnetic resonance (NMR) spectra and liquid chromatography-mass spectrometry (LC-MS). Shark cartilage KS was highly sulfated and modified with ~2.69% N-acetylneuraminic acid (NeuAc) through α(2,3)-linked to galactose. Additionally, KS exhibited binding affinity to Ricinus communis agglutinin I (RCA120) in a concentration-dependent manner, a highly toxic lectin from beans of the castor plant. Furthermore, KSO from dp2 to dp8 bound to RCA120 in the increasing trend while the binding affinity of dp8 was superior to polysaccharide. These results define novel structural features for KS from Prionace glauca cartilage and demonstrate the potential application on ricin-antidote exploitation.
Collapse
|
16
|
George N, Geller HM. Extracellular matrix and traumatic brain injury. J Neurosci Res 2018; 96:573-588. [PMID: 29344975 DOI: 10.1002/jnr.24151] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 07/21/2017] [Accepted: 08/14/2017] [Indexed: 12/27/2022]
Abstract
The brain extracellular matrix (ECM) plays a crucial role in both the developing and adult brain by providing structural support and mediating cell-cell interactions. In this review, we focus on the major constituents of the ECM and how they function in both normal and injured brain, and summarize the changes in the composition of the ECM as well as how these changes either promote or inhibit recovery of function following traumatic brain injury (TBI). Modulation of ECM composition to facilitates neuronal survival, regeneration and axonal outgrowth is a potential therapeutic target for TBI treatment.
Collapse
Affiliation(s)
- Naijil George
- Laboratory of Developmental Neurobiology, Cell Biology and Physiology Center, NHLBI, NIH, Bethesda, MD, 20892-1603, USA
| | - Herbert M Geller
- Laboratory of Developmental Neurobiology, Cell Biology and Physiology Center, NHLBI, NIH, Bethesda, MD, 20892-1603, USA
| |
Collapse
|
17
|
Yu P, Pearson CS, Geller HM. Flexible Roles for Proteoglycan Sulfation and Receptor Signaling. Trends Neurosci 2018; 41:47-61. [PMID: 29150096 PMCID: PMC5748001 DOI: 10.1016/j.tins.2017.10.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 10/19/2017] [Accepted: 10/25/2017] [Indexed: 11/25/2022]
Abstract
Proteoglycans (PGs) in the extracellular matrix (ECM) play vital roles in axon growth and navigation, plasticity, and regeneration of injured neurons. Different classes of PGs may support or inhibit cell growth, and their functions are determined in part by highly specific structural features. Among these, the pattern of sulfation on the PG sugar chains is a paramount determinant of a diverse and flexible set of outcomes. Recent studies of PG sulfation illustrate the challenges of attributing biological actions to specific sulfation patterns, and suggest ways in which highly similar molecules may exert opposing effects on neurons. The receptors for PGs, which have yet to be fully characterized, display a similarly nuanced spectrum of effects. Different classes of PG function via overlapping families of receptors and signaling pathways. This enables them to control axon growth and guidance with remarkable specificity, but it poses challenges for determining the precise binding interactions and downstream effects of different PGs and their assorted sulfated epitopes. This review examines existing and emerging evidence for the roles of PG sulfation and receptor interactions in determining how these complex molecules influence neuronal development, growth, and function.
Collapse
Affiliation(s)
- Panpan Yu
- Guangdong-Hongkong-Macau Institute of CNS Regeneration; Ministry of Education Joint International Research Laboratory of CNS Regeneration, Jinan University, Guangzhou 510632, China.
| | - Craig S Pearson
- Laboratory of Developmental Neurobiology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA; Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Herbert M Geller
- Laboratory of Developmental Neurobiology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
18
|
Saied-Santiago K, Bülow HE. Diverse roles for glycosaminoglycans in neural patterning. Dev Dyn 2018; 247:54-74. [PMID: 28736980 PMCID: PMC5866094 DOI: 10.1002/dvdy.24555] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Revised: 07/13/2017] [Accepted: 07/17/2017] [Indexed: 01/11/2023] Open
Abstract
The nervous system coordinates the functions of most multicellular organisms and their response to the surrounding environment. Its development involves concerted cellular interactions, including migration, axon guidance, and synapse formation. These processes depend on the molecular constituents and structure of the extracellular matrices (ECM). An essential component of ECMs are proteoglycans, i.e., proteins containing unbranched glycan chains known as glycosaminoglycans (GAGs). A defining characteristic of GAGs is their enormous molecular diversity, created by extensive modifications of the glycans during their biosynthesis. GAGs are widely expressed, and their loss can lead to catastrophic neuronal defects. Despite their importance, we are just beginning to understand the function and mechanisms of GAGs in neuronal development. In this review, we discuss recent evidence suggesting GAGs have specific roles in neuronal patterning and synaptogenesis. We examine the function played by the complex modifications present on GAG glycans and their roles in regulating different aspects of neuronal patterning. Moreover, the review considers the function of proteoglycan core proteins in these processes, stressing their likely role as co-receptors of different signaling pathways in a redundant and context-dependent manner. We conclude by discussing challenges and future directions toward a better understanding of these fascinating molecules during neuronal development. Developmental Dynamics 247:54-74, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | - Hannes E. Bülow
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, 10461
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, 10461
| |
Collapse
|
19
|
Toyoda H, Nagai Y, Kojima A, Kinoshita-Toyoda A. Podocalyxin as a major pluripotent marker and novel keratan sulfate proteoglycan in human embryonic and induced pluripotent stem cells. Glycoconj J 2017; 34:817-823. [PMID: 28980094 DOI: 10.1007/s10719-017-9801-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Revised: 10/27/2016] [Accepted: 12/22/2016] [Indexed: 12/27/2022]
Abstract
Podocalyxin (PC) was first identified as a heavily sialylated transmembrane protein of glomerular podocytes. Recent studies suggest that PC is a remarkable glycoconjugate that acts as a universal glyco-carrier. The glycoforms of PC are responsible for multiple functions in normal tissue, human cancer cells, human embryonic stem cells (hESCs), and human induced pluripotent stem cells (hiPSCs). PC is employed as a major pluripotent marker of hESCs and hiPSCs. Among the general antibodies for human PC, TRA-1-60 and TRA-1-81 recognize the keratan sulfate (KS)-related structures. Therefore, It is worthwhile to summarize the outstanding chemical characteristic of PC, including the KS-related structures. Here, we review the glycoforms of PC and discuss the potential of PC as a novel KS proteoglycan in undifferentiated hESCs and hiPSCs.
Collapse
Affiliation(s)
- Hidenao Toyoda
- Faculty of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan.
| | - Yuko Nagai
- Faculty of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan
| | - Aya Kojima
- Faculty of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan
| | - Akiko Kinoshita-Toyoda
- Faculty of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan
| |
Collapse
|
20
|
Bartholome O, Van den Ackerveken P, Sánchez Gil J, de la Brassinne Bonardeaux O, Leprince P, Franzen R, Rogister B. Puzzling Out Synaptic Vesicle 2 Family Members Functions. Front Mol Neurosci 2017; 10:148. [PMID: 28588450 PMCID: PMC5438990 DOI: 10.3389/fnmol.2017.00148] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 05/02/2017] [Indexed: 01/18/2023] Open
Abstract
Synaptic vesicle proteins 2 (SV2) were discovered in the early 80s, but the clear demonstration that SV2A is the target of efficacious anti-epileptic drugs from the racetam family stimulated efforts to improve understanding of its role in the brain. Many functions have been suggested for SV2 proteins including ions or neurotransmitters transport or priming of SVs. Moreover, several recent studies highlighted the link between SV2 and different neuronal disorders such as epilepsy, Schizophrenia (SCZ), Alzheimer's or Parkinson's disease. In this review article, we will summarize our present knowledge on SV2A function(s) and its potential role(s) in the pathophysiology of various brain disorders.
Collapse
Affiliation(s)
- Odile Bartholome
- Laboratory of Nervous System Disorders and Therapy, GIGA-Neurosciences, University of LiègeLiège, Belgium
| | | | - Judit Sánchez Gil
- Laboratory of Nervous System Disorders and Therapy, GIGA-Neurosciences, University of LiègeLiège, Belgium
| | | | - Pierre Leprince
- Laboratory of Nervous System Disorders and Therapy, GIGA-Neurosciences, University of LiègeLiège, Belgium
| | - Rachelle Franzen
- Laboratory of Nervous System Disorders and Therapy, GIGA-Neurosciences, University of LiègeLiège, Belgium
| | - Bernard Rogister
- Laboratory of Nervous System Disorders and Therapy, GIGA-Neurosciences, University of LiègeLiège, Belgium.,Department of Neurology, Centre Hospitalier Universitaire de Liège (CHU), University of LiègeLiège, Belgium
| |
Collapse
|
21
|
Sugimura T, Yamamoto M, Yamada K, Komatsu Y, Yoshimura Y. Visual experience regulates the development of long-term synaptic modifications induced by low-frequency stimulation in mouse visual cortex. Neurosci Res 2017; 120:36-44. [PMID: 28284708 DOI: 10.1016/j.neures.2017.02.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 02/22/2017] [Accepted: 02/23/2017] [Indexed: 10/20/2022]
Abstract
Manipulation of visual experience can considerably modify visual responses of visual cortical neurons even in adulthood in the mouse, although the modification is less profound than that observed during the critical period. Our previous studies demonstrated that low-frequency (2Hz) stimulation for 15min applied to layer 4 induces T-type Ca2+ channel-dependent long-term potentiation (LTP) at excitatory synapses in layer 2/3 neurons of visual cortex during the critical period. In this study, we investigated whether low-frequency stimulation could induce synaptic plasticity in adult mice. We found that 2Hz stimulation induced LTP of extracellular field potentials evoked by stimulation of layer 4 in layer 2/3 in adulthood as during the critical period. LTP in adulthood was blocked by L-type, but not T-type, Ca2+ channel antagonists, whereas LTP during the critical period was blocked by T-type, but not L-type, Ca2+ channel antagonists. This developmental change in LTP was prevented by dark rearing. Under pharmacological blockade of GABAA receptors, T-type Ca2+ channel-dependent LTP occurred, whereas L-type Ca2+ channel-dependent LTP did not occur. These results suggest that different forms of synaptic plasticity can contribute separately to experience-dependent modification of visual responses during the critical period and in adulthood.
Collapse
Affiliation(s)
- Taketoshi Sugimura
- Division of Visual Information Processing, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki 444-8585, Japan; Department of Neuroscience, Research Institute of Environmental Medicine, Nagoya University, Nagoya 464-8601, Japan; Department of Neurophysiology, Nara Medical University, Kashihara 634-8521, Japan
| | - Mariko Yamamoto
- Division of Visual Information Processing, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki 444-8585, Japan; Department of Physiological Sciences, The Graduate University for Advanced Studies, Okazaki 444-8585, Japan
| | - Kazumasa Yamada
- Division of Visual Information Processing, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki 444-8585, Japan; Division of Physical Therapy, Faculty of Rehabilitation and Care, Seijoh University, Tokai 476-8588, Japan
| | - Yukio Komatsu
- Division of Visual Information Processing, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki 444-8585, Japan; Department of Neuroscience, Research Institute of Environmental Medicine, Nagoya University, Nagoya 464-8601, Japan.
| | - Yumiko Yoshimura
- Division of Visual Information Processing, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki 444-8585, Japan; Department of Physiological Sciences, The Graduate University for Advanced Studies, Okazaki 444-8585, Japan.
| |
Collapse
|
22
|
Yoshimura T, Hayashi A, Handa-Narumi M, Yagi H, Ohno N, Koike T, Yamaguchi Y, Uchimura K, Kadomatsu K, Sedzik J, Kitamura K, Kato K, Trapp BD, Baba H, Ikenaka K. GlcNAc6ST-1 regulates sulfation of N-glycans and myelination in the peripheral nervous system. Sci Rep 2017; 7:42257. [PMID: 28186137 PMCID: PMC5301494 DOI: 10.1038/srep42257] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 01/05/2017] [Indexed: 01/09/2023] Open
Abstract
Highly specialized glial cells wrap axons with a multilayered myelin membrane in vertebrates. Myelin serves essential roles in the functioning of the nervous system. Axonal degeneration is the major cause of permanent neurological disability in primary myelin diseases. Many glycoproteins have been identified in myelin, and a lack of one myelin glycoprotein results in abnormal myelin structures in many cases. However, the roles of glycans on myelin glycoproteins remain poorly understood. Here, we report that sulfated N-glycans are involved in peripheral nervous system (PNS) myelination. PNS myelin glycoproteins contain highly abundant sulfated N-glycans. Major sulfated N-glycans were identified in both porcine and mouse PNS myelin, demonstrating that the 6-O-sulfation of N-acetylglucosamine (GlcNAc-6-O-sulfation) is highly conserved in PNS myelin between these species. P0 protein, the most abundant glycoprotein in PNS myelin and mutations in which at the glycosylation site cause Charcot-Marie-Tooth neuropathy, has abundant GlcNAc-6-O-sulfated N-glycans. Mice deficient in N-acetylglucosamine-6-O-sulfotransferase-1 (GlcNAc6ST-1) failed to synthesize sulfated N-glycans and exhibited abnormal myelination and axonal degeneration in the PNS. Taken together, this study demonstrates that GlcNAc6ST-1 modulates PNS myelination and myelinated axonal survival through the GlcNAc-6-O-sulfation of N-glycans on glycoproteins. These findings may provide novel insights into the pathogenesis of peripheral neuropathy.
Collapse
Affiliation(s)
- Takeshi Yoshimura
- Division of Neurobiology and Bioinformatics, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
- Department of Physiological Sciences, School of Life Sciences, SOKENDAI (The Graduate University for Advanced Studies), Hayama, Kanagawa 240-0193, Japan
| | - Akiko Hayashi
- Department of Molecular Neurobiology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Mai Handa-Narumi
- Division of Neurobiology and Bioinformatics, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
- Department of Physiological Sciences, School of Life Sciences, SOKENDAI (The Graduate University for Advanced Studies), Hayama, Kanagawa 240-0193, Japan
| | - Hirokazu Yagi
- Department of Structural Biology and Biomolecular Engineering, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi 467-8603, Japan
| | - Nobuhiko Ohno
- Division of Neurobiology and Bioinformatics, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
- Department of Physiological Sciences, School of Life Sciences, SOKENDAI (The Graduate University for Advanced Studies), Hayama, Kanagawa 240-0193, Japan
| | - Takako Koike
- Division of Neurobiology and Bioinformatics, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
| | - Yoshihide Yamaguchi
- Department of Molecular Neurobiology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Kenji Uchimura
- Department of Biochemistry, Graduate School of Medicine, Nagoya University, Nagoya, Aichi 466-8550, Japan
| | - Kenji Kadomatsu
- Department of Biochemistry, Graduate School of Medicine, Nagoya University, Nagoya, Aichi 466-8550, Japan
| | - Jan Sedzik
- Division of Neurobiology and Bioinformatics, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
- Department of Chemical Engineering and Technology, Protein Crystallization Facility, Royal Institute of Technology, KTH, Stockholm 10044, Sweden
| | - Kunio Kitamura
- Faculty of Health and Medical Care, Saitama Medical University, Hidaka, Saitama 350-1241, Japan
| | - Koichi Kato
- Department of Structural Biology and Biomolecular Engineering, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi 467-8603, Japan
- Institute for Molecular Science and Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
| | - Bruce D. Trapp
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Hiroko Baba
- Department of Molecular Neurobiology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Kazuhiro Ikenaka
- Division of Neurobiology and Bioinformatics, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
- Department of Physiological Sciences, School of Life Sciences, SOKENDAI (The Graduate University for Advanced Studies), Hayama, Kanagawa 240-0193, Japan
| |
Collapse
|
23
|
Toyoda H, Nagai Y, Kojima A, Kinoshita-Toyoda A. Podocalyxin as a major pluripotent marker and novel keratan sulfate proteoglycan in human embryonic and induced pluripotent stem cells. Glycoconj J 2017; 34:139-145. [PMID: 28078490 DOI: 10.1007/s10719-016-9757-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Revised: 10/27/2016] [Accepted: 12/22/2016] [Indexed: 10/20/2022]
Abstract
Podocalyxin (PC) was first identified as a heavily sialylated transmembrane protein of glomerular podocytes. Recent studies suggest that PC is a remarkable glycoconjugate that acts as a universal glyco-carrier. The glycoforms of PC are responsible for multiple functions in normal tissue, human cancer cells, human embryonic stem cells (hESCs), and human induced pluripotent stem cells (hiPSCs). PC is employed as a major pluripotent marker of hESCs and hiPSCs. Among the general antibodies for human PC, TRA-1-60 and TRA-1-81 recognize the keratan sulfate (KS)-related structures. Therefore, It is worthwhile to summarize the outstanding chemical characteristic of PC, including the KS-related structures. Here, we review the glycoforms of PC and discuss the potential of PC as a novel KS proteoglycan in undifferentiated hESCs and hiPSCs.
Collapse
Affiliation(s)
- Hidenao Toyoda
- Faculty of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan.
| | - Yuko Nagai
- Faculty of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan
| | - Aya Kojima
- Faculty of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan
| | - Akiko Kinoshita-Toyoda
- Faculty of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan
| |
Collapse
|