1
|
Kabdesh I, Tutova O, Akhmetzyanova E, Timofeeva A, Bilalova A, Mukhamedshina Y, Chelyshev Y. Thoracic Spinal Cord Contusion Impacts on Lumbar Enlargement: Molecular Insights. Mol Neurobiol 2025:10.1007/s12035-025-04794-9. [PMID: 40014268 DOI: 10.1007/s12035-025-04794-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 02/18/2025] [Indexed: 02/28/2025]
Abstract
Spinal cord injury (SCI) is characterized by macrostructural pathological changes in areas significantly distant from the primary injury site. The causes and mechanisms underlying these distant changes are still being explored. Identifying the causes and mechanisms of these changes in the lumbar spinal cord is particularly important for restoring motor function, especially in cases of injury to the proximal thoracic or cervical regions. This is because the lumbar region contains neural networks that play a crucial role in comprehensive locomotor outcomes. In our study, we investigated the changes in the rat lumbar spinal cord following a thoracic contusion injury. We observed an increased expression of osteopontin (OPN) in large neurons and a higher number of interneurons co-expressing parvalbumin and OPN within lamina IX of the ventral horns (VH) in the gray matter of the lumbar spinal cord post-injury. Additionally, here we noted an increased co-localization of the glial fibirillary acidic protein and S100A10 protein, a specific marker of reactive A2 astrocytes. Our findings also include changes in the expression and content of glypicans in the gray matter, a significant rise in neurotoxic M1 microglia/macrophages, alterations in the cytokine profile, and a decreased expression of the extracellular matrix molecules tenascin R and aggrecan. This research highlights the complex pathological processes occurring far from the site of SCI and attempts to provide insights into the mechanisms involving the entire spinal cord in the response to such an injury.
Collapse
Affiliation(s)
- Ilyas Kabdesh
- OpenLab "Gene and Cell Technologies", Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008, Kazan, Russia.
| | - Olga Tutova
- OpenLab "Gene and Cell Technologies", Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008, Kazan, Russia
| | - Elvira Akhmetzyanova
- OpenLab "Gene and Cell Technologies", Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008, Kazan, Russia
| | - Anna Timofeeva
- OpenLab "Gene and Cell Technologies", Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008, Kazan, Russia
| | - Aizilya Bilalova
- OpenLab "Gene and Cell Technologies", Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008, Kazan, Russia
| | - Yana Mukhamedshina
- OpenLab "Gene and Cell Technologies", Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008, Kazan, Russia
- Department of Histology, Cytology and Embryology, Kazan State Medical University, 420012, Kazan, Russia
| | - Yuri Chelyshev
- Department of Histology, Cytology and Embryology, Kazan State Medical University, 420012, Kazan, Russia
| |
Collapse
|
2
|
Tabarestani TQ, Lewis NE, Kelly-Hedrick M, Zhang N, Cellini BR, Marrotte EJ, Williamson T, Wang H, Laskowitz DT, Faw TD, Abd-El-Barr MM. Surgical Considerations to Improve Recovery in Acute Spinal Cord Injury. Neurospine 2022; 19:689-702. [PMID: 36203295 PMCID: PMC9537855 DOI: 10.14245/ns.2244616.308] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/07/2022] [Indexed: 12/14/2022] Open
Abstract
Acute traumatic spinal cord injury (SCI) can be a devastating and costly event for individuals, their families, and the health system as a whole. Prognosis is heavily dependent on the physical extent of the injury and the severity of neurological dysfunction. If not treated urgently, individuals can suffer exacerbated secondary injury cascades that may increase tissue injury and limit recovery. Initial recognition and rapid treatment of acute SCI are vital to limiting secondary injury, reducing morbidity, and providing the best chance of functional recovery. This article aims to review the pathophysiology of SCI and the most up-to-date management of the acute traumatic SCI, specifically examining the modern approaches to surgical treatments along with the ethical limitations of research in this field.
Collapse
Affiliation(s)
| | - Nicholle E. Lewis
- Doctor of Physical Therapy Division, Department of Orthopaedic Surgery, Duke University, Durham, NC, USA
| | | | - Nina Zhang
- Department of Psychology and Neuroscience, Trinity College of Arts and Sciences, Duke University, Durham, NC, USA
| | - Brianna R. Cellini
- Department of Psychology and Neuroscience, Trinity College of Arts and Sciences, Duke University, Durham, NC, USA
| | - Eric J. Marrotte
- Department of Neurology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Theresa Williamson
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA,Center for Bioethics, Harvard Medical School, Boston, MA, USA
| | - Haichen Wang
- Department of Neurology, Duke University, Durham, NC, USA
| | | | - Timothy D. Faw
- Doctor of Physical Therapy Division, Department of Orthopaedic Surgery, Duke University, Durham, NC, USA,Duke Institute for Brain Sciences, Duke University, Durham, NC, USA
| | - Muhammad M. Abd-El-Barr
- Department of Neurosurgery, Duke University, Durham, NC, USA,Corresponding Author Muhammad M. Abd-El-Barr Department of Neurosurgery, Duke University Medical Center 2840, Room 5335 5th Floor, Orange Zone, Duke South, Durham, NC 27710, USA
| |
Collapse
|
3
|
O'Reilly ML, Tom VJ. Neuroimmune System as a Driving Force for Plasticity Following CNS Injury. Front Cell Neurosci 2020; 14:187. [PMID: 32792908 PMCID: PMC7390932 DOI: 10.3389/fncel.2020.00187] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 05/29/2020] [Indexed: 12/15/2022] Open
Abstract
Following an injury to the central nervous system (CNS), spontaneous plasticity is observed throughout the neuraxis and affects multiple key circuits. Much of this spontaneous plasticity can elicit beneficial and deleterious functional outcomes, depending on the context of plasticity and circuit affected. Injury-induced activation of the neuroimmune system has been proposed to be a major factor in driving this plasticity, as neuroimmune and inflammatory factors have been shown to influence cellular, synaptic, structural, and anatomical plasticity. Here, we will review the mechanisms through which the neuroimmune system mediates plasticity after CNS injury. Understanding the role of specific neuroimmune factors in driving adaptive and maladaptive plasticity may offer valuable therapeutic insight into how to promote adaptive plasticity and/or diminish maladaptive plasticity, respectively.
Collapse
Affiliation(s)
- Micaela L O'Reilly
- Department of Neurobiology and Anatomy, Marion Murray Spinal Cord Research Center, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Veronica J Tom
- Department of Neurobiology and Anatomy, Marion Murray Spinal Cord Research Center, Drexel University College of Medicine, Philadelphia, PA, United States
| |
Collapse
|
4
|
McFarlane K, Otto TE, Bailey WM, Veldhorst AK, Donahue RR, Taylor BK, Gensel JC. Effect of Sex on Motor Function, Lesion Size, and Neuropathic Pain after Contusion Spinal Cord Injury in Mice. J Neurotrauma 2020; 37:1983-1990. [PMID: 32597310 PMCID: PMC7470221 DOI: 10.1089/neu.2019.6931] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Spinal cord injury (SCI) causes neurodegeneration, impairs locomotor function, and impacts the quality of life particularly in those individuals in whom neuropathic pain develops. Whether the time course of neurodegeneration, locomotor impairment, or neuropathic pain varies with sex, however, remains understudied. Therefore, the objective of this study in male and female C57BL/6 mice was to evaluate the following outcomes for six weeks after a 75-kdyn thoracic contusion SCI: locomotor function using the Basso Mouse Scale (BMS); spinal cord tissue sparing and rostral-caudal lesion length; and mechanical allodynia and heat hyperalgesia using hindpaw application of Von Frey filaments or radiant heat stimuli, respectively. Although motor function was largely similar between sexes, all of the males, but only half of the females, recovered plantar stepping. Rostral-caudal lesion length was shorter in females than in males. Mechanical allodynia and heat hyperalgesia after SCI developed in all animals, regardless of sex; there were no differences in pain outcomes between sexes. We conclude that contusion SCI yields subtle sex differences in mice depending on the outcome measure but no significant differences in behavioral signs of neuropathic pain.
Collapse
Affiliation(s)
- Katelyn McFarlane
- Spinal Cord and Brain Injury Research Center and Department of Physiology, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Taylor E Otto
- Spinal Cord and Brain Injury Research Center and Department of Physiology, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - William M Bailey
- Spinal Cord and Brain Injury Research Center and Department of Physiology, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Amy K Veldhorst
- Spinal Cord and Brain Injury Research Center and Department of Physiology, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Renée R Donahue
- Spinal Cord and Brain Injury Research Center and Department of Physiology, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Bradley K Taylor
- Department of Anesthesia and Perioperative Medicine, Pittsburgh Center for Pain Research, and Pittsburgh Project to End Opioid Misuse, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - John C Gensel
- Spinal Cord and Brain Injury Research Center and Department of Physiology, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| |
Collapse
|
5
|
Nakajima H, Honjoh K, Watanabe S, Kubota A, Matsumine A. Distribution and polarization of microglia and macrophages at injured sites and the lumbar enlargement after spinal cord injury. Neurosci Lett 2020; 737:135152. [PMID: 32531528 DOI: 10.1016/j.neulet.2020.135152] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/19/2020] [Accepted: 06/08/2020] [Indexed: 12/22/2022]
Abstract
Spinal cord injury (SCI) causes loss of locomotor function and chronic neuropathic pain (NeP). Hematogenous macrophages and activated microglia are key monocytic lineage cell types in the response to SCI, and each has M1- and M2-phenotypes. To understand the roles of these cells in neuronal regeneration and chronic NeP after SCI, differences in distribution and phenotypes of activated microglia and infiltrated macrophages after SCI were examined at the injured site and the lumbar enlargement, as a remote region. Chimeric mice were used for differentiating activated microglia from hematogenous macrophages. The prevalences of activated microglia and infiltrating macrophages increased at day 14 after SCI, at the time of most severe pain hypersensitivity, with mainly M1-type hematogenous macrophages at the injured site and M2-type activated microglia at the lumbar enlargement. Peak expression of TNF-α, an M1-induced cytokine, occurred on day 4 post-SCI at the injured site, but not until day 14 at the lumbar enlargement. Expression of IL-4, a M2-induced cytokine, peaked at 4 days after SCI at both sites. These results suggest different roles of activated microglia and hematogenous macrophages, including both phenotypes of each cell, in neuronal regeneration and chronic NeP after SCI at the injured site and lumbar enlargement. The prevalence of the M1 over the M2 phenotype at the injured site until the subacute phase after SCI may be partially responsible for the lack of functional recovery and chronic NeP after SCI. Activation of M2-type microglia at the lumbar enlargement in response to inflammatory cytokines from the injured site might be important in chronic below-level pain. These findings are useful for establishment of a therapeutic target for prevention of motor deterioration and NeP in the time-dependent response to SCI.
Collapse
Affiliation(s)
- Hideaki Nakajima
- Department of Orthopaedics and Rehabilitation Medicine, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuoka Shimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui, 910-1193, Japan.
| | - Kazuya Honjoh
- Department of Orthopaedics and Rehabilitation Medicine, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuoka Shimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui, 910-1193, Japan
| | - Shuji Watanabe
- Department of Orthopaedics and Rehabilitation Medicine, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuoka Shimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui, 910-1193, Japan
| | - Arisa Kubota
- Department of Orthopaedics and Rehabilitation Medicine, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuoka Shimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui, 910-1193, Japan
| | - Akihiko Matsumine
- Department of Orthopaedics and Rehabilitation Medicine, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuoka Shimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui, 910-1193, Japan
| |
Collapse
|
6
|
Patwa S, Benson CA, Dyer L, Olson K, Bangalore L, Hill M, Waxman SG, Tan AM. Spinal cord motor neuron plasticity accompanies second-degree burn injury and chronic pain. Physiol Rep 2019; 7:e14288. [PMID: 31858746 PMCID: PMC6923170 DOI: 10.14814/phy2.14288] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Burn injuries and associated complications present a major public health challenge. Many burn patients develop clinically intractable complications, including pain and other sensory disorders. Recent evidence has shown that dendritic spine neuropathology in spinal cord sensory and motor neurons accompanies central nervous system (CNS) or peripheral nervous system (PNS) trauma and disease. However, no research has investigated similar dendritic spine neuropathologies following a cutaneous thermal burn injury. In this retrospective investigation, we analyzed dendritic spine morphology and localization in alpha-motor neurons innervating a burn-injured area of the body (hind paw). To identify a molecular regulator of these dendritic spine changes, we further profiled motor neuron dendritic spines in adult mice treated with romidepsin, a clinically approved Pak1-inhibitor, or vehicle control at two postburn time points: Day 6 immediately after treatment, or Day 10 following drug withdrawal. In control treated mice, we observed an overall increase in dendritic spine density, including structurally mature spines with mushroom-shaped morphology. Pak1-inhibitor treatment reduced injury-induced changes to similar levels observed in animals without burn injury. The effectiveness of the Pak1-inhibitor was durable, since normalized dendritic spine profiles remained as long as 4 days despite drug withdrawal. This study is the first report of evidence demonstrating that a second-degree burn injury significantly affects motor neuron structure within the spinal cord. Furthermore, our results support the opportunity to study dendritic spine dysgenesis as a novel avenue to clarify the complexities of neurological disease following traumatic injury.
Collapse
Affiliation(s)
- Siraj Patwa
- Department of Neurology and Center for Neuroscience and Regeneration ResearchYale University School of MedicineNew HavenConnecticut
- Rehabilitation Research CenterVeterans Affairs Connecticut Healthcare SystemWest HavenConnecticut
| | - Curtis A. Benson
- Department of Neurology and Center for Neuroscience and Regeneration ResearchYale University School of MedicineNew HavenConnecticut
- Rehabilitation Research CenterVeterans Affairs Connecticut Healthcare SystemWest HavenConnecticut
| | - Lauren Dyer
- Department of Neurology and Center for Neuroscience and Regeneration ResearchYale University School of MedicineNew HavenConnecticut
- Rehabilitation Research CenterVeterans Affairs Connecticut Healthcare SystemWest HavenConnecticut
| | - Kai‐Lan Olson
- Department of Neurology and Center for Neuroscience and Regeneration ResearchYale University School of MedicineNew HavenConnecticut
- Rehabilitation Research CenterVeterans Affairs Connecticut Healthcare SystemWest HavenConnecticut
| | - Lakshmi Bangalore
- Department of Neurology and Center for Neuroscience and Regeneration ResearchYale University School of MedicineNew HavenConnecticut
- Rehabilitation Research CenterVeterans Affairs Connecticut Healthcare SystemWest HavenConnecticut
| | - Myriam Hill
- Department of Neurology and Center for Neuroscience and Regeneration ResearchYale University School of MedicineNew HavenConnecticut
- Rehabilitation Research CenterVeterans Affairs Connecticut Healthcare SystemWest HavenConnecticut
| | - Stephen G. Waxman
- Department of Neurology and Center for Neuroscience and Regeneration ResearchYale University School of MedicineNew HavenConnecticut
- Rehabilitation Research CenterVeterans Affairs Connecticut Healthcare SystemWest HavenConnecticut
| | - Andrew M. Tan
- Department of Neurology and Center for Neuroscience and Regeneration ResearchYale University School of MedicineNew HavenConnecticut
- Rehabilitation Research CenterVeterans Affairs Connecticut Healthcare SystemWest HavenConnecticut
| |
Collapse
|
7
|
Honjoh K, Nakajima H, Hirai T, Watanabe S, Matsumine A. Relationship of Inflammatory Cytokines From M1-Type Microglia/Macrophages at the Injured Site and Lumbar Enlargement With Neuropathic Pain After Spinal Cord Injury in the CCL21 Knockout ( plt) Mouse. Front Cell Neurosci 2019; 13:525. [PMID: 31824269 PMCID: PMC6881269 DOI: 10.3389/fncel.2019.00525] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 11/08/2019] [Indexed: 12/31/2022] Open
Abstract
Spinal cord injury (SCI) causes loss of normal sensation and often leads to debilitating neuropathic pain (NeP). Chronic NeP develops at or below the SCI lesion in as many as 80% of patients with SCI and may be induced by modulators of neuronal excitability released from activated microglia and macrophages. In the inflammatory response after SCI, different microglia/macrophage populations that are classically activated (M1 phenotype) or alternatively activated (M2 phenotype) have become of great interest. Chemokines have also recently attracted attention in neuron-microglia communication. CCL21 is a chemokine that activates microglia in the central nervous system (CNS) and is expressed only in neurons with an insult or mechanical injury. In this study using an SCI model in mutant (plt) mice with deficient CCL21 expression, we assessed post-SCI NeP and expression of microglia/macrophages and inflammatory cytokines at the injured site and lumbar enlargement. SCI-induced hypersensitivities to mechanical and thermal stimulation were relieved in plt mice compared with those in wild-type (C57BL/6) mice, although there was no difference in motor function. Immunohistochemistry and flow cytometry analysis showed that the phenotype of microglia/macrophages was M1 type-dominant in both types of mice at the lesion site and lumbar enlargement. A decrease of M1-type microglia/macrophages was seen in plt mice compared with wild-type, while the number of M2-type microglia/macrophages did not differ between these mice. In immunoblot analysis, expression of M1-induced cytokines [tumor necrosis factor-α (TNF-α), interferon-γ (IFN-γ)] was decreased in plt mice, while that of M2-induced cytokines interleukin-4 (IL-4, IL-10) did not differ in the two types of mice. The results of this study indicate that suppression of expression of inflammatory cytokines by decreasing the number of M1-type microglia/macrophages at the injured site and lumbar enlargement is associated with provision of an environment for reduction of NeP. These findings may be useful for the design of new therapies to alleviate NeP after SCI.
Collapse
Affiliation(s)
- Kazuya Honjoh
- Department of Orthopaedics and Rehabilitation Medicine, Faculty of Medical Sciences University of Fukui, Fukui, Japan
| | - Hideaki Nakajima
- Department of Orthopaedics and Rehabilitation Medicine, Faculty of Medical Sciences University of Fukui, Fukui, Japan
| | - Takayuki Hirai
- Department of Orthopaedics and Rehabilitation Medicine, Faculty of Medical Sciences University of Fukui, Fukui, Japan
| | - Shuji Watanabe
- Department of Orthopaedics and Rehabilitation Medicine, Faculty of Medical Sciences University of Fukui, Fukui, Japan
| | - Akihiko Matsumine
- Department of Orthopaedics and Rehabilitation Medicine, Faculty of Medical Sciences University of Fukui, Fukui, Japan
| |
Collapse
|
8
|
The changes in systemic monocytes in humans undergoing surgical decompression for degenerative cervical myelopathy may influence clinical neurological recovery. J Neuroimmunol 2019; 336:577024. [PMID: 31450156 DOI: 10.1016/j.jneuroim.2019.577024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 08/07/2019] [Accepted: 08/15/2019] [Indexed: 01/01/2023]
Abstract
BACKGROUND Degenerative cervical myelopathy (DCM) is the most common cause of non-traumatic spinal cord injury worldwide. Surgical decompression is recommended as the preferred treatment strategy for DCM as it halts disease progression and improves neurologic symptoms. We previously demonstrated that neuroinflammation, including monocytes, plays a critical role in the pathobiology of DCM and in ischemic-reperfusion injury (IRI) following surgical decompression. Monocytes are able to enter the spinal cord and brain tissues due to damage to the blood spinal cord and blood brain barrier following injury. Studies have demonstrated that stroke patients and individuals undergoing hip replacement surgery have increased systemic levels of monocytes. Additionally, changes in the signalling responses of monocytes are associated with post-surgical recovery or with ischemic neural tissue damage. Herein, we investigated the role of systemic monocytes as a predictive biomarker for clinical recovery following decompressive surgery for DCM. FINDINGS There was a 2-fold increase in the number of monocytes in DCM patients at 24 h following decompression as compared to baseline levels, which was associated with a significant improvement in the modified Japanese Orthopedic Association scale (mJOA) at 6-months after surgery (p < .0001). In a mouse model of DCM, depleting acute monocytes reduced the non-classical (Ly6Clow) subset from circulation (p < .05) and resulted in a 1.8-fold increase in CD11b expression in the spinal cord at 5 weeks following decompression. Acute monocyte depletion was accompanied by a modest decline in long-term overground locomotion, as evidenced by significantly reduced hindlimb swing speed. CONCLUSIONS This work demonstrated that decompressive surgery leads to an acute increase in peripheral monocytes in human DCM patients, which is modestly associated with clinical recovery. We anticipate that this work could contribute to the implementation of routine measurements of blood monocyte subsets, their activation state, and production of cytokines following decompressive surgery. This information could help to select perioperative anti-inflammatory treatments that can enhance the beneficial effects of decompressive surgery and reduce the incidence of post-operative complications, while avoiding a reduction in systemic monocytes.
Collapse
|
9
|
Trivedi A, Noble-Haeusslein LJ, Levine JM, Santucci AD, Reeves TM, Phillips LL. Matrix metalloproteinase signals following neurotrauma are right on cue. Cell Mol Life Sci 2019; 76:3141-3156. [PMID: 31168660 PMCID: PMC11105352 DOI: 10.1007/s00018-019-03176-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 05/22/2019] [Accepted: 05/29/2019] [Indexed: 12/20/2022]
Abstract
Neurotrauma, a term referencing both traumatic brain and spinal cord injuries, is unique to neurodegeneration in that onset is clearly defined. From the perspective of matrix metalloproteinases (MMPs), there is opportunity to define their temporal participation in injury and recovery beginning at the level of the synapse. Here we examine the diverse roles of MMPs in the context of targeted insults (optic nerve lesion and hippocampal and olfactory bulb deafferentation), and clinically relevant focal models of traumatic brain and spinal cord injuries. Time-specific MMP postinjury signaling is critical to synaptic recovery after focal axonal injuries; members of the MMP family exhibit a signature temporal profile corresponding to axonal degeneration and regrowth, where they direct postinjury reorganization and synaptic stabilization. In both traumatic brain and spinal cord injuries, MMPs mediate early secondary pathogenesis including disruption of the blood-brain barrier, creating an environment that may be hostile to recovery. They are also critical players in wound healing including angiogenesis and the formation of an inhibitory glial scar. Experimental strategies to reduce their activity in the acute phase result in long-term neurological recovery after neurotrauma and have led to the first clinical trial in spinal cord injured pet dogs.
Collapse
Affiliation(s)
- Alpa Trivedi
- Department of Laboratory Medicine, University of California, San Francisco, 513 Parnassus Avenue, HSE 760, San Francisco, CA, 94143, USA.
| | - Linda J Noble-Haeusslein
- Departments of Psychology, College of Liberal Arts, and Neurology, the Dell Medical School, University of Texas, Austin, TX, 78712, USA
| | - Jonathan M Levine
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - Alison D Santucci
- Department of Neuroscience, Skidmore College, Saratoga Springs, NY, 12866, USA
| | - Thomas M Reeves
- Department of Anatomy and Neurobiology, Medical Campus, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Linda L Phillips
- Department of Anatomy and Neurobiology, Medical Campus, Virginia Commonwealth University, Richmond, VA, 23298, USA
| |
Collapse
|
10
|
Huang BR, Bau DT, Chen TS, Chuang IC, Tsai CF, Chang PC, Hsu HC, Lu DY. Pro-Inflammatory Stimuli Influence Expression of Intercellular Adhesion Molecule 1 in Human Anulus Fibrosus Cells through FAK/ERK/GSK3 and PKCδ Signaling Pathways. Int J Mol Sci 2018; 20:ijms20010077. [PMID: 30585203 PMCID: PMC6337379 DOI: 10.3390/ijms20010077] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 12/06/2018] [Accepted: 12/22/2018] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE Intervertebral disc (IVD) degeneration and disc herniation are major causes of lower back pain, which involve the presence of inflammatory mediators and tissue invasion by immune cells. Intercellular adhesion molecule 1 (ICAM1, also termed CD54) is an adhesion molecule that mediates cell-cell interactions, particularly between immune cells and target tissue. The aim of this study was to examine the intracellular signaling pathways involved in inflammatory stimuli-induced ICAM1 expression in human anulus fibrosus (AF) cells. METHODS Quantitative reverse transcription-polymerase chain reaction (qPCR), western blotting, and flow cytometry were performed to dissect the roles of different signaling pathways in inflammatory stimuli-mediated ICAM1 expression. RESULTS Using qPCR and western blot analyses, a significant increase in ICAM1 expression was observed in AF cells after stimulation of lipopolysaccharide (LPS) plus interferon-gamma (IFNγ) in a time-dependent manner. Flow cytometry revealed ICAM1 upregulation on the surface of AF cells. Importantly, LPS plus IFNγ treatment also significantly promoted Chemokine ligand (CCL)2 expression, but not CCL3. The enhanced ICAM1 expression was abolished after incubation with antibody against CCL2. In AF cells, treatment with LPS plus IFNγ activated the FAK/ERK/GSK3 signaling pathways, promoted a time-dependent increase in PKCδ phosphorylation, and promoted PKCδ translocation to the nucleus. Treatment with the pharmacological PKCδ inhibitor; rottlerin, effectively blocked the enhanced productions of ICAM1 and CCL2. CONCLUSIONS Inflammatory stimuli in AF cells are part of a specific pathophysiology in IVD degeneration and disc herniation that modulates CCL2/ICAM1 activation through the FAK/ERK/GSK3 and PKCδ signaling pathways in AF cells.
Collapse
Affiliation(s)
- Bor-Ren Huang
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung 40402, Taiwan.
- Neurosurgery Department, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung 42743, Taiwan.
- School of Medicine, Tzu Chi University, Hualien 97002, Taiwan.
| | - Da-Tian Bau
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung 40402, Taiwan.
| | - Tzu-Sheng Chen
- Department of Pathology, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung 42743, Taiwan.
| | - I-Chen Chuang
- Department of Pharmacology, School of Medicine, China Medical University, Taichung 40402, Taiwan.
| | - Cheng-Fang Tsai
- Department of Biotechnology, Asia University, Taichung 41354, Taiwan.
| | - Pei-Chun Chang
- Department of Bioinformatics, Asia University, Taichung 41354, Taiwan.
| | - Horng-Chaung Hsu
- Department of Orthopedic Surgery, China Medical University Hospital, Taichung 40402, Taiwan.
| | - Dah-Yuu Lu
- Department of Pharmacology, School of Medicine, China Medical University, Taichung 40402, Taiwan.
- Department of Photonics and Communication Engineering, Asia University, Taichung 41354, Taiwan.
| |
Collapse
|
11
|
Norden DM, Faw TD, McKim DB, Deibert RJ, Fisher LC, Sheridan JF, Godbout JP, Basso DM. Bone Marrow-Derived Monocytes Drive the Inflammatory Microenvironment in Local and Remote Regions after Thoracic Spinal Cord Injury. J Neurotrauma 2018; 36:937-949. [PMID: 30014767 DOI: 10.1089/neu.2018.5806] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Spinal cord injury (SCI) produces a toxic inflammatory microenvironment that negatively affects plasticity and recovery. Recently, we showed glial activation and peripheral myeloid cell infiltration extending beyond the epicenter through the remote lumbar cord after thoracic SCI. The presence and role of infiltrating monocytes is important, especially in the lumbar cord where locomotor central pattern generators are housed. Therefore, we compared the inflammatory profile of resident microglia and peripheral myeloid cells after SCI. Bone marrow chimeras received midthoracic contusive SCI, and trafficking was determined 1-7 days later. Fluorescence-activated cell (FAC) sorting showed similar infiltration timing of both neutrophils and macrophages in epicenter and lumbar regions. While neutrophil numbers were attenuated by day 3, macrophages remained unchanged at day 7, suggesting that macrophages have important long-term influence on the microenvironment. Nanostring gene array identified a strong proinflammatory profile of infiltrating macrophages relative to microglia at both epicenter and lumbar sites. Macrophages had elevated expression of inflammatory cytokines (IL-1β, IFNγ), chemokines (CCL2, CXCL2), mediators (COX-1, MMP-9), and receptors (CCR2, Ly6C), and decreased expression of growth promoting genes (GDNF, BDNF). Importantly, lumbar macrophages had elevated expression of active trafficking genes (CCR2, l-selectin, MMP-9) compared with epicenter macrophages. Further, acute rehabilitation exacerbated the inflammatory profile of infiltrated macrophages in the lumbar cord. Such high inflammatory potential and negative response to rehabilitation of infiltrating macrophages within lumbar locomotor central pattern generators likely impedes activity-dependent recovery. Therefore, limiting active trafficking of macrophages into the lumbar cord identifies a novel target for SCI therapies to improve locomotion.
Collapse
Affiliation(s)
- Diana M Norden
- 1 School of Health and Rehabilitation Sciences, The Ohio State University, Columbus, Ohio.,2 Center for Brain and Spinal Cord Repair, The Ohio State University, Columbus, Ohio
| | - Timothy D Faw
- 1 School of Health and Rehabilitation Sciences, The Ohio State University, Columbus, Ohio.,2 Center for Brain and Spinal Cord Repair, The Ohio State University, Columbus, Ohio.,3 Neuroscience Graduate Program, The Ohio State University, Columbus, Ohio
| | - Daniel B McKim
- 3 Neuroscience Graduate Program, The Ohio State University, Columbus, Ohio.,4 Department of Neuroscience, The Ohio State University, Columbus, Ohio.,5 Division of Biosciences, The Ohio State University, Columbus, Ohio
| | - Rochelle J Deibert
- 1 School of Health and Rehabilitation Sciences, The Ohio State University, Columbus, Ohio.,2 Center for Brain and Spinal Cord Repair, The Ohio State University, Columbus, Ohio
| | - Lesley C Fisher
- 1 School of Health and Rehabilitation Sciences, The Ohio State University, Columbus, Ohio.,2 Center for Brain and Spinal Cord Repair, The Ohio State University, Columbus, Ohio
| | - John F Sheridan
- 4 Department of Neuroscience, The Ohio State University, Columbus, Ohio.,5 Division of Biosciences, The Ohio State University, Columbus, Ohio
| | - Jonathan P Godbout
- 2 Center for Brain and Spinal Cord Repair, The Ohio State University, Columbus, Ohio.,4 Department of Neuroscience, The Ohio State University, Columbus, Ohio
| | - D Michele Basso
- 1 School of Health and Rehabilitation Sciences, The Ohio State University, Columbus, Ohio.,2 Center for Brain and Spinal Cord Repair, The Ohio State University, Columbus, Ohio
| |
Collapse
|
12
|
Consideration of Dose and Timing When Applying Interventions After Stroke and Spinal Cord Injury. J Neurol Phys Ther 2018. [PMID: 28628593 DOI: 10.1097/npt.0000000000000165] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND AND PURPOSE Nearly 4 decades of investigation into the plasticity of the nervous system suggest that both timing and dose could matter. This article provides a synopsis of our lectures at the IV STEP meeting, which presented a perspective of current data on the issues of timing and dose for adult stroke and spinal cord injury motor rehabilitation. SUMMARY OF KEY POINTS For stroke, the prevailing evidence suggests that greater amounts of therapy do not result in better outcomes for upper extremity interventions, regardless of timing. Whether or not greater amounts of therapy result in better outcomes for lower extremity and mobility interventions needs to be explicitly tested. For spinal cord injury, there is a complex interaction of timing postinjury, task-specificity, and the microenvironment of the spinal cord. Inflammation appears to be a key determinant of whether or not an intervention will be beneficial or maladaptive, and specific retraining of eccentric control during gait may be necessary. RECOMMENDATIONS FOR CLINICAL PRACTICE To move beyond the limitations of our current interventions and to effectively reach nonresponders, greater precision in task-specific interventions that are well-timed to the cellular environment may hold the key. Neurorehabilitation that ameliorates persistent deficits, attains greater recovery, and reclaims nonresponders will decrease institutionalization, improve quality of life, and prevent multiple secondary complications common after stroke and spinal cord injury.
Collapse
|
13
|
Faw TD, Lerch JK, Thaxton TT, Deibert RJ, Fisher LC, Basso DM. Unique Sensory and Motor Behavior in Thy1-GFP-M Mice before and after Spinal Cord Injury. J Neurotrauma 2018; 35:2167-2182. [PMID: 29385890 DOI: 10.1089/neu.2017.5395] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Sensorimotor recovery after spinal cord injury (SCI) is of utmost importance to injured individuals and will rely on improved understanding of SCI pathology and recovery. Novel transgenic mouse lines facilitate discovery, but must be understood to be effective. The purpose of this study was to characterize the sensory and motor behavior of a common transgenic mouse line (Thy1-GFP-M) before and after SCI. Thy1-GFP-M positive (TG+) mice and their transgene negative littermates (TG-) were acquired from two sources (in-house colony, n = 32, Jackson Laboratories, n = 4). C57BL/6J wild-type (WT) mice (Jackson Laboratories, n = 10) were strain controls. Moderate-severe T9 contusion (SCI) or transection (TX) occurred in TG+ (SCI, n = 25, TX, n = 5), TG- (SCI, n = 5), and WT (SCI, n = 10) mice. To determine responsiveness to rehabilitation, a cohort of TG+ mice with SCI (n = 4) had flat treadmill (TM) training 42-49 days post-injury (dpi). To characterize recovery, we performed Basso Mouse Scale, Grid Walk, von Frey Hair, and Plantar Heat Testing before and out to day 42 post-SCI. Open field locomotion was significantly better in the Thy1 SCI groups (TG+ and TG-) compared with WT by 7 dpi (p < 0.01) and was maintained through 42 dpi (p < 0.01). These unexpected locomotor gains were not apparent during grid walking, indicating severe impairment of precise motor control. Thy1 derived mice were hypersensitive to mechanical stimuli at baseline (p < 0.05). After SCI, mechanical hyposensitivity emerged in Thy1 derived groups (p < 0.001), while thermal hyperalgesia occurred in all groups (p < 0.001). Importantly, consistent findings across TG+ and TG- groups suggest that the effects are mediated by the genetic background rather than transgene manipulation itself. Surprisingly, TM training restored mechanical and thermal sensation to baseline levels in TG+ mice with SCI. This behavioral profile and responsiveness to chronic training will be important to consider when choosing models to study the mechanisms underlying sensorimotor recovery after SCI.
Collapse
Affiliation(s)
- Timothy D Faw
- 1 Neuroscience Graduate Program, The Ohio State University , Columbus, Ohio.,2 School of Health and Rehabilitation Sciences, The Ohio State University , Columbus, Ohio.,3 Center for Brain and Spinal Cord Repair, The Ohio State University , Columbus, Ohio
| | - Jessica K Lerch
- 3 Center for Brain and Spinal Cord Repair, The Ohio State University , Columbus, Ohio.,4 Department of Neuroscience, The Ohio State University , Columbus, Ohio
| | - Tyler T Thaxton
- 2 School of Health and Rehabilitation Sciences, The Ohio State University , Columbus, Ohio.,3 Center for Brain and Spinal Cord Repair, The Ohio State University , Columbus, Ohio
| | - Rochelle J Deibert
- 2 School of Health and Rehabilitation Sciences, The Ohio State University , Columbus, Ohio.,3 Center for Brain and Spinal Cord Repair, The Ohio State University , Columbus, Ohio
| | - Lesley C Fisher
- 2 School of Health and Rehabilitation Sciences, The Ohio State University , Columbus, Ohio.,3 Center for Brain and Spinal Cord Repair, The Ohio State University , Columbus, Ohio
| | - D Michele Basso
- 2 School of Health and Rehabilitation Sciences, The Ohio State University , Columbus, Ohio.,3 Center for Brain and Spinal Cord Repair, The Ohio State University , Columbus, Ohio
| |
Collapse
|
14
|
Yin H, Jiang T, Deng X, Yu M, Xing H, Ren X. A cellular spinal cord scaffold seeded with rat adipose‑derived stem cells facilitates functional recovery via enhancing axon regeneration in spinal cord injured rats. Mol Med Rep 2017; 17:2998-3004. [PMID: 29257299 PMCID: PMC5783519 DOI: 10.3892/mmr.2017.8238] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Accepted: 09/07/2017] [Indexed: 12/14/2022] Open
Abstract
Spinal cord injury (SCI), usually resulting in severe sensory and motor deficits, is a major public health concern. Adipose-derived stem cells (ADSCs), one type of adult stem cell, are free from ethical restriction, easily isolated and enriched. Therefore, ADSCs may provide a feasible cell source for cell-based therapies in treatment of SCI. The present study successfully isolated rat ADSCs (rADSCs) from Sprague-Dawley male rats and co-cultured them with acellular spinal cord scaffolds (ASCs). Then, a rat spinal cord hemisection model was built and rats were randomly divided into 3 groups: SCI only, ASC only, and ASC + ADSCs. Furthermore, behavioral tests were conducted to evaluate functional recovery. Hematoxylin & Eosin staining and immunofluorence were carried out to assess histopathological remodeling. In addition, biotinylated dextran amines anterograde tracing was employed to visualize axon regeneration. The data demonstrated that harvested cells, which were positive for cell surface antigen cluster of differentiation (CD) 29, CD44 and CD90 and negative for CD4, detected by flow cytometry analysis, held the potential to differentiate into osteocytes and adipocytes. Rats that received transplantation of ASCs seeded with rADSCs benefited greatly in functional recovery through facilitation of histopathological rehabilitation, axon regeneration and reduction of reactive gliosis. rADSCs co-cultured with ASCs may survive and integrate into the host spinal cord on day 14 post-SCI.
Collapse
Affiliation(s)
- Hong Yin
- Department of Orthopedics, Xinqiao Hospital, The Third Military Medical University, Chongqing 400037, P.R. China
| | - Tao Jiang
- Department of Orthopedics, Xinqiao Hospital, The Third Military Medical University, Chongqing 400037, P.R. China
| | - Xi Deng
- Department of Ultrasound, Xinqiao Hospital, The Third Military Medical University, Chongqing 400037, P.R. China
| | - Miao Yu
- Department of Orthopedics, Xinqiao Hospital, The Third Military Medical University, Chongqing 400037, P.R. China
| | - Hui Xing
- Department of Orthopedics, Xinqiao Hospital, The Third Military Medical University, Chongqing 400037, P.R. China
| | - Xianjun Ren
- Department of Orthopedics, Xinqiao Hospital, The Third Military Medical University, Chongqing 400037, P.R. China
| |
Collapse
|