1
|
Jiang Y, Cai Y, Yang N, Gao S, Li Q, Pang Y, Su P. Molecular mechanisms of spinal cord injury repair across vertebrates: A comparative review. Eur J Neurosci 2024; 60:4552-4568. [PMID: 38978308 DOI: 10.1111/ejn.16462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 05/09/2024] [Accepted: 06/20/2024] [Indexed: 07/10/2024]
Abstract
In humans and other adult mammals, axon regeneration is difficult in axotomized neurons. Therefore, spinal cord injury (SCI) is a devastating event that can lead to permanent loss of locomotor and sensory functions. Moreover, the molecular mechanisms of axon regeneration in vertebrates are not very well understood, and currently, no effective treatment is available for SCI. In striking contrast to adult mammals, many nonmammalian vertebrates such as reptiles, amphibians, bony fishes and lampreys can spontaneously resume locomotion even after complete SCI. In recent years, rapid progress in the development of next-generation sequencing technologies has offered valuable information on SCI. In this review, we aimed to provide a comparison of axon regeneration process across classical model organisms, focusing on crucial genes and signalling pathways that play significant roles in the regeneration of individually identifiable descending neurons after SCI. Considering the special evolutionary location and powerful regenerative ability of lamprey and zebrafish, they will be the key model organisms for ongoing studies on spinal cord regeneration. Detailed study of SCI in these model organisms will help in the elucidation of molecular mechanisms of neuron regeneration across species.
Collapse
Affiliation(s)
- Ying Jiang
- College of Life Science, Liaoning Normal University, Dalian, China
- Lamprey Research Center, Liaoning Normal University, Dalian, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Yang Cai
- College of Life Science, Liaoning Normal University, Dalian, China
- Lamprey Research Center, Liaoning Normal University, Dalian, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Ning Yang
- College of Life Science, Liaoning Normal University, Dalian, China
- Lamprey Research Center, Liaoning Normal University, Dalian, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Si Gao
- College of Life Science, Liaoning Normal University, Dalian, China
- Lamprey Research Center, Liaoning Normal University, Dalian, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Qingwei Li
- College of Life Science, Liaoning Normal University, Dalian, China
- Lamprey Research Center, Liaoning Normal University, Dalian, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Yue Pang
- College of Life Science, Liaoning Normal University, Dalian, China
- Lamprey Research Center, Liaoning Normal University, Dalian, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Peng Su
- College of Life Science, Liaoning Normal University, Dalian, China
- Lamprey Research Center, Liaoning Normal University, Dalian, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| |
Collapse
|
2
|
Lu E, Tang Y, Chen J, Al Mamun A, Feng Z, Cao L, Zhang X, Zhu Y, Mo T, Chun C, Zhang H, Du J, Jiang C, Xiao J. Stub1 ameliorates ER stress-induced neural cell apoptosis and promotes locomotor recovery through restoring autophagy flux after spinal cord injury. Exp Neurol 2023; 368:114495. [PMID: 37495008 DOI: 10.1016/j.expneurol.2023.114495] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/04/2023] [Accepted: 07/23/2023] [Indexed: 07/28/2023]
Abstract
Endoplasmic reticulum (ER) stress-induced apoptosis and autophagy flux blockade significantly contribute to neuronal pathology of spinal cord injury (SCI). Yet, the molecular interplay between these two distinctive pathways in mediating the pathology of SCI remains largely unexplored. Currently, we aimed at exploring the crucial role of Stub1 in maintaining ER homeostasis and regulating autophagic flux after SCI. Our results demonstrate that Stub1 reduces ER stress induced neuronal apoptosis, promotes axonal regeneration, inhibits glial scar formation and fosters functional recovery by restoring autophagic flux following SCI. Stub1 enhances autophagic flux following SCI by alleviating the permeabilization of lysosomal membrane through activating TFEB. Importantly, we showed that Stub1 promotes the activation of TFEB by targeting HDAC2 for ubiquitination and degradation. Furthermore, the neuroprotective effect of Stub1 on SCI was abrogated by chloroquine administration, underscoring the essential role of Stub1-mediated enhancement of autophagic flux in its protective effects against SCI. Collectively, our data highlights the vital role of Stub1 in regulating ER stress and autophagy flux after SCI, and propose its potential as a promising target for neuroprotective interventions in SCI.
Collapse
Affiliation(s)
- Ermei Lu
- Department of Arthroplasty, The First People's Hospital of Wenling, The Affiliated Wenling Hospital of Wenzhou Medical University, Taizhou, Zhejiang 317500, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chonnam National University, Gwangju, South Korea
| | - Yingdan Tang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jiaojiao Chen
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Abdullah Al Mamun
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Zhiyi Feng
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Lin Cao
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xie Zhang
- Department of Pharmacy, Ningbo Medical Treatment Center Li Huili Hospital, Ningbo, Zhejiang 315040, China
| | - Yunsen Zhu
- Department of Arthroplasty, The First People's Hospital of Wenling, The Affiliated Wenling Hospital of Wenzhou Medical University, Taizhou, Zhejiang 317500, China
| | - Tingting Mo
- Department of Arthroplasty, The First People's Hospital of Wenling, The Affiliated Wenling Hospital of Wenzhou Medical University, Taizhou, Zhejiang 317500, China
| | - ChangJu Chun
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chonnam National University, Gwangju, South Korea
| | - Hongyu Zhang
- Department of Arthroplasty, The First People's Hospital of Wenling, The Affiliated Wenling Hospital of Wenzhou Medical University, Taizhou, Zhejiang 317500, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jiqing Du
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| | - Chang Jiang
- Department of Arthroplasty, The First People's Hospital of Wenling, The Affiliated Wenling Hospital of Wenzhou Medical University, Taizhou, Zhejiang 317500, China.
| | - Jian Xiao
- Department of Arthroplasty, The First People's Hospital of Wenling, The Affiliated Wenling Hospital of Wenzhou Medical University, Taizhou, Zhejiang 317500, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| |
Collapse
|
3
|
Rast JP, D'Alessio S, Kraev I, Lange S. Post-translational protein deimination signatures in sea lamprey (Petromyzon marinus) plasma and plasma-extracellular vesicles. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 125:104225. [PMID: 34358577 DOI: 10.1016/j.dci.2021.104225] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/30/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
Lampreys are a jawless vertebrate species belonging to an ancient vertebrate lineage that diverged from a common ancestor with humans ~500 million years ago. The sea lamprey (Petromyzon marinus) has a filter feeding ammocoete larval stage that metamorphoses into a parasitic adult, feeding both on teleost and elasmobranch fish. Lampreys are a valuable comparative model species for vertebrate immunity and physiology due to their unique phylogenetic position, unusual adaptive immune system, and physiological adaptions such as tolerance to salinity changes and urea. Peptidylarginine deiminases (PADs) are a phylogenetically conserved enzyme family which catalyses post-translational deimination/citrullination in target proteins, enabling proteins to gain new functions (moonlighting). The identification of deiminated protein targets in species across phylogeny may provide novel insights into post-translational regulation of physiological and pathophysiological processes. Extracellular vesicles (EVs) are membrane vesicles released from cells that carry cargos of small molecules and proteins for cellular communication, involved in both normal and pathological processes. The current study identified deimination signatures in proteins of both total plasma and plasma-EVs in sea lamprey and furthermore reports the first characterisation of plasma-EVs in lamprey. EVs were poly-dispersed in the size range of 40-500 nm, similar to what is observed in other taxa, positive for CD63 and Flotillin-1. Plasma-EV morphology was confirmed by transmission electron microscopy. Assessment of deimination/citrullination signatures in lamprey plasma and plasma-EVs, revealed 72 deimination target proteins involved in immunity, metabolism and gene regulation in whole plasma, and 37 target proteins in EVs, whereof 24 were shared targets. Furthermore, the presence of deiminated histone H3, indicative of gene-regulatory mechanisms and also a marker of neutrophil extracellular trap formation (NETosis), was confirmed in lamprey plasma. Functional protein network analysis revealed some differences in KEGG and GO pathways of deiminated proteins in whole plasma compared with plasma-EVs. For example, while common STRING network clusters in plasma and plasma-EVs included Peptide chain elongation, Viral mRNA translation, Glycolysis and gluconeogenesis, STRING network clusters specific for EVs only included: Cellular response to heat stress, Muscle protein and striated muscle thin filament, Nucleosome, Protein processing in endoplasmic reticulum, Nucleosome and histone deacetylase complex. STRING network clusters specific for plasma were: Adipokinetic hormone receptor activity, Fibrinogen alpha/beta chain family, peptidase S1A, Glutathione synthesis and recycling-arginine, Fructose 1,6-bisphosphate metabolic process, Carbon metabolism and lactate dehydrogenase activity, Post-translational protein phosphorylation, Regulation of insulin-like growth factor transport and clotting cascade. Overall, for the EV citrullinome, five STRING network clusters, 10 KEGG pathways, 15 molecular GO pathways and 29 Reactome pathways were identified, compared with nine STRING network clusters, six KEGG pathways, two Molecular GO pathways and one Reactome pathway specific for whole plasma; while further pathways were shared. The reported findings indicate that major pathways relevant for immunity and metabolism are targets of deimination in lamprey plasma and plasma-EVs, with some differences, and may help elucidating roles for the conserved PAD enzyme family in regulation of immune and metabolic function throughout phylogeny.
Collapse
Affiliation(s)
- Jonathan P Rast
- Emory University School of Medicine, Pathology & Laboratory Medicine, Atlanta, GA, 30322, USA.
| | - Stefania D'Alessio
- Tissue Architecture and Regeneration Research Group, School of Life Sciences, University of Westminster, London, W1W 6UW, UK
| | - Igor Kraev
- Electron Microscopy Suite, Faculty of Science, Technology, Engineering and Mathematics, Open University, Milton Keynes, MK7 6AA, UK.
| | - Sigrun Lange
- Tissue Architecture and Regeneration Research Group, School of Life Sciences, University of Westminster, London, W1W 6UW, UK.
| |
Collapse
|
4
|
Enhanced Nerve Regeneration by Exosomes Secreted by Adipose-Derived Stem Cells with or without FK506 Stimulation. Int J Mol Sci 2021; 22:ijms22168545. [PMID: 34445251 PMCID: PMC8395161 DOI: 10.3390/ijms22168545] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/25/2021] [Accepted: 08/05/2021] [Indexed: 12/13/2022] Open
Abstract
Exosomes secreted by adipose-derived stem cells (ADSC-exo) reportedly improve nerve regeneration after peripheral nerve injury. Herein, we investigated whether pretreatment of ADSCs with FK506, an immunosuppressive drug that enhances nerve regeneration, could secret exosomes (ADSC-F-exo) that further augment nerve regeneration. Designed exosomes were topically applied to injured nerve in a mouse model of sciatic nerve crush injury to assess the nerve regeneration efficacy. Outcomes were determined by histomorphometric analysis of semi-thin nerve sections stained with toluidine blue, mouse neurogenesis PCR array, and neurotrophin expression in distal nerve segments. Isobaric tags for relative and absolute quantitation (iTRAQ) were used to profile potential exosomal proteins facilitating nerve regeneration. We observed that locally applied ADSC-exo and ADSC-F-exo significantly enhanced nerve regeneration after nerve crush injury. Pretreatment of ADSCs with FK506 failed to produce exosomes possessing more potent molecules for enhanced nerve regeneration. Proteomic analysis revealed that of 192 exosomal proteins detected in both ADSC-exo and ADSC-F-exo, histone deacetylases (HDACs), amyloid-beta A4 protein (APP), and integrin beta-1 (ITGB1) might be involved in enhancing nerve regeneration.
Collapse
|
5
|
The Histone Modifications of Neuronal Plasticity. Neural Plast 2021; 2021:6690523. [PMID: 33628222 PMCID: PMC7892255 DOI: 10.1155/2021/6690523] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/21/2021] [Accepted: 01/30/2021] [Indexed: 12/19/2022] Open
Abstract
Nucleosomes composed of histone octamer and DNA are the basic structural unit in the eukaryote chromosome. Under the stimulation of various factors, histones will undergo posttranslational modifications such as methylation, phosphorylation, acetylation, and ubiquitination, which change the three-dimensional structure of chromosomes and affect gene expression. Therefore, the combination of different states of histone modifications modulates gene expression is called histone code. The formation of learning and memory is one of the most important mechanisms for animals to adapt to environmental changes. A large number of studies have shown that histone codes are involved in the formation and consolidation of learning and memory. Here, we review the most recent literature of histone modification in regulating neurogenesis, dendritic spine dynamic, synapse formation, and synaptic plasticity.
Collapse
|
6
|
Inhibition of HDAC increases BDNF expression and promotes neuronal rewiring and functional recovery after brain injury. Cell Death Dis 2020; 11:655. [PMID: 32811822 PMCID: PMC7434917 DOI: 10.1038/s41419-020-02897-w] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 08/05/2020] [Accepted: 08/06/2020] [Indexed: 12/17/2022]
Abstract
Brain injury causes serious motor, sensory, and cognitive disabilities. Accumulating evidence has demonstrated that histone deacetylase (HDAC) inhibitors exert neuroprotective effects against various insults to the central nervous system (CNS). In this study, we investigated the effects of the HDAC inhibition on the expression of brain-derived neurotrophic factor (BDNF) and functional recovery after traumatic brain injury (TBI) in mice. Administration of class I HDAC inhibitor increased the number of synaptic boutons in rewiring corticospinal fibers and improved the recovery of motor functions after TBI. Immunohistochemistry results showed that HDAC2 is mainly expressed in the neurons of the mouse spinal cord under normal conditions. After TBI, HDAC2 expression was increased in the spinal cord after 35 days, whereas BDNF expression was decreased after 42 days. Administration of CI-994 increased BDNF expression after TBI. Knockdown of HDAC2 elevated H4K5ac enrichment at the BDNF promoter, which was decreased following TBI. Together, our findings suggest that HDAC inhibition increases expression of neurotrophic factors, and promote neuronal rewiring and functional recovery following TBI.
Collapse
|
7
|
Romeo-Guitart D, Leiva-Rodríguez T, Casas C. SIRT2 Inhibition Improves Functional Motor Recovery After Peripheral Nerve Injury. Neurotherapeutics 2020; 17:1197-1211. [PMID: 32323205 PMCID: PMC7609484 DOI: 10.1007/s13311-020-00860-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Sirtuin-2 (Sirt2) is a member of the NAD (+)-dependent protein deacetylase family involved in neuroprotection, cellular metabolism, homeostasis, and stress responses after injury of the nervous system. So far, no data have been published describing the role of SIRT2 in motor functional recovery after damage. We found that SIRT2 expression and deacetylase activity were increased within motoneurons after axotomy. To shed light onto the biological relevance of this change, we combined in vitro and in vivo models with pharmacological and genetic ablation approaches. We found that SIRT2 KO (knockout) mice exhibited improved functional recovery after sciatic nerve crush. SIRT2 activity blockage, using AK7, increased neurite outgrowth and length in organotypic spinal cord cultures and human cell line models. SIRT2 blockage enhanced the acetyltransferase activity of p300, which in turn increased the levels of an acetylated form of p53 (Ac-p53 k373), histone 3 (Ac-H3K9), and expression of GAP43, a downstream marker of regeneration. Lastly, we verified that p300 acetyltransferase activity is essential for these effects. Our results suggest that bolstering an epigenetic shift that promotes SIRT2 inhibition can be an effective therapy to increase functional recovery after peripheral nerve injury.
Collapse
Affiliation(s)
- David Romeo-Guitart
- Institut de Neurociències (INc) and Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona (UAB), Bellaterra, Barcelona, Spain
| | - Tatiana Leiva-Rodríguez
- Institut de Neurociències (INc) and Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona (UAB), Bellaterra, Barcelona, Spain
| | - Caty Casas
- Institut de Neurociències (INc) and Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona (UAB), Bellaterra, Barcelona, Spain.
- Unitat de Fisiologia Mèdica, Facultat de Medicina, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Barcelona, Spain.
| |
Collapse
|
8
|
Brief Electrical Stimulation Triggers an Effective Regeneration of Leech CNS. eNeuro 2020; 7:ENEURO.0030-19.2020. [PMID: 32471846 PMCID: PMC7317182 DOI: 10.1523/eneuro.0030-19.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 05/05/2020] [Accepted: 05/06/2020] [Indexed: 01/01/2023] Open
Abstract
The search for therapeutic strategies to promote neuronal regeneration following injuries toward functional recovery is of great importance. Brief low-frequency electrical stimulation (ES) has been reported as a useful method to improve neuronal regeneration in different animal models; however, the effect of ES on single neuron behavior has not been shown. Here, we study the effect of brief ES on neuronal regeneration of the CNS of adult medicinal leeches. Studying the regeneration of selected sets of identified neurons allow us to quantify the ES effect per cell type at the single-cell level. Chains of the CNS that were subjected to cut injury were observed for 3 d, and the spontaneous regeneration was compared with the electrically stimulated injured chains. We show that the ES improves the efficiency of regeneration of Retzius cells, as larger masses of the total branching tree traverse the injury site with better directed growth with no effect on the average branching tree length. No antero-posterior polarity was found along regeneration within the leech CNS. Moreover, the microglial cell distribution was examined revealing more microglial cells in proximity to the stimulation site compared with non-stimulated. Our results lay a foundation for future ES-based neuroregenerative therapies.
Collapse
|
9
|
Sobrido-Cameán D, Robledo D, Romaus-Sanjurjo D, Pérez-Cedrón V, Sánchez L, Rodicio MC, Barreiro-Iglesias A. Inhibition of Gamma-Secretase Promotes Axon Regeneration After a Complete Spinal Cord Injury. Front Cell Dev Biol 2020; 8:173. [PMID: 32266257 PMCID: PMC7100381 DOI: 10.3389/fcell.2020.00173] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 03/02/2020] [Indexed: 12/13/2022] Open
Abstract
In a recent study, we showed that GABA and baclofen (a GABAB receptor agonist) inhibit caspase activation and promote axon regeneration in descending neurons of the sea lamprey brainstem after a complete spinal cord injury (Romaus-Sanjurjo et al., 2018a). Now, we repeated these treatments and performed 2 independent Illumina RNA-Sequencing studies in the brainstems of control and GABA or baclofen treated animals. GABA treated larval sea lampreys with their controls were analyzed 29 days after a complete spinal cord injury and baclofen treated larvae with their controls 9 days after the injury. One of the most significantly downregulated genes after both treatments was a HES gene (HESB). HES proteins are transcription factors that are key mediators of the Notch signaling pathway and gamma-secretase activity is crucial for the activation of this pathway. So, based on the RNA-Seq results we subsequently treated spinal cord injured larval sea lampreys with a novel gamma-secretase inhibitor (PF-3804014). This treatment also reduced the expression of HESB in the brainstem and significantly enhanced the regeneration of individually identifiable descending neurons after a complete spinal cord injury. Our results show that gamma-secretase could be a novel target to promote axon regeneration after nervous system injuries.
Collapse
Affiliation(s)
- Daniel Sobrido-Cameán
- Department of Functional Biology, CIBUS, Faculty of Biology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Diego Robledo
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Edinburgh, United Kingdom
| | - Daniel Romaus-Sanjurjo
- Department of Functional Biology, CIBUS, Faculty of Biology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Vanessa Pérez-Cedrón
- Department of Genetics, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Laura Sánchez
- Department of Genetics, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - María Celina Rodicio
- Department of Functional Biology, CIBUS, Faculty of Biology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Antón Barreiro-Iglesias
- Department of Functional Biology, CIBUS, Faculty of Biology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
10
|
Rodemer W, Hu J, Selzer ME, Shifman MI. Heterogeneity in the regenerative abilities of central nervous system axons within species: why do some neurons regenerate better than others? Neural Regen Res 2020; 15:996-1005. [PMID: 31823869 PMCID: PMC7034288 DOI: 10.4103/1673-5374.270298] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Some neurons, especially in mammalian peripheral nervous system or in lower vertebrate or in vertebrate central nervous system (CNS) regenerate after axotomy, while most mammalian CNS neurons fail to regenerate. There is an emerging consensus that neurons have different intrinsic regenerative capabilities, which theoretically could be manipulated therapeutically to improve regeneration. Population-based comparisons between “good regenerating” and “bad regenerating” neurons in the CNS and peripheral nervous system of most vertebrates yield results that are inconclusive or difficult to interpret. At least in part, this reflects the great diversity of cells in the mammalian CNS. Using mammalian nervous system imposes several methodical limitations. First, the small sizes and large numbers of neurons in the CNS make it very difficult to distinguish regenerating neurons from non-regenerating ones. Second, the lack of identifiable neurons makes it impossible to correlate biochemical changes in a neuron with axonal damage of the same neuron, and therefore, to dissect the molecular mechanisms of regeneration on the level of single neurons. This review will survey the reported responses to axon injury and the determinants of axon regeneration, emphasizing non-mammalian model organisms, which are often under-utilized, but in which the data are especially easy to interpret.
Collapse
Affiliation(s)
- William Rodemer
- Shriners Hospitals Pediatric Research Center (Center for Neural Repair and Rehabilitation), the Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Jianli Hu
- Shriners Hospitals Pediatric Research Center (Center for Neural Repair and Rehabilitation), the Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Michael E Selzer
- Shriners Hospitals Pediatric Research Center (Center for Neural Repair and Rehabilitation); Department of Neurology, the Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Michael I Shifman
- Shriners Hospitals Pediatric Research Center (Center for Neural Repair and Rehabilitation), the Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| |
Collapse
|
11
|
Fellous A, Earley RL, Silvestre F. Identification and expression of mangrove rivulus (Kryptolebias marmoratus) histone deacetylase (HDAC) and lysine acetyltransferase (KAT) genes. Gene 2019; 691:56-69. [DOI: 10.1016/j.gene.2018.12.057] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 11/14/2018] [Accepted: 12/14/2018] [Indexed: 12/17/2022]
|
12
|
Class I histone deacetylase (HDAC) inhibitor CI-994 promotes functional recovery following spinal cord injury. Cell Death Dis 2018; 9:460. [PMID: 29700327 PMCID: PMC5919919 DOI: 10.1038/s41419-018-0543-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 03/12/2018] [Accepted: 03/30/2018] [Indexed: 12/21/2022]
Abstract
Spinal cord injury (SCI) induces severe and long-lasting neurological disability. Accumulating evidence has suggested that histone deacetylase (HDAC) inhibitors exert neuroprotective effects against various insults and deficits in the central nervous system. In the present study, we assessed the effect of the class I HDAC inhibitor CI-994 in a mouse model of SCI. Following SCI, mice were treated with either dimethyl sulfoxide (control vehicle) or 1, 10, or 30 mg/kg CI-994. Level of acetylated histone H3 expression was increased in the motor cortex and spinal cord of 10 mg/kg CCI-994-treated mice after SCI. CI-994 increased histone H3 acetylation in the myeloperoxidase-positive neutrophils and CD68-positive microglia/macrophages in the spinal cord. Although it did not appear to contribute to corticospinal tract axonal reorganization, intraperitoneal injection of CI-994 promoted behavioral recovery following SCI. Furthermore, administration of CI-994 suppressed neutrophil accumulation, inflammatory cytokine expressions, and neuronal loss as early as 3 days following injury. Thus, our findings indicate that HDAC inhibitors may improve functional recovery following SCI, especially during the early stages of the disease.
Collapse
|
13
|
Retrograde Activation of the Extrinsic Apoptotic Pathway in Spinal-Projecting Neurons after a Complete Spinal Cord Injury in Lampreys. BIOMED RESEARCH INTERNATIONAL 2017; 2017:5953674. [PMID: 29333445 PMCID: PMC5733621 DOI: 10.1155/2017/5953674] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 10/25/2017] [Indexed: 12/15/2022]
Abstract
Spinal cord injury (SCI) is a devastating condition that leads to permanent disability because injured axons do not regenerate across the trauma zone to reconnect to their targets. A prerequisite for axonal regeneration will be the prevention of retrograde degeneration that could lead to neuronal death. However, the specific molecular mechanisms of axotomy-induced degeneration of spinal-projecting neurons have not been elucidated yet. In lampreys, SCI induces the apoptotic death of identifiable descending neurons that are “bad regenerators/poor survivors” after SCI. Here, we investigated the apoptotic process activated in identifiable descending neurons of lampreys after SCI. For this, we studied caspase activation by using fluorochrome-labeled inhibitors of caspases, the degeneration of spinal-projecting neurons using Fluro-Jade C staining, and the involvement of the intrinsic apoptotic pathway by means of cytochrome c and Vα double immunofluorescence. Our results provide evidence that, after SCI, bad-regenerating spinal cord-projecting neurons slowly degenerate and that the extrinsic pathway of apoptosis is involved in this process. Experiments using the microtubule stabilizer Taxol showed that caspase-8 signaling is retrogradely transported by microtubules from the site of axotomy to the neuronal soma. Preventing the activation of this process could be an important therapeutic approach after SCI in mammals.
Collapse
|
14
|
Weng YL, Joseph J, An R, Song H, Ming GL. Epigenetic regulation of axonal regenerative capacity. Epigenomics 2016; 8:1429-1442. [PMID: 27642866 DOI: 10.2217/epi-2016-0058] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The intrinsic growth capacity of neurons in the CNS declines during neuronal maturation, while neurons in the adult PNS are capable of regeneration. Injured mature PNS neurons require activation of an array of regeneration-associated genes to regain axonal growth competence. Accumulating evidence indicates a pivotal role of epigenetic mechanisms in transcriptional reprogramming and regulation of neuronal growth ability upon injury. In this review, we summarize the latest findings implicating epigenetic mechanisms, including histone and DNA modifications, in axon regeneration and discuss differential epigenomic configurations between neurons in the adult mammalian CNS and PNS.
Collapse
Affiliation(s)
- Yi-Lan Weng
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jessica Joseph
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Graduate Program in Cellular & Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ran An
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Hongjun Song
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Graduate Program in Cellular & Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,The Solomon H Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Guo-Li Ming
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Graduate Program in Cellular & Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,The Solomon H Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Department of Psychiatry & Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
15
|
Chen J, Shifman MI. The expression of histone deacetylases and the regenerative abilities of spinal-projecting neurons after injury. Neural Regen Res 2016; 11:1577-1578. [PMID: 27904485 PMCID: PMC5116833 DOI: 10.4103/1673-5374.193233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Jie Chen
- Shriners Hospitals Pediatric Research Center (Center for Neural Repair and Rehabilitation), Temple University School of Medicine, Philadelphia, PA, USA
| | - Michael I Shifman
- Shriners Hospitals Pediatric Research Center (Center for Neural Repair and Rehabilitation), Temple University School of Medicine, Philadelphia, PA, USA; Department of Neuroscience, Temple University School of Medicine, Philadelphia, PA, USA
| |
Collapse
|