1
|
Li Z, Liu D, Wang G, Zheng Y, Chen L, Cheng Z, Zhang Z, Cai Q, Ge F, Fan Y, Guan X. METH exposure alters sperm DNA methylation in F0 mice and mPFC transcriptome in male F1 mice. Psychopharmacology (Berl) 2024; 241:897-911. [PMID: 38092953 DOI: 10.1007/s00213-023-06516-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 11/29/2023] [Indexed: 04/20/2024]
Abstract
RATIONALE Methamphetamine (METH) exposure has toxicity in sperm epigenetic phenotype and increases the risk for developing addiction in their offspring. However, the underlying transgenerational mechanism remains unclear. OBJECTIVES The current study aims to investigate the profiles of sperm epigenetic modifications in male METH-exposed mice (F0) and medial prefrontal cortex (mPFC) transcriptome in their male first-generation offspring (F1). METHODS METH-related male F0 and F1 mice model was established to investigate the effects of paternal METH exposure on reproductive functions and sperm DNA methylation in F0 and mPFC transcriptomic profile in F1. During adulthood, F1 was subjected to a conditioned place preference (CPP) test to evaluate sensitivity to METH. The gene levels were verified with qPCR. RESULTS METH exposure obviously altered F0 sperms DNA methylated profile and male F1 mPFC transcriptomic profile, many of which being related to neuronal system and brain development. In METH-sired male F1, subthreshold dose of METH administration effectively elicited CPP, along with more mPFC activation. After qPCR verification, Sort1 and Shank2 were at higher levels in F0 sperm and F1 mPFC. CONCLUSIONS Our findings put new insights into paternal METH exposure-altered profiles of F0 sperm DNA methylation and male F1 mPFC transcriptomics. Several genes, such as Sort1 and Shank2, might be used as potential molecules for further research on the transgenerational vulnerability to drug addiction in offspring by paternal drug exposure.
Collapse
Affiliation(s)
- Zhaosu Li
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Dekang Liu
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Guanxiong Wang
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yanyan Zheng
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Liying Chen
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zhen Cheng
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zijing Zhang
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Qinglong Cai
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Feifei Ge
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yu Fan
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Xiaowei Guan
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
2
|
Surface-fill H 2S-releasing silk fibroin hydrogel for brain repair through the repression of neuronal pyroptosis. Acta Biomater 2022; 154:259-274. [PMID: 36402296 DOI: 10.1016/j.actbio.2022.11.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 10/16/2022] [Accepted: 11/09/2022] [Indexed: 11/19/2022]
Abstract
Traumatic brain injury (TBI) remains the major cause of disability and mortality worldwide due to the persistent neuroinflammation and neuronal death induced by TBI. Among them, pyroptosis, a specific type of programmed cell death (PCD) triggered by inflammatory signals, plays a significant part in the pathological process after TBI. Inhibition of neuroinflammation and pyroptosis is considered a possible strategy for the treatment of TBI. In our previous study, exogenous hydrogen sulfide(H2S) exerted a neuroprotective effect after TBI. Here, we developed a surface-fill H2S-releasing silk fibroin (SF) hydrogel (H2S@SF hydrogel) to achieve small-dose local administration and avoid volatile and toxic side effects. We used a controlled cortical impact (CCI) to establish a mild TBI model in mice to examine the effect of H2S@SF hydrogel on TBI-induced pyroptosis. We found that H2S@SF hydrogel inhibited the expression of H2S synthase in neurons after TBI and significantly inhibited TBI-induced neuronal pyroptosis. In addition, immunofluorescence staining results showed that the necroptosis protein receptor-interacting serine/threonine-protein kinase 1 (RIPK1) partially colocalized with the pyroptosis protein Gasdermin D (GSDMD) in the same cells. H2S@SF hydrogel can also inhibit the expression of the necroptosis protein. Moreover, H2S@SF hydrogel also alleviates brain edema and the degree of neurodegeneration in the acute phase of TBI. The neuroprotective effect of H2S@SF hydrogel was further confirmed by wire-grip test, open field test, Morris water maze, beam balance test, radial arm maze, tail suspension, and forced swimming test. Lastly, we also measured spared tissue volume, reactive astrocytes and activated microglia to demonstrate H2S@SF hydrogel impacts on long-term prognosis in TBI. Our study provides a new theoretical basis for the treatment of H2S after TBI and the clinical application of H2S@SF hydrogel. STATEMENT OF SIGNIFICANCE: Silk fibroin (SF) hydrogel controls the release of hydrogen sulfide (H2S) to inhibit neuronal pyroptosis and neuroinflammation in injured brain tissue. In this study, we synthesized a surface-fill H2S-releasing silk fibroin hydrogel, which could slowly release H2S to reshape the homeostasis of endogenous H2S in injured neurons and inhibit neuronal pyroptosis in a mouse model of traumatic brain injury. Meanwhile, H2S@SF hydrogel could alleviate brain edema and the degree of neurodegeneration, improve motor dysfunction, anxious behavior and memory impairment caused by TBI, reduce tissue loss and ameliorate neuroinflammation. Our study provides a new theoretical basis for the treatment of H2S after TBI and the clinical application of H2S@SF hydrogel.
Collapse
|
3
|
Mitok KA, Keller MP, Attie AD. Sorting through the extensive and confusing roles of sortilin in metabolic disease. J Lipid Res 2022; 63:100243. [PMID: 35724703 PMCID: PMC9356209 DOI: 10.1016/j.jlr.2022.100243] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 06/10/2022] [Accepted: 06/13/2022] [Indexed: 01/06/2023] Open
Abstract
Sortilin is a post-Golgi trafficking receptor homologous to the yeast vacuolar protein sorting receptor 10 (VPS10). The VPS10 motif on sortilin is a 10-bladed β-propeller structure capable of binding more than 50 proteins, covering a wide range of biological functions including lipid and lipoprotein metabolism, neuronal growth and death, inflammation, and lysosomal degradation. Sortilin has a complex cellular trafficking itinerary, where it functions as a receptor in the trans-Golgi network, endosomes, secretory vesicles, multivesicular bodies, and at the cell surface. In addition, sortilin is associated with hypercholesterolemia, Alzheimer's disease, prion diseases, Parkinson's disease, and inflammation syndromes. The 1p13.3 locus containing SORT1, the gene encoding sortilin, carries the strongest association with LDL-C of all loci in human genome-wide association studies. However, the mechanism by which sortilin influences LDL-C is unclear. Here, we review the role sortilin plays in cardiovascular and metabolic diseases and describe in detail the large and often contradictory literature on the role of sortilin in the regulation of LDL-C levels.
Collapse
Affiliation(s)
- Kelly A Mitok
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Mark P Keller
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Alan D Attie
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
4
|
Sortilin deletion in the prefrontal cortex and hippocampus ameliorates depressive-like behaviors in mice via regulating ASM/ceramide signaling. Acta Pharmacol Sin 2022; 43:1940-1954. [PMID: 34931016 PMCID: PMC9343424 DOI: 10.1038/s41401-021-00823-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 11/10/2021] [Indexed: 12/27/2022]
Abstract
Major depressive disorder (MDD) is a common psychiatric disorder characterized by persistent mood despondency and loss of motivation. Although numerous hypotheses have been proposed, the possible pathogenesis of MDD remains unclear. Several recent studies show that a classic transporter protein, sortilin, is closely associated with depression. In the present study, we investigated the role of sortilin in MDD using a well-established rodent model of depression. Mice were subjected to chronic unpredictable mild stress (CUMS) for 6 weeks. We showed that the expression levels of sortilin were significantly increased in the prefrontal cortex and hippocampus of CUMS mice. The depressive-like behaviors induced by CUMS were alleviated by specific knockdown of sortilin in the prefrontal cortex and hippocampus. We revealed that sortilin facilitated acid sphingomyelinase (ASM)/ceramide signaling, which activated RhoA/ROCK2 signaling, ultimately causing the transformation of dendritic spine dynamics. Specific overexpression of sortilin in the prefrontal cortex and hippocampus induced depressive-like behaviors, which was mitigated by injection of ASM inhibitor SR33557 (4 µg/μL) into the prefrontal cortex and hippocampus. In conclusion, sortilin knockdown in the prefrontal cortex and hippocampus plays an important role in ameliorating depressive-like behavior induced by CUMS, which is mainly evidenced by decreasing the trafficking of ASM from the trans-Golgi network to the lysosome and reducing the ceramide levels. Our results provide a new insight into the pathology of depression, and demonstrate that sortilin may be a potential therapeutic target for MDD.
Collapse
|
5
|
Fawad A, Bergmann A, Schulte J, Butt ZA, Nilsson PM, Bennet L, Orho-Melander M, Melander O. Plasma Proneurotensin and Prediction of Cause-Specific Mortality in a Middle-aged Cohort During Long-term Follow-up. J Clin Endocrinol Metab 2022; 107:e1204-e1211. [PMID: 34665860 PMCID: PMC8852211 DOI: 10.1210/clinem/dgab755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Indexed: 11/19/2022]
Abstract
CONTEXT Neurotensin is associated with cardiometabolic diseases but its role with mortality risk in humans is unknown. OBJECTIVE This work aims to examine the prediction of proneurotensin (Pro-NT) with respect to total and cause-specific mortality in a middle-aged cohort. METHODS In the population-based middle-aged cohort (n = 4632; mean age, 57 years) of the Malmö Diet and Cancer Study, Pro-NT was assessed and total as well as cause-specific mortality was studied. Main cause of death was based on the International Classification of Diseases. RESULTS During a mean follow-up of 20 ± 3 years, 950 men and 956 women died. There was significantly increased mortality risk in individuals belonging to the highest quartile (Q) of Pro-NT (Q4, Pro-NT ≥ 149 pmol/L) compared with Qs 1 to 3 (Pro-NT < 149 pmol/L), hazard ratio (HR), 95% CI of 1.29 (1.17-1.42; P < .001). Data were adjusted for sex and age. No significant interaction was observed between Pro-NT and sex on mortality risk. Individuals within Q4 vs Qs 1 to 3 had an HR of 1.41 (95% CI, 1.18-1.68; P < .001) for death due to cardiovascular disease (n = 595/4632); 2.53 (95% CI, 1.37-4.67; P = .003), due to digestive tract disease (n = 42/4632), 1.62 (95% CI, 1.04-2.52; P = .032) due to mental and behavioral disease (n = 90/4632); and 1.91 (95% CI, 1.15-3.19; P = .013) due to unspecific causes (n = 64/4632). There was no significant relationship between Pro-NT and deaths due to cancer, infections, neurological, or other causes. Adjustment for cardiovascular risk factors only marginally changed these results. CONCLUSION The relationship between Pro-NT and total mortality risk was mainly driven by cardiovascular mortality, but high Pro-NT also predicts death from digestive, mental, and behavioral disease and deaths attributed to unspecific causes.
Collapse
Affiliation(s)
- Ayesha Fawad
- Lund University, Department of Clinical Sciences, SE 20502 Malmö, Sweden
- Correspondence: Ayesha Fawad, MD, Department of Clinical Sciences, Malmoe, CRC, Jan Waldenstroems gata 35, Bldg 91, Level 12, Skane University Hospital, SE 214 28 Malmö, Sweden.
| | | | | | - Zahra A Butt
- University of Southern Denmark, Faculty of Health Sciences, 5000 Odense, Denmark
| | - Peter M Nilsson
- Lund University, Department of Clinical Sciences, SE 20502 Malmö, Sweden
| | - Louise Bennet
- Lund University, Department of Clinical Sciences, SE 20502 Malmö, Sweden
| | | | - Olle Melander
- Lund University, Department of Clinical Sciences, SE 20502 Malmö, Sweden
| |
Collapse
|
6
|
Mingardi J, La Via L, Tornese P, Carini G, Trontti K, Seguini M, Tardito D, Bono F, Fiorentini C, Elia L, Hovatta I, Popoli M, Musazzi L, Barbon A. miR-9-5p is involved in the rescue of stress-dependent dendritic shortening of hippocampal pyramidal neurons induced by acute antidepressant treatment with ketamine. Neurobiol Stress 2021; 15:100381. [PMID: 34458512 PMCID: PMC8379501 DOI: 10.1016/j.ynstr.2021.100381] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 08/03/2021] [Accepted: 08/07/2021] [Indexed: 12/12/2022] Open
Abstract
Converging clinical and preclinical evidence demonstrates that depressive phenotypes are associated with synaptic dysfunction and dendritic simplification in cortico-limbic glutamatergic areas. On the other hand, the rapid antidepressant effect of acute ketamine is consistently reported to occur together with the rescue of dendritic atrophy and reduction of spine number induced by chronic stress in the hippocampus and prefrontal cortex of animal models of depression. Nevertheless, the molecular mechanisms underlying these morphological alterations remain largely unknown. Here, we found that miR-9-5p levels were selectively reduced in the hippocampus of rats vulnerable to Chronic Mild Stress (CMS), while acute subanesthetic ketamine restored its levels to basal condition in just 24h; miR-9-5p expression inversely correlated with the anhedonic phenotype. A decrease of miR-9-5p was reproduced in an in vitro model of stress, based on primary hippocampal neurons incubated with the stress hormone corticosterone. In both CMS animals and primary neurons, decreased miR-9-5p levels were associated with dendritic simplification, while treatment with ketamine completely rescued the changes. In vitro modulation of miR-9-5p expression showed a direct role of miR-9-5p in regulating dendritic length and spine density in mature primary hippocampal neurons. Among the putative target genes tested, Rest and Sirt1 were validated as biological targets in primary neuronal cultures. Moreover, in line with miR-9-5p changes, REST protein expression levels were remarkably increased in both CMS vulnerable animals and corticosterone-treated neurons, while ketamine completely abolished this alteration. Finally, the shortening of dendritic length in corticosterone-treated neurons was shown to be partly rescued by miR-9-5p overexpression and dependent on REST protein expression. Overall, our data unveiled the functional role of miR-9-5p in the remodeling of dendritic arbor induced by stress/corticosterone in vulnerable animals and its rescue by acute antidepressant treatment with ketamine.
Collapse
Affiliation(s)
- Jessica Mingardi
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Luca La Via
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Paolo Tornese
- Laboratory of Neuropsychopharmacology and Functional Neurogenomics, Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Milano, Italy
| | - Giulia Carini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Kalevi Trontti
- Sleep Well Research Program, Department of Psychology and Logopedics, and Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Mara Seguini
- Laboratory of Neuropsychopharmacology and Functional Neurogenomics, Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Milano, Italy
| | - Daniela Tardito
- Department of Technical and Applied Sciences, eCampus University, Novedrate, Italy
| | - Federica Bono
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Chiara Fiorentini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Leonardo Elia
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
- Humanitas Clinical and Research Center, IRCCS, Rozzano, MI, Italy
| | - Iiris Hovatta
- Sleep Well Research Program, Department of Psychology and Logopedics, and Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Maurizio Popoli
- Laboratory of Neuropsychopharmacology and Functional Neurogenomics, Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Milano, Italy
| | - Laura Musazzi
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Alessandro Barbon
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| |
Collapse
|
7
|
Chen X, Gao C, Yan Y, Cheng Z, Chen G, Rui T, Luo C, Gao Y, Wang T, Chen X, Tao L. Ruxolitinib exerts neuroprotection via repressing ferroptosis in a mouse model of traumatic brain injury. Exp Neurol 2021; 342:113762. [PMID: 33991524 DOI: 10.1016/j.expneurol.2021.113762] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/18/2021] [Accepted: 05/11/2021] [Indexed: 12/17/2022]
Abstract
Traumatic brain injury (TBI) is a major cause of death and disability worldwide. Various forms of cells death are involved in the pathological process of TBI, without exception to ferroptosis, which is mainly triggered by iron-dependent lipid peroxidation. Although there have been studies on ferroptosis and TBI, the effect of ruxolitinib (Ruxo), one type of FDA approved drugs for treating myelofibrosis, on the process of ferroptosis post-TBI is remained non-elucidated. Therefore, using a controlled cortical impact device to establish the mouse TBI model, we examined the effect of Ruxo on TBI-induced ferroptosis, in which the inhibitor of ferroptosis, Ferrostatin-1 (Fer-1) was used as a positive control. Moreover, we also respectively explored the effects of these two interventions on neurological deficits caused by TBI. We firstly examined the expression patterns of ferroptosis-related markers at protein level at different time points after TBI. And based on the expression changes of these markers, we chose 12 h post-TBI to prove the effect of Ruxo on ferroptosis. Importantly, we found the intensely inhibitory effect of Ruxo on ferroptosis, which is in parallel with the results obtained after Fer-1-treatment. In addition, these two treatments both alleviated the content of brain water and degree of neurodegeneration in the acute phase of TBI. Finally, we further confirmed the neuroprotective effect of Ruxo or Fer-1 via the wire-grip test, Morris water maze and open field test, respectively. Thereafter, the lesion volume and iron deposition were also measured to certificate their effects on the long-term outcomes of TBI. Our results ultimately demonstrate that inhibiting ferroptosis exerts neuroprotection, and this is another neuroprotective mechanism of Ruxo on TBI.
Collapse
Affiliation(s)
- Xueshi Chen
- Department of Forensic Medicine, School of basic medicine and Biological Sciences, Affiliated Guangji Hospital, Soochow University, China
| | - Cheng Gao
- Department of Forensic Medicine, School of basic medicine and Biological Sciences, Affiliated Guangji Hospital, Soochow University, China
| | - Ya'nan Yan
- Department of Forensic Medicine, School of basic medicine and Biological Sciences, Affiliated Guangji Hospital, Soochow University, China
| | - Zhiqi Cheng
- Department of Forensic Medicine, School of basic medicine and Biological Sciences, Affiliated Guangji Hospital, Soochow University, China
| | - Guang Chen
- Department of Forensic Medicine, School of basic medicine and Biological Sciences, Affiliated Guangji Hospital, Soochow University, China
| | - Tongyu Rui
- Department of Forensic Medicine, School of basic medicine and Biological Sciences, Affiliated Guangji Hospital, Soochow University, China
| | - Chengliang Luo
- Department of Forensic Medicine, School of basic medicine and Biological Sciences, Affiliated Guangji Hospital, Soochow University, China
| | - Yuan Gao
- Department of Forensic Medicine, School of basic medicine and Biological Sciences, Affiliated Guangji Hospital, Soochow University, China
| | - Tao Wang
- Department of Forensic Medicine, School of basic medicine and Biological Sciences, Affiliated Guangji Hospital, Soochow University, China
| | - Xiping Chen
- Department of Forensic Medicine, School of basic medicine and Biological Sciences, Affiliated Guangji Hospital, Soochow University, China.
| | - Luyang Tao
- Department of Forensic Medicine, School of basic medicine and Biological Sciences, Affiliated Guangji Hospital, Soochow University, China.
| |
Collapse
|
8
|
Wang S, Zhang J, Zhang S, Shi F, Feng D, Feng X. Exposure to Melamine cyanuric acid in adolescent mice caused emotional disorder and behavioral disorder. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 211:111938. [PMID: 33476844 DOI: 10.1016/j.ecoenv.2021.111938] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 01/09/2021] [Accepted: 01/11/2021] [Indexed: 06/12/2023]
Abstract
Melamine cyanuric acid (MCA) is a flame retardant linked by hydrogen bonds between melamine and cyanuric acid. MCA is used in an excellent series of phosphorus and nitrogen flame retardants. MCA can harm the kidney, liver, testis, and spleen cells. However, the effects of MCA on the emotions and behaviour of adolescent mice have not yet been investigated. In this article, male mice were exposed to MCA at 10, 20, and 40 mg/kg for four weeks. MCA exposure resulted in enhanced mouse locomotor and nocturnal activity. We also observed anxiety-like and depression-like behaviours. Moreover, after MCA exposure, the serum concentrations of thyroid-related hormones were changed, and the mRNA levels were affected. In short, MCA exposure can cause behavioural and emotion disorders.
Collapse
Affiliation(s)
- Sijie Wang
- The Key Laboratory of Bioactive Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, College of Life Science, Nankai University, Tianjin 300071, China
| | - Jingwen Zhang
- The Key Laboratory of Bioactive Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, College of Life Science, Nankai University, Tianjin 300071, China
| | - Shaozhi Zhang
- The Key Laboratory of Bioactive Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, College of Life Science, Nankai University, Tianjin 300071, China
| | - Feifei Shi
- The Key Laboratory of Bioactive Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, College of Life Science, Nankai University, Tianjin 300071, China
| | - Daofu Feng
- Department of General Surgery, Tianjin Medical University General Hospital, No. 154 Anshan Road, Tianjin 300052, China.
| | - Xizeng Feng
- The Key Laboratory of Bioactive Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, College of Life Science, Nankai University, Tianjin 300071, China.
| |
Collapse
|
9
|
Li H, Lin LY, Zhang Y, Lim Y, Rahman M, Beck A, Al-Hawwas M, Feng S, Bobrovskaya L, Zhou XF. Pro-BDNF Knockout Causes Abnormal Motor Behaviours and Early Death in Mice. Neuroscience 2020; 438:145-157. [PMID: 32413397 DOI: 10.1016/j.neuroscience.2020.05.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 05/05/2020] [Accepted: 05/06/2020] [Indexed: 12/27/2022]
Abstract
Brain derived neurotrophic factor (BDNF) is a member of the neurotrophin family, best characterized for its survival and differentiative effects in the central nervous system. Pro-BDNF, known as the precursor of BDNF, is believed to have opposite functions to mature BDNF (mBDNF). The opposing effects of Pro-BDNF and mBDNF have led researchers to propose a 'yin' (Pro-BDNF) and 'yang' (mBDNF) model of which, the specific mechanism of its opposing functions is unclear and requires further investigation. In order to elucidate pro-BDNF's explicit role, we established a pro-BDNF knockout (KO) mouse model. This BDNF pro-domain KO mouse model showed significant weight loss, impaired righting reflex, abnormal motor behaviours and short lifespan (less than 22 days), mimicking a Huntington's disease (HD)-like phenotype. ELISA results showed BDNF pro-domain KO not only blocked pro-BDNF, but also significantly affected the level of mBDNF. Abnormal morphologic changes were found in the dentate gyrus (DG) of the hippocampus in pro-BDNF KO mice, and western blot confirmed significant cell apoptosis in pro-BDNF KO mice brains. Furthermore, the expression of glutamic acid decarboxylase 65/67 (GAD65/67) was significantly reduced in pro-BDNF KO mice, indicating impaired inhibitory neurotransmission. Heterozygous (Het) mice showed impaired learning and memory capability and depressive-like behaviours, compared with wild type (WT) mice. Overall, these results support that pro-domain of BDNF is an indispensable part of the BDNF gene; without the proper formation of pro-BDNF, mBDNF cannot be produced successfully and function correctly on its own. Our study also supports the BDNF hypothesis in the pathogenesis of HD.
Collapse
Affiliation(s)
- Hua Li
- School of Pharmacy and Medical Sciences, Division of Health Sciences, University of South Australia, Adelaide, SA 5001, Australia
| | - Li-Ying Lin
- School of Pharmacy and Medical Sciences, Division of Health Sciences, University of South Australia, Adelaide, SA 5001, Australia
| | - Yan Zhang
- School of Pharmacy and Medical Sciences, Division of Health Sciences, University of South Australia, Adelaide, SA 5001, Australia; Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yoon Lim
- Centre for Cancer Biology, University of South Australia, Adelaide, SA 5001, Australia
| | - Mehreen Rahman
- School of Pharmacy and Medical Sciences, Division of Health Sciences, University of South Australia, Adelaide, SA 5001, Australia
| | - Andrew Beck
- School of Pharmacy and Medical Sciences, Division of Health Sciences, University of South Australia, Adelaide, SA 5001, Australia
| | - Mohammed Al-Hawwas
- School of Pharmacy and Medical Sciences, Division of Health Sciences, University of South Australia, Adelaide, SA 5001, Australia
| | - Shiqing Feng
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Larisa Bobrovskaya
- School of Pharmacy and Medical Sciences, Division of Health Sciences, University of South Australia, Adelaide, SA 5001, Australia
| | - Xin-Fu Zhou
- School of Pharmacy and Medical Sciences, Division of Health Sciences, University of South Australia, Adelaide, SA 5001, Australia.
| |
Collapse
|
10
|
Buck JM, O'Neill HC, Stitzel JA. Developmental nicotine exposure elicits multigenerational disequilibria in proBDNF proteolysis and glucocorticoid signaling in the frontal cortices, striata, and hippocampi of adolescent mice. Biochem Pharmacol 2019; 168:438-451. [PMID: 31404529 DOI: 10.1016/j.bcp.2019.08.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 08/07/2019] [Indexed: 01/03/2023]
Abstract
Maternal smoking of conventional or vapor cigarettes during pregnancy, a form of developmental nicotine exposure (DNE), enhances the risk of neurodevelopmental disorders such as ADHD, autism, and schizophrenia in children. Modeling the multigenerational effects of smoking during pregnancy and nursing in the first- (F1) and second- (F2) generation adolescent offspring of oral nicotine-treated female C57BL/6J mice, we have previously reported that DNE precipitates intergenerational transmission of nicotine preference, hyperactivity and impulsivity-like behaviors, altered rhythmicity of home cage activity, corticostriatal nicotinic acetylcholine receptor and dopamine transporter dysfunction, and corticostriatal global DNA methylome deficits. In aggregate, these DNE-evoked behavioral, neuropharmacological, and epigenomic anomalies mirror fundamental etiological aspects of neurodevelopmental disorders including ADHD, autism, and schizophrenia. Expanding this line of research, the current study profiled the multigenerational neurotrophic and neuroendocrine consequences of DNE. Results reveal impaired proBDNF proteolysis as indicated by proBDNF-BDNF imbalance, downregulation of the proBDNF processing enzyme furin, atypical glucocorticoid receptor (GR) activity as implied by decreased relative nuclear GR localization, and deficient basal plasma corticosterone (CORT) levels in adolescent DNE offspring and grandoffspring. Collectively, these data recapitulate the BDNF deficits and HPA axis dysregulation characteristic of neurodevelopmental disorders such as ADHD, autism, and schizophrenia as well as the children of maternal smokers. Notably, as BDNF is a quintessential mediator of neurodevelopment, our prior findings of multigenerational DNE-induced behavioral and neuropharmacological abnormalities may stem from neurodevelopmental insults conferred by the proBDNF-BDNF imbalance detected in DNE mice. Similarly, our findings of multigenerational GR hypoactivity may contribute to the increased risk-taking behaviors and aberrant circadian rhythmicity of home cage activity that we previously documented in first- and second-generation DNE mice.
Collapse
Affiliation(s)
- Jordan M Buck
- Institute for Behavioral Genetics, University of Colorado, Boulder, United States; Department of Integrative Physiology, University of Colorado, Boulder, United States.
| | - Heidi C O'Neill
- Institute for Behavioral Genetics, University of Colorado, Boulder, United States
| | - Jerry A Stitzel
- Institute for Behavioral Genetics, University of Colorado, Boulder, United States; Department of Integrative Physiology, University of Colorado, Boulder, United States
| |
Collapse
|
11
|
Curcumin-loaded self-nanomicellizing solid dispersion system: part II: in vivo safety and efficacy assessment against behavior deficit in Alzheimer disease. Drug Deliv Transl Res 2018; 8:1406-1420. [PMID: 30117120 DOI: 10.1007/s13346-018-0570-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Curcumin (CUR), a natural polyphenolic compound, is considered as one of the most potential candidates against Alzheimer disease (AD) by targeting multiple pathologies such as amyloid-beta, tau phosphorylation, and oxidative stress. Poor physicochemical profile and oral bioavailability (BA) are the major contributors to its failure in clinical trials. Lack of success in numerous drug clinical trials for the treatment of AD urges the need of repositioning of CUR. To overcome its limitation and enhance oral BA, Novel CUR Formulation (NCF) was developed using self-nanomicellizing solid dispersion strategy which displayed 117-fold enhancement in oral BA of CUR. NCF was tested using SH-SY5Y695 APP human neuroblastoma cell line against the cytotoxicity induced by copper metal ion, H2O2, and Aβ42 oligomer and compared with CUR control. The safety and efficacy of NCF on mice AD-like behavioral deficits (open field, novel objective recognition, Y-maze, and Morris water maze tests) were assessed in transgenic AD (APPSwe/PS1deE9) mice model. In SH-SY5Y695 APP human neuroblastoma cell line, NCF showed better safety and efficacy against the cytotoxicity due to the significantly enhancement of cellular uptake. It not only prevents the deterioration of cognitive functions of the aged APPSwe/PS1deE9 mice during aging but also reverses the cognitive functions to their much younger age which is also better than the currently available approved options. Moreover, NCF was proved as well tolerated with no appearance of any significant toxicity via oral administration. The results of the study demonstrated the potential of NCF to improve the efficacy of CUR without compromising its safety profile, and pave the way for clinical development for AD.
Collapse
|
12
|
Salazar ER, Richter HG, Spichiger C, Mendez N, Halabi D, Vergara K, Alonso IP, Corvalán FA, Azpeleta C, Seron-Ferre M, Torres-Farfan C. Gestational chronodisruption leads to persistent changes in the rat fetal and adult adrenal clock and function. J Physiol 2018; 596:5839-5857. [PMID: 30118176 DOI: 10.1113/jp276083] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 08/06/2018] [Indexed: 12/14/2022] Open
Abstract
KEY POINTS Light at night is essential to a 24/7 society, but it has negative consequences on health. Basically, light at night induces an alteration of our biological clocks, known as chronodisruption, with effects even when this occurs during pregnancy. Here we explored the developmental impact of gestational chronodisruption (chronic photoperiod shift, CPS) on adult and fetal adrenal biorhythms and function. We found that gestational chronodisruption altered fetal and adult adrenal function, at the molecular, morphological and physiological levels. The differences between control and CPS offspring suggest desynchronization of the adrenal circadian clock and steroidogenic pathway, leading to abnormal stress responses and metabolic adaptation, potentially increasing the risk of developing chronic diseases. ABSTRACT Light at night is essential to a 24/7 society, but it has negative consequences on health. Basically, light at night induces an alteration of our biological clocks, known as chronodisruption, with effects even when this occurs during pregnancy. Indeed, an abnormal photoperiod during gestation alters fetal development, inducing long-term effects on the offspring. Accordingly, we carried out a longitudinal study in rats, exploring the impact of gestational chronodisruption on the adrenal biorhythms and function of the offspring. Adult rats (90 days old) gestated under chronic photoperiod shift (CPS) decrease the time spent in the open arm zone of an elevated plus maze to 62% and increase the rearing time to 170%. CPS adults maintained individual daily changes in corticosterone, but their acrophases were distributed from 12.00 h to 06.00 h. CPS offspring maintained clock gene expression and oscillation, nevertheless no daily rhythm was observed in genes involved in the regulation and synthesis of steroids. Consistent with adult adrenal gland being programmed during fetal life, blunted daily rhythms of corticosterone, core clock gene machinery, and steroidogenic genes were observed in CPS fetal adrenal glands. Comparisons of the global transcriptome of CPS versus control fetal adrenal gland revealed that 1078 genes were differentially expressed (641 down-regulated and 437 up-regulated). In silico analysis revealed significant changes in Lipid Metabolism, Small Molecule Biochemistry, Cellular Development and the Inflammatory Response pathway (z score: 48-20). Altogether, the present results demonstrate that gestational chronodisruption changed fetal and adult adrenal function. This could translate to long-term abnormal stress responses and metabolic adaptation, increasing the risk of developing chronic diseases.
Collapse
Affiliation(s)
- E R Salazar
- Laboratorio de Cronobiología del Desarrollo, Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - H G Richter
- Laboratorio de Cronobiología del Desarrollo, Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - C Spichiger
- Laboratorio de Cronobiología del Desarrollo, Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - N Mendez
- Laboratorio de Cronobiología del Desarrollo, Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - D Halabi
- Laboratorio de Cronobiología del Desarrollo, Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - K Vergara
- Laboratorio de Cronobiología del Desarrollo, Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - I P Alonso
- Laboratorio de Cronobiología del Desarrollo, Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - F A Corvalán
- Laboratorio de Cronobiología del Desarrollo, Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - C Azpeleta
- Department of Basic Biomedical Sciences, Faculty of Biomedical Sciences and Health, European University of Madrid, Villaviciosa de Odón, Spain
| | - M Seron-Ferre
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - C Torres-Farfan
- Laboratorio de Cronobiología del Desarrollo, Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile.,Centro Interdisciplinario de Estudios del Sistema Nervioso (CISNe), Universidad Austral de Chile, Valdivia, Chile
| |
Collapse
|
13
|
Moreno S, Devader CM, Pietri M, Borsotto M, Heurteaux C, Mazella J. Altered Trek-1 Function in Sortilin Deficient Mice Results in Decreased Depressive-Like Behavior. Front Pharmacol 2018; 9:863. [PMID: 30127743 PMCID: PMC6088259 DOI: 10.3389/fphar.2018.00863] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 07/17/2018] [Indexed: 12/18/2022] Open
Abstract
The background potassium channel TREK-1 has been shown to be a potent target for depression treatment. Indeed, deletion of this channel in mice resulted in a depression resistant phenotype. The association of TREK-1 with the sorting protein sortilin prompted us to investigate the behavior of mice deleted from the gene encoding sortilin (Sort1−/−). To characterize the consequences of sortilin deletion on TREK-1 activity, we combined behavioral, electrophysiological and biochemical approaches performed in vivo and in vitro. Analyses of Sort1−/− mice revealed that they display: (1) a corticosterone-independent anxiety-like behavior, (2) a resistance to depression as demonstrated by several behavioral tests, and (3) an increased activity of dorsal raphe nucleus neurons. All these properties were associated with TREK-1 action deficiency consequently to a decrease of its cell surface expression and to the modification of its electrophysiological activity. An increase of BDNF expression through activation of the furin-dependent constitutive pathway as well as an increase of the activated BDNF receptor TrkB were in agreement with the decrease of depressive-like behavior of Sort1−/− mice. Our results demonstrate that the TREK-1 expression and function are altered in the absence of sortilin confirming the importance of this channel in the regulation on the mood as a crucial target to treat depression.
Collapse
Affiliation(s)
- Sébastien Moreno
- Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, UMR 7275, Université Côte d'Azur, Valbonne, France
| | - Christelle M Devader
- Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, UMR 7275, Université Côte d'Azur, Valbonne, France
| | - Mariel Pietri
- Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, UMR 7275, Université Côte d'Azur, Valbonne, France
| | - Marc Borsotto
- Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, UMR 7275, Université Côte d'Azur, Valbonne, France
| | - Catherine Heurteaux
- Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, UMR 7275, Université Côte d'Azur, Valbonne, France
| | - Jean Mazella
- Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, UMR 7275, Université Côte d'Azur, Valbonne, France
| |
Collapse
|
14
|
Parikh A, Kathawala K, Li J, Chen C, Shan Z, Cao X, Wang YJ, Garg S, Zhou XF. Self-nanomicellizing solid dispersion of edaravone: part II: in vivo assessment of efficacy against behavior deficits and safety in Alzheimer's disease model. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:2111-2128. [PMID: 30022810 PMCID: PMC6042531 DOI: 10.2147/dddt.s161944] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background Alzheimer’s disease (AD) is a devastating neurodegenerative disorder that lacks any disease-modifying drug for the prevention and treatment. Edaravone (EDR), an approved free radical scavenger, has proven to have potential against AD by targeting multiple key pathologies including amyloid-beta (Aβ), tau phosphorylation, oxidative stress, and neuroinflammation. To enable its oral use, novel edaravone formulation (NEF) was previously developed. The aim of the present investigation was to evaluate safety and efficacy of NEF by using in vitro/in vivo disease model. Materials and methods In vitro therapeutic potential of NEF over EDR was studied against the cytotoxicity induced by copper metal ion, H2O2 and Aβ42 oligomer, and cellular uptake on SH-SY5Y695 amyloid-β precursor protein (APP) human neuroblastoma cell line. For in vivo safety and efficacy assessment, totally seven groups of APP/PS1 (five treatment groups, one each as a basal and sham control) and one group of C57BL/6 mice as a positive control for behavior tests were used. Three groups were orally treated for 3 months with NEF at an equivalent dose of EDR 46, 138, and 414 µmol/kg, whereas one group was supplied with each Donepezil (5.27 µM/kg) and Soluplus (amount present in NEF of 414 µmol/kg dose of EDR). Behavior tests were conducted to assess motor function (open-field), anxiety-related behavior (open-field), and cognitive function (novel objective recognition test, Y-maze, and Morris water maze). For the safety assessment, general behavior, adverse effects, and mortality were recorded during the treatment period. Moreover, biochemical, hematological, and morphological parameters were determined. Results Compared to EDR, NEF showed superior cellular uptake and neuroprotective effect in SH-SY5Y695 APP cell line. Furthermore, it showed nontoxicity of NEF up to 414 µM/kg dose of EDR and its potential to reverse AD-like behavior deficits of APP/PS1 mice in a dose-dependent manner. Conclusion Our results indicate that oral delivery of NEF holds a promise as a safe and effective therapeutic agent for AD.
Collapse
Affiliation(s)
- Ankit Parikh
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, Australia, ;
| | - Krishna Kathawala
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, Australia, ;
| | - Jintao Li
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, Australia, ; .,Neuroscience Institute, Kunming Medical University, Kunming, Yunnan, China
| | - Chi Chen
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, Australia, ; .,Central Laboratory, Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Zhengnan Shan
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, Australia, ;
| | - Xia Cao
- Central Laboratory, Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yan-Jiang Wang
- Department of Neurology, Daping Hospital, Third Military Medical University, Chongqing, Sichuan, China
| | - Sanjay Garg
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, Australia, ;
| | - Xin-Fu Zhou
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, Australia, ;
| |
Collapse
|
15
|
Mañucat-Tan NB, Saadipour K, Wang YJ, Bobrovskaya L, Zhou XF. Cellular Trafficking of Amyloid Precursor Protein in Amyloidogenesis Physiological and Pathological Significance. Mol Neurobiol 2018; 56:812-830. [PMID: 29797184 DOI: 10.1007/s12035-018-1106-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 05/03/2018] [Indexed: 12/26/2022]
Abstract
The accumulation of excess intracellular or extracellular amyloid beta (Aβ) is one of the key pathological events in Alzheimer's disease (AD). Aβ is generated from the cleavage of amyloid precursor protein (APP) by beta secretase-1 (BACE1) and gamma secretase (γ-secretase) within the cells. The endocytic trafficking of APP facilitates amyloidogenesis while at the cell surface, APP is predominantly processed in a non-amyloidogenic manner. Several adaptor proteins bind to both APP and BACE1, regulating their trafficking and recycling along the secretory and endocytic pathways. The phosphorylation of APP at Thr668 and BACE1 at Ser498, also influence their trafficking. Neurotrophins and proneurotrophins also influence APP trafficking through their receptors. In this review, we describe the molecular trafficking pathways of APP and BACE1 that lead to Aβ generation, the involvement of different signaling molecules or adaptor proteins regulating APP and BACE1 subcellular localization. We have also discussed how neurotrophins could modulate amyloidogenesis through their receptors.
Collapse
Affiliation(s)
- Noralyn Basco Mañucat-Tan
- School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia, 5000, Australia.
| | - Khalil Saadipour
- Departments of Cell Biology, Physiology and Neuroscience, and Psychiatry, Skirball Institute of Biomolecular Medicine, New York University Langone School of Medicine, New York, NY, USA
| | - Yan-Jiang Wang
- Department of Neurology and Center for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Larisa Bobrovskaya
- School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia, 5000, Australia
| | - Xin-Fu Zhou
- School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia, 5000, Australia.
| |
Collapse
|
16
|
Buttenschøn HN, Elfving B, Nielsen M, Skeldal S, Kaas M, Mors O, Glerup S. Exploring the sortilin related receptor, SorLA, in depression. J Affect Disord 2018; 232:260-267. [PMID: 29499509 DOI: 10.1016/j.jad.2018.02.050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 01/29/2018] [Accepted: 02/16/2018] [Indexed: 11/29/2022]
Abstract
BACKGROUND Studies of individual biomarkers for depression have shown insufficient sensitivity and specificity for clinical use, and most likely combinations of biomarkers may provide a better signature. The sorting-related receptor with A-type repeats (SorLA) is a well-studied pathogenic factor for Alzheimer's. SorLA belongs to the Vps10p domain receptor family, which also encompasses sortilin and SorCS1-3. All family members have been implicated in neurological and mental disorders. Notably, the SORCS3 gene is genome-wide significantly associated with depression and serum protein levels of sortilin are reduced in depressed individuals. SorLA regulates the activity of neurotrophic factors and cytokines and we hence speculated that SorLA might be implicated in depression. METHODS Serum SorLA levels were measured in two well-defined clinical samples using ELISA. Generalized linear models were used in the statistical analyses. RESULTS We identified a multivariate model to discriminate depressed individuals from healthy controls. Interestingly, the model consisted of serum SorLA levels and additional four predictors: previous depressive episode, stressful life events, serum levels of sortilin and VEGF. However, as an isolated factor, we observed no significant difference in SorLA levels between 140 depressed individuals and 140 healthy controls. Nevertheless, we observed a significant increase in SorLA levels following 12 weeks of treatment with nortriptyline, but not escitalopram. LIMITATIONS The number of biomarkers included in the multivariate model for depression and lack of replication limit our study. CONCLUSIONS Our results suggest SorLA as one of five factors that in combination may support the depression diagnosis, but not as an individual biomarker for depression or treatment response.
Collapse
Affiliation(s)
- Henriette N Buttenschøn
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Denmark; The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark.
| | - Betina Elfving
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Denmark
| | - Marit Nielsen
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Denmark
| | - Sune Skeldal
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark
| | - Mathias Kaas
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark
| | - Ole Mors
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark; Psychosis Research Unit, Aarhus University Hospital, Risskov, Denmark
| | - Simon Glerup
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark; The Lundbeck Foundation Research Center, MIND, Aarhus University, Denmark
| |
Collapse
|
17
|
Beyond good and evil: A putative continuum-sorting hypothesis for the functional role of proBDNF/BDNF-propeptide/mBDNF in antidepressant treatment. Neurosci Biobehav Rev 2018; 90:70-83. [PMID: 29626490 DOI: 10.1016/j.neubiorev.2018.04.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 03/13/2018] [Accepted: 04/03/2018] [Indexed: 02/07/2023]
Abstract
Depression and posttraumatic stress disorder are assumed to be maladaptive responses to stress and antidepressants are thought to counteract such responses by increasing BDNF (brain-derived neurotrophic factor) levels. BDNF acts through TrkB (tropomyosin-related receptor kinase B) and plays a central role in neuroplasticity. In contrast, both precursor proBDNF and BDNF propeptide (another metabolic product from proBDNF cleavage) have a high affinity to p75 receptor (p75R) and usually convey apoptosis and neuronal shrinkage. Although BDNF and proBDNF/propeptide apparently act in opposite ways, neuronal turnover and remodeling might be a final common way that both act to promote more effective neuronal networking, avoiding neuronal redundancy and the misleading effects of environmental contingencies. This review aims to provide a brief overview about the BDNF functional role in antidepressant action and about p75R and TrkB signaling to introduce the "continuum-sorting hypothesis." The resulting hypothesis suggests that both BDNF/proBDNF and BDNF/propeptide act as protagonists to fine-tune antidepressant-dependent neuroplasticity in crucial brain structures to modulate behavioral responses to stress.
Collapse
|
18
|
Boggild S, Molgaard S, Glerup S, Nyengaard JR. Highly segregated localization of the functionally related vps10p receptors sortilin and SorCS2 during neurodevelopment. J Comp Neurol 2018; 526:1267-1286. [PMID: 29405286 DOI: 10.1002/cne.24403] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Revised: 01/20/2018] [Accepted: 01/22/2018] [Indexed: 12/11/2022]
Abstract
Nervous system development is a precisely orchestrated series of events requiring a multitude of intrinsic and extrinsic cues. Sortilin and SorCS2 are members of the Vps10p receptor family with complementary influence on some of these cues including the neurotrophins (NTs). However, the developmental time points where sortilin and SorCS2 exert their activities in conjunction or independently still remain unclear. In this study we present the characterization of the spatiotemporal expression pattern of sortilin and SorCS2 in the developing murine nervous system. Sortilin is highly expressed in the fetal nervous system with expression localized to distinct cell populations. Expression was high in neurons of the cortical plate and developing allocortex, as well as subpallial structures. Furthermore, the neuroepithelium lining the ventricles and the choroid plexus showed high expression of sortilin, together with the developing retina, spinal ganglia, and sympathetic ganglia. In contrast, SorCS2 was confined in a marked degree to the thalamus and, at E13.5, the floor plate from midbrain rostrally to spinal cord caudally. SorCS2 was also found in the ventricular zones of the ventral hippocampus and nucleus accumbens areas, in the meninges and in Schwann cells. Hence, sortilin and SorCS2 are extensively present in several distinct anatomical areas in the developing nervous system and are rarely co-expressed. Possible functions of sortilin and SorCS2 pertain to NT signaling, axon guidance and beyond. The present data will form the basis for hypotheses and study designs for unravelling the functions of sortilin and SorCS2 during the establishment of neuronal structures and connections.
Collapse
Affiliation(s)
- Simon Boggild
- Department of Clinical Medicine, Aarhus University, MIND Centre, Core Center for Molecular Morphology, Section for Stereology and Microscopy, Aarhus C, 8000, Denmark.,MIND Centre, Department of Biomedicine, Aarhus University, Ole Worms Allé 3, Aarhus C, 8000, Denmark
| | - Simon Molgaard
- Department of Clinical Medicine, Aarhus University, MIND Centre, Core Center for Molecular Morphology, Section for Stereology and Microscopy, Aarhus C, 8000, Denmark.,MIND Centre, Department of Biomedicine, Aarhus University, Ole Worms Allé 3, Aarhus C, 8000, Denmark
| | - Simon Glerup
- MIND Centre, Department of Biomedicine, Aarhus University, Ole Worms Allé 3, Aarhus C, 8000, Denmark
| | - Jens Randel Nyengaard
- Department of Clinical Medicine, Aarhus University, MIND Centre, Core Center for Molecular Morphology, Section for Stereology and Microscopy, Aarhus C, 8000, Denmark.,Centre for Stochastic Geometry and Advanced Bioimaging, Aarhus University, Aarhus C, 8000, Denmark
| |
Collapse
|
19
|
Zhong F, Liu L, Wei JL, Hu ZL, Li L, Wang S, Xu JM, Zhou XF, Li CQ, Yang ZY, Dai RP. Brain-Derived Neurotrophic Factor Precursor in the Hippocampus Regulates Both Depressive and Anxiety-Like Behaviors in Rats. Front Psychiatry 2018; 9:776. [PMID: 30740068 PMCID: PMC6355684 DOI: 10.3389/fpsyt.2018.00776] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Accepted: 12/24/2018] [Indexed: 12/11/2022] Open
Abstract
Depression and anxiety are two affective disorders that greatly threaten the mental health of a large population worldwide. Previous studies have shown that brain-derived neurotrophic factor precursor (proBDNF) is involved in the development of depression. However, it is still elusive whether proBDNF is involved in anxiety, and if so, which brain regions of proBDNF regulate these two affective disorders. The present study aims to investigate the role of proBDNF in the hippocampus in the development of depression and anxiety. Rat models of an anxiety-like phenotype and depression-like phenotype were established by complete Freund's adjuvant intra-plantar injection and chronic restraint stress, respectively. Both rat models developed anxiety-like behaviors as determined by the open field test and elevated plus maze test. However, only rats with depression-like phenotype displayed the lower sucrose consumption in the sucrose preference test and a longer immobility time in the forced swimming test. Sholl analysis showed that the dendritic arborization of granule cells in the hippocampus was decreased in rats with depression-like phenotype but was not changed in rats with anxiety-like phenotype. In addition, synaptophysin was downregulated in the rats with depression-like phenotype but upregulated in the rats with anxiety-like phenotype. In both models, proBDNF was greatly increased in the hippocampus. Intra-hippocampal injection anti-proBDNF antibody greatly ameliorated the anxiety-like and depressive behaviors in the rats. These findings suggest that despite some behavioral and morphological differences between depression and anxiety, hippocampal proBDNF is a common mediator to regulate these two mental disorders.
Collapse
Affiliation(s)
- Feng Zhong
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Lei Liu
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, China.,Anesthesia Medical Research Center of Central South University, Changsha, China
| | - Jia-Li Wei
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zhao-Lan Hu
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Li Li
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, China.,Anesthesia Medical Research Center of Central South University, Changsha, China
| | - Shuang Wang
- Medical Research Center and Clinical Laboratory, Xiangya Hospital of Central South University, Changsha, China
| | - Jun-Mei Xu
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, China.,Anesthesia Medical Research Center of Central South University, Changsha, China
| | - Xin-Fu Zhou
- Division of Health Sciences, School of Pharmacy and Medical Science and Sansom Institute, University of South Australia, Adelaide, SA, Australia
| | - Chang-Qi Li
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, China
| | - Zhao-Yun Yang
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, China.,Anesthesia Medical Research Center of Central South University, Changsha, China
| | - Ru-Ping Dai
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, China.,Anesthesia Medical Research Center of Central South University, Changsha, China
| |
Collapse
|
20
|
Ruan CS, Liu J, Yang M, Saadipour K, Zeng YQ, Liao H, Wang YJ, Bobrovskaya L, Zhou XF. Sortilin inhibits amyloid pathology by regulating non-specific degradation of APP. Exp Neurol 2017; 299:75-85. [PMID: 29056359 DOI: 10.1016/j.expneurol.2017.10.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 10/04/2017] [Accepted: 10/17/2017] [Indexed: 12/21/2022]
Abstract
Amyloid plaque is one of the hallmarks of Alzheimer's disease (AD). The key component beta-amyloid (Aβ) is generated via proteolytic processing of amyloid precursor protein (APP). Sortilin (encoded by the gene Sort1) is a vacuolar protein sorting 10 protein domain-containing receptor, which is up-regulated in the brain of AD, colocalizes with amyloid plaques and interacts with APP. However, its role in amyloidogenesis remains unclear. In this study, we first found that the protein level of sortilin was up-regulated in the neocortex of aged (7 and 9months old) but not young (2 and 5months old) AD mice (APP/PS1). 9months old APP/PS1 transgenic mice with Sort1 gene knockout showed increased amyloid pathology in the brain; and this phenotype was rescued by intrahippocampal injection of AAV-hSORT1. Moreover, the 9months old APP/PS1 mice without Sort1 also displayed a decreased number of neurons and increased astrocyte activation in the hippocampus. In addition, the present study showed that the intracellular domain of sortilin was involved in the regulation of the non-specific degradation of APP. Together, our findings indicate that sortilin is a beneficial protein for the reduction of amyloid pathology in APP/PS1 mice by promoting APP degradation.
Collapse
Affiliation(s)
- Chun-Sheng Ruan
- School of Pharmacy and Medical Sciences, Division of Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming 650500, China.
| | - Jia Liu
- School of Pharmacy and Medical Sciences, Division of Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Miao Yang
- School of Pharmacy and Medical Sciences, Division of Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Khalil Saadipour
- School of Pharmacy and Medical Sciences, Division of Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Yue-Qin Zeng
- Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming 650500, China
| | - Hong Liao
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| | - Yan-Jiang Wang
- Department of Neurology, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Larisa Bobrovskaya
- School of Pharmacy and Medical Sciences, Division of Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Xin-Fu Zhou
- School of Pharmacy and Medical Sciences, Division of Health Sciences, University of South Australia, Adelaide, SA 5000, Australia.
| |
Collapse
|
21
|
Hu X, Hu ZL, Li Z, Ruan CS, Qiu WY, Pan A, Li CQ, Cai Y, Shen L, Chu Y, Tang BS, Cai H, Zhou XF, Ma C, Yan XX. Sortilin Fragments Deposit at Senile Plaques in Human Cerebrum. Front Neuroanat 2017. [PMID: 28638323 PMCID: PMC5461299 DOI: 10.3389/fnana.2017.00045] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Genetic variations in the vacuolar protein sorting 10 protein (Vps10p) family have been linked to Alzheimer’s disease (AD). Here we demonstrate deposition of fragments from the Vps10p member sortilin at senile plaques (SPs) in aged and AD human cerebrum. Sortilin changes were characterized in postmortem brains with antibodies against the extracellular and intracellular C-terminal domains. The two antibodies exhibited identical labeling in normal human cerebrum, occurring in the somata and dendrites of cortical and hippocampal neurons. The C-terminal antibody also marked extracellular lesions in some aged and all AD cases, appearing as isolated fibrils, mini-plaques, dense-packing or circular mature-looking plaques. Sortilin and β-amyloid (Aβ) deposition were correlated overtly in a region/lamina- and case-dependent manner as analyzed in the temporal lobe structures, with co-localized immunofluorescence seen at individual SPs. However, sortilin deposition rarely occurred around the pia, at vascular wall or in areas with typical diffuse Aβ deposition, with the labeling not enhanced by section pretreatment with heating or formic acid. Levels of a major sortilin fragment ~15 kDa, predicted to derive from the C-terminal region, were dramatically elevated in AD relative to control cortical lysates. Thus, sortilin fragments are a prominent constituent of the extracellularly deposited protein products at SPs in human cerebrum.
Collapse
Affiliation(s)
- Xia Hu
- Department of Anatomy and Neurobiology, Central South University School of Basic Medical ScienceChangsha, China
| | - Zhao-Lan Hu
- Department of Anatomy and Neurobiology, Central South University School of Basic Medical ScienceChangsha, China
| | - Zheng Li
- Cancer Research Institute, Central South UniversityChangsha, China
| | - Chun-Sheng Ruan
- School of Pharmacy and Medical Sciences, Sansom Institute, Division of Health Sciences, University of South AustraliaAdelaide, SA, Australia
| | - Wen-Ying Qiu
- Department of Human Anatomy, Histology and Embryology, Institute of Basic Medical Sciences, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical CollegeBeijing, China
| | - Aihua Pan
- Department of Anatomy and Neurobiology, Central South University School of Basic Medical ScienceChangsha, China
| | - Chang-Qi Li
- Department of Anatomy and Neurobiology, Central South University School of Basic Medical ScienceChangsha, China
| | - Yan Cai
- Department of Anatomy and Neurobiology, Central South University School of Basic Medical ScienceChangsha, China
| | - Lu Shen
- Department of Neurology, Xiangya Hospital, Central South UniversityChangsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Xiangya Hospital, Central South UniversityChangsha, China
| | - Yaping Chu
- Department of Neurological Sciences, Rush University Medical CenterChicago, IL, United States
| | - Bei-Sha Tang
- Department of Neurology, Xiangya Hospital, Central South UniversityChangsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Xiangya Hospital, Central South UniversityChangsha, China
| | - Huaibin Cai
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of HealthBethesda, MD, United States
| | - Xin-Fu Zhou
- School of Pharmacy and Medical Sciences, Sansom Institute, Division of Health Sciences, University of South AustraliaAdelaide, SA, Australia
| | - Chao Ma
- Department of Human Anatomy, Histology and Embryology, Institute of Basic Medical Sciences, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical CollegeBeijing, China
| | - Xiao-Xin Yan
- Department of Anatomy and Neurobiology, Central South University School of Basic Medical ScienceChangsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Xiangya Hospital, Central South UniversityChangsha, China
| |
Collapse
|
22
|
Bondar NP, Merkulova TI. Brain-derived neurotrophic factor and early-life stress: Multifaceted interplay. J Biosci 2017; 41:751-758. [PMID: 27966494 DOI: 10.1007/s12038-016-9648-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The brain-derived neurotrophic factor (BDNF) is a key regulator of neural development and plasticity. Longterm changes in the BDNF pathway are associated with childhood adversity and adult depression symptoms. Initially, stress-induced decreases in the BDNF pathway were found in some studies, but subsequent reports indicated the relationship between stress and BDNF to be much more complex, and the concept was significantly revised. In the present mini-review, we focus on the structure and regulation of the Bbnf gene as well as on the stress-BDNF interactions under early-life adverse conditions.
Collapse
Affiliation(s)
- Natalya P Bondar
- Laboratory of Gene Expression Regulation, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia,
| | | |
Collapse
|