1
|
Landon SM, Holder E, Ng A, Wood R, Gutierrez Kuri E, Pinto L, Humayun S, Macpherson LJ. Maintenance of taste receptor cell presynaptic sites requires gustatory nerve fibers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.28.604832. [PMID: 39211150 PMCID: PMC11360969 DOI: 10.1101/2024.07.28.604832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The turnover and re-establishment of peripheral taste synapses is vital to maintain connectivity between the primary taste receptor cells and the gustatory neurons which relay taste information from the tongue to the brain. Despite the importance of neuron-taste cell reconnection, mechanisms governing synapse assembly and the specificity of synaptic connections is largely unknown. Here we use the expression of presynaptic proteins, CALHM1 and Bassoon, to probe whether nerve fiber connectivity is an initiating factor for the recruitment of presynaptic machinery in different populations of taste cells. Under homeostatic conditions, the vast majority (>90%) of presynaptic sites are directly adjacent to nerve fibers. In the days immediately following gustatory nerve transection and complete denervation, Bassoon and CALHM1 puncta are markedly reduced. This suggests that nerve fiber innervation is crucial for the recruitment and maintenance of presynaptic sites. In support of this, we find that expression of Bassoon and Calhm1 mRNA transcripts are significantly reduced after denervation. During nerve fiber regeneration into the taste bud, presynaptic sites begin to replenish, but are not as frequently connected to nerve fibers as intact controls (∼50% compared to >90%). This suggests that gustatory neuron proximity, rather than direct contact, likely drives taste receptor cells to express and aggregate presynaptic proteins at the cell membrane. Together, these data support the idea that trophic factors secreted by gustatory nerve fibers prompt taste receptor cells to produce presynaptic specializations at the cell membrane, which in turn may guide neurons to form mature synapses. These findings provide new insights into the mechanisms driving synaptogenesis and synaptic plasticity within the rapidly changing taste bud environment.
Collapse
|
2
|
Landon SM, Baker K, Macpherson LJ. Give-and-take of gustation: the interplay between gustatory neurons and taste buds. Chem Senses 2024; 49:bjae029. [PMID: 39078723 PMCID: PMC11315769 DOI: 10.1093/chemse/bjae029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2024] Open
Abstract
Mammalian taste buds are highly regenerative and can restore themselves after normal wear and tear of the lingual epithelium or following physical and chemical insults, including burns, chemotherapy, and nerve injury. This is due to the continual proliferation, differentiation, and maturation of taste progenitor cells, which then must reconnect with peripheral gustatory neurons to relay taste signals to the brain. The turnover and re-establishment of peripheral taste synapses are vital to maintain this complex sensory system. Over the past several decades, the signal transduction and neurotransmitter release mechanisms within taste cells have been well delineated. However, the complex dynamics between synaptic partners in the tongue (taste cell and gustatory neuron) are only partially understood. In this review, we highlight recent findings that have improved our understanding of the mechanisms governing connectivity and signaling within the taste bud and the still-unresolved questions regarding the complex interactions between taste cells and gustatory neurons.
Collapse
Affiliation(s)
- Shannon M Landon
- Department of Neuroscience, Developmental and Regenerative Biology, The University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, United States
| | - Kimberly Baker
- Department of Neuroscience, Developmental and Regenerative Biology, The University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, United States
- 59th Medical Wing: Surgical and Technological Advancements for Traumatic Injuries in Combat: 204 Wagner Ave, San Antonio, TX 78211, United States
| | - Lindsey J Macpherson
- Department of Neuroscience, Developmental and Regenerative Biology, The University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, United States
- Brain Health Consortium, The University of Texas at San Antonio, San Antonio, TX, United States
| |
Collapse
|
3
|
Dong G, Kogan S, Venugopal N, Chang E, He L, Faal F, Shi Y, Phillips McCluskey L. Interleukin (IL)-1 Receptor Signaling Is Required for Complete Taste Bud Regeneration and the Recovery of Neural Taste Responses following Axotomy. J Neurosci 2023; 43:3439-3455. [PMID: 37015809 PMCID: PMC10184746 DOI: 10.1523/jneurosci.1355-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 03/03/2023] [Accepted: 03/07/2023] [Indexed: 04/06/2023] Open
Abstract
Experimental or traumatic nerve injury causes the degeneration of associated taste buds. Unlike most sensory systems, the sectioned nerve and associated taste buds can then regenerate, restoring neural responses to tastants. It was previously unknown whether injury-induced immune factors mediate this process. The proinflammatory cytokines, interleukin (IL)-1α and IL-1β, and their requisite receptor are strongly expressed by anterior taste buds innervated by the chorda tympani nerve. We tested taste bud regeneration and functional recovery in mice lacking the IL-1 receptor. After axotomy, the chorda tympani nerve regenerated but was initially unresponsive to tastants in both WT and Il1r KO mice. In the absence of Il1r signaling, however, neural taste responses remained minimal even >8 weeks after injury in both male and female mice, whereas normal taste function recovered by 3 weeks in WT mice. Failed recovery was because of a 57.8% decrease in regenerated taste buds in Il1r KO compared with WT axotomized mice. Il1a gene expression was chronically dysregulated, and the subset of regenerated taste buds were reinnervated more slowly and never reached full volume as progenitor cell proliferation lagged in KO mice. Il1r signaling is thus required for complete taste bud regeneration and the recovery of normal taste transmission, likely by impairing taste progenitor cell proliferation. This is the first identification of a cytokine response that promotes taste recovery. The remarkable plasticity of the taste system makes it ideal for identifying injury-induced mechanisms mediating successful regeneration and recovery.SIGNIFICANCE STATEMENT Taste plays a critical role in nutrition and quality of life. The adult taste system is highly plastic and able to regenerate following the disappearance of most taste buds after experimental nerve injury. Several growth factors needed for taste bud regeneration have been identified, but we demonstrate the first cytokine pathway required for the recovery of taste function. In the absence of IL-1 cytokine signaling, taste bud regeneration is incomplete, preventing the transmission of taste activity to the brain. These results open a new direction in revealing injury-specific mechanisms that could be harnessed to promote the recovery of taste perception after trauma or disease.
Collapse
Affiliation(s)
- Guangkuo Dong
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia 30912
| | - Schuyler Kogan
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia 30912
| | - Natasha Venugopal
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia 30912
| | - Eddy Chang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia 30912
| | - Lianying He
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia 30912
| | - Fama Faal
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia 30912
| | - Yang Shi
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia 30912
- Division of Biostatistics and Data Science, Department of Population Health Sciences, Medical College of Georgia, Augusta University, Augusta, Georgia 30912
| | - Lynnette Phillips McCluskey
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia 30912
| |
Collapse
|
4
|
Padalhin A, Abueva C, Park SY, Ryu HS, Lee H, Kim JI, Chung PS, Woo SH. Recovery of sweet taste preference in adult rats following bilateral chorda tympani nerve transection. PeerJ 2022; 10:e14455. [PMID: 36452076 PMCID: PMC9703994 DOI: 10.7717/peerj.14455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 11/02/2022] [Indexed: 11/26/2022] Open
Abstract
Background Numerous studies have noted the effect of chorda tympani (CT) nerve transection on taste sensitivity yet very few have directly observed its effects on taste receptor and taste signaling protein expressions in the tongue tissue. Methods In this study, bilateral CT nerve transection was performed in adult Sprague Dawley rats after establishing behavioral taste preference for sweet, bitter, and salty taste via short term two-bottle preference testing using a lickometer setup. Taste preference for all animals were subsequently monitored. The behavioral testing was paired with tissue sampling and protein expression analysis. Paired groups of CT nerve transected animals (CTX) and sham operated animals (SHAM) were sacrificed 7, 14, and 28 days post operation. Results Immunofluorescence staining of extracted tongue tissues shows that CT nerve transection resulted in micro-anatomical changes akin to previous investigations. Among the three taste qualities tested, only the preference for sweet taste was drastically affected. Subsequent results of the short-term two-bottle preference test indicated recovery of sweet taste preference over the course of 28 days. This recovery could possibly be due to maintenance of T1R3, GNAT3, and TRPM5 proteins allowing adaptable recovery of sweet taste preference despite down-regulation of both T1R2 and Sonic hedgehog proteins in CTX animals. This study is the first known attempt to correlate the disruption in taste preference with the altered expression of taste receptors and taste signaling proteins in the tongue brought about by CT nerve transection.
Collapse
Affiliation(s)
- Andrew Padalhin
- Beckman Laser Institute Korea, College of Medicine, Dankook University, Cheonan, Chungcheongnam-do, Republic of Korea
| | - Celine Abueva
- Beckman Laser Institute Korea, College of Medicine, Dankook University, Cheonan, Chungcheongnam-do, Republic of Korea,Medical Laser Research Center, Dankook University, Cheonan, Chungcheongnam-do, Republic of Korea
| | - So Young Park
- Beckman Laser Institute Korea, College of Medicine, Dankook University, Cheonan, Chungcheongnam-do, Republic of Korea
| | - Hyun Seok Ryu
- Interdisciplinary Program for Medical Laser, College of Medicine, Dankook University, Cheonan, Chungcheongnam-do, Republic of Korea
| | - Hayoung Lee
- Interdisciplinary Program for Medical Laser, College of Medicine, Dankook University, Cheonan, Chungcheongnam-do, Republic of Korea
| | - Jae Il Kim
- Department of Neurology, Dankook University College of Medicine, Dankook University Hospital, Cheonan, Chungcheongnam-do, Republic of Korea
| | - Phil-Sang Chung
- Beckman Laser Institute Korea, College of Medicine, Dankook University, Cheonan, Chungcheongnam-do, Republic of Korea,Medical Laser Research Center, Dankook University, Cheonan, Chungcheongnam-do, Republic of Korea,Department of Otorhinolaryngology‐Head and Neck Surgery, Dankook University College of Medicine, Cheonan, Chungcheonam-do, Republic of Korea
| | - Seung Hoon Woo
- Beckman Laser Institute Korea, College of Medicine, Dankook University, Cheonan, Chungcheongnam-do, Republic of Korea,Medical Laser Research Center, Dankook University, Cheonan, Chungcheongnam-do, Republic of Korea,Department of Otorhinolaryngology‐Head and Neck Surgery, Dankook University College of Medicine, Cheonan, Chungcheonam-do, Republic of Korea
| |
Collapse
|
5
|
Lakshmanan HG, Miller E, White-Canale A, McCluskey LP. Immune responses in the injured olfactory and gustatory systems: a role in olfactory receptor neuron and taste bud regeneration? Chem Senses 2022; 47:bjac024. [PMID: 36152297 PMCID: PMC9508897 DOI: 10.1093/chemse/bjac024] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Sensory cells that specialize in transducing olfactory and gustatory stimuli are renewed throughout life and can regenerate after injury unlike their counterparts in the mammalian retina and auditory epithelium. This uncommon capacity for regeneration offers an opportunity to understand mechanisms that promote the recovery of sensory function after taste and smell loss. Immune responses appear to influence degeneration and later regeneration of olfactory sensory neurons and taste receptor cells. Here we review surgical, chemical, and inflammatory injury models and evidence that immune responses promote or deter chemosensory cell regeneration. Macrophage and neutrophil responses to chemosensory receptor injury have been the most widely studied without consensus on their net effects on regeneration. We discuss possible technical and biological reasons for the discrepancy, such as the difference between peripheral and central structures, and suggest directions for progress in understanding immune regulation of chemosensory regeneration. Our mechanistic understanding of immune-chemosensory cell interactions must be expanded before therapies can be developed for recovering the sensation of taste and smell after head injury from traumatic nerve damage and infection. Chemosensory loss leads to decreased quality of life, depression, nutritional challenges, and exposure to environmental dangers highlighting the need for further studies in this area.
Collapse
Affiliation(s)
- Hari G Lakshmanan
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Elayna Miller
- Department of Medical Illustration, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - AnnElizabeth White-Canale
- Department of Medical Illustration, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Lynnette P McCluskey
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| |
Collapse
|
6
|
Ohman LC, Krimm RF. Whole-Mount Staining, Visualization, and Analysis of Fungiform, Circumvallate, and Palate Taste Buds. JOURNAL OF VISUALIZED EXPERIMENTS : JOVE 2021:10.3791/62126. [PMID: 33645587 PMCID: PMC8785251 DOI: 10.3791/62126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Taste buds are collections of taste-transducing cells specialized to detect subsets of chemical stimuli in the oral cavity. These transducing cells communicate with nerve fibers that carry this information to the brain. Because taste-transducing cells continuously die and are replaced throughout adulthood, the taste-bud environment is both complex and dynamic, requiring detailed analyses of its cell types, their locations, and any physical relationships between them. Detailed analyses have been limited by tongue-tissue heterogeneity and density that have significantly reduced antibody permeability. These obstacles require sectioning protocols that result in splitting taste buds across sections so that measurements are only approximated, and cell relationships are lost. To overcome these challenges, the methods described herein involve collecting, imaging, and analyzing whole taste buds and individual terminal arbors from three taste regions: fungiform papillae, circumvallate papillae, and the palate. Collecting whole taste buds reduces bias and technical variability and can be used to report absolute numbers for features including taste-bud volume, total taste-bud innervation, transducing-cell counts, and the morphology of individual terminal arbors. To demonstrate the advantages of this method, this paper provides comparisons of taste bud and innervation volumes between fungiform and circumvallate taste buds using a general taste-bud marker and a label for all taste fibers. A workflow for the use of sparse-cell genetic labeling of taste neurons (with labeled subsets of taste-transducing cells) is also provided. This workflow analyzes the structures of individual taste-nerve arbors, cell type numbers, and the physical relationships between cells using image analysis software. Together, these workflows provide a novel approach for tissue preparation and analysis of both whole taste buds and the complete morphology of their innervating arbors.
Collapse
Affiliation(s)
- Lisa C. Ohman
- Anatomical Sciences and Neurobiology, University of Louisville
| | - Robin F. Krimm
- Anatomical Sciences and Neurobiology, University of Louisville
| |
Collapse
|
7
|
Hedgehog Signaling Regulates Taste Organs and Oral Sensation: Distinctive Roles in the Epithelium, Stroma, and Innervation. Int J Mol Sci 2019; 20:ijms20061341. [PMID: 30884865 PMCID: PMC6471208 DOI: 10.3390/ijms20061341] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 02/19/2019] [Accepted: 03/05/2019] [Indexed: 12/21/2022] Open
Abstract
The Hedgehog (Hh) pathway has regulatory roles in maintaining and restoring lingual taste organs, the papillae and taste buds, and taste sensation. Taste buds and taste nerve responses are eliminated if Hh signaling is genetically suppressed or pharmacologically inhibited, but regeneration can occur if signaling is reactivated within the lingual epithelium. Whereas Hh pathway disruption alters taste sensation, tactile and cold responses remain intact, indicating that Hh signaling is modality-specific in regulation of tongue sensation. However, although Hh regulation is essential in taste, the basic biology of pathway controls is not fully understood. With recent demonstrations that sonic hedgehog (Shh) is within both taste buds and the innervating ganglion neurons/nerve fibers, it is compelling to consider Hh signaling throughout the tongue and taste organ cell and tissue compartments. Distinctive signaling centers and niches are reviewed in taste papilla epithelium, taste buds, basal lamina, fibroblasts and lamellipodia, lingual nerves, and sensory ganglia. Several new roles for the innervation in lingual Hh signaling are proposed. Hh signaling within the lingual epithelium and an intact innervation each is necessary, but only together are sufficient to sustain and restore taste buds. Importantly, patients who use Hh pathway inhibiting drugs confront an altered chemosensory world with loss of taste buds and taste responses, intact lingual touch and cold sensation, and taste recovery after drug discontinuation.
Collapse
|
8
|
Martin LJ, Lane AH, Samson KK, Sollars SI. Regenerative Failure Following Rat Neonatal Chorda Tympani Transection is Associated with Geniculate Ganglion Cell Loss and Terminal Field Plasticity in the Nucleus of the Solitary Tract. Neuroscience 2019; 402:66-77. [PMID: 30684590 DOI: 10.1016/j.neuroscience.2019.01.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 01/08/2019] [Accepted: 01/11/2019] [Indexed: 10/27/2022]
Abstract
Neural insult during development results in recovery outcomes that vary dependent upon the system under investigation. Nerve regeneration does not occur if the rat gustatory chorda tympani nerve is sectioned (CTX) during neonatal (≤P10) development. It is unclear how chorda tympani soma and terminal fields are affected after neonatal CTX. The current study determined the impact of neonatal CTX on chorda tympani neurons and brainstem gustatory terminal fields. To assess terminal field volume in the nucleus of the solitary tract (NTS), rats received CTX at P5 or P10 followed by chorda tympani label, or glossopharyngeal (GL) and greater superficial petrosal (GSP) label as adults. In another group of animals, terminal field volumes and numbers of chorda tympani neurons in the geniculate ganglion (GG) were determined by labeling the chorda tympani with DiI at the time of CTX in neonatal (P5) and adult (P50) rats. There was a greater loss of chorda tympani neurons following P5 CTX compared to adult denervation. Chorda tympani terminal field volume was dramatically reduced 50 days after P5 or P10 CTX. Lack of nerve regeneration after neonatal CTX is not caused by ganglion cell death alone, as approximately 30% of chorda tympani neurons survived into adulthood. Although the total field volume of intact gustatory nerves was not altered, the GSP volume and GSP-GL overlap increased in the dorsal NTS after CTX at P5, but not P10, demonstrating age-dependent plasticity. Our findings indicate that the developing gustatory system is highly plastic and simultaneously vulnerable to injury.
Collapse
Affiliation(s)
- Louis J Martin
- Department of Psychology, University of Nebraska at Omaha, Omaha, NE, USA
| | - Amy H Lane
- Department of Psychology, University of Nebraska at Omaha, Omaha, NE, USA
| | - Kaeli K Samson
- Department of Psychology, University of Nebraska at Omaha, Omaha, NE, USA
| | - Suzanne I Sollars
- Department of Psychology, University of Nebraska at Omaha, Omaha, NE, USA.
| |
Collapse
|
9
|
Meng L, Liu B, Ji R, Jiang X, Yan X, Xin Y. Targeting the BDNF/TrkB pathway for the treatment of tumors. Oncol Lett 2018; 17:2031-2039. [PMID: 30675270 DOI: 10.3892/ol.2018.9854] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 12/12/2018] [Indexed: 12/12/2022] Open
Abstract
Neurotrophins are a family of growth factors that regulate neural survival, development, function and plasticity in the central and the peripheral nervous system. There are four neurotrophins: nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3) and NT-4. Among them, BDNF is the most studied due to its high expression in the brain. Over the past two decades, BDNF and its receptor tropomyosin receptor kinase B (TrkB) have been reported to be upregulated in a wide range of tumors. This activated signal stimulates a series of downstream pathways, including phosphoinositide 3-kinase/protein kinase B, Ras-Raf-mitogen activated protein kinase kinase-extracellular signal-regulated kinases, the phospholipase-C-γ pathway and the transactivation of epidermal growth factor receptor. Activation of these signaling pathways induces oncogenic effects by increasing cancer cell growth, proliferation, survival, migration and epithelial to mesenchymal transition, and decreasing anoikis, relapse and chemotherapeutic sensitivity. The present review summarizes recent findings to discuss the role of BDNF in tumors, the underlying molecular mechanism, targeting Trk receptors for treatment of cancers and its potential risk.
Collapse
Affiliation(s)
- Lingbin Meng
- Department of Internal Medicine, Florida Hospital, Orlando, FL 32803, USA
| | - Baoqiong Liu
- Department of Internal Medicine, Florida Hospital, Orlando, FL 32803, USA
| | - Rui Ji
- Department of Biology, Valencia College, Orlando, FL 32825, USA
| | - Xin Jiang
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Xuebo Yan
- Department of Respiratory Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230000, P.R. China
| | - Ying Xin
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
10
|
Zhang Y, Shi S, Xu Q, Zhang Q, Shanti RM, Le AD. SIS-ECM Laden with GMSC-Derived Exosomes Promote Taste Bud Regeneration. J Dent Res 2018; 98:225-233. [PMID: 30335555 DOI: 10.1177/0022034518804531] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Oral cancer has a high annual incidence rate all over the world, and the tongue is the most frequently affected anatomic structure. The current standard care is ablative surgery of malignant neoplasm, followed by tongue reconstruction with free flap. However, such reconstructive modalities with postsurgery radiotherapy or chemotherapy can hardly support the functional recovery of the tongue-particularly, functional taste bud regeneration-in reconstructed areas, thus seriously affecting patients' prognosis and life quality. Using a critical-sized tongue defect model in rats, we show that combinatory transplantation of small intestinal submucosa-extracellular matrix (SIS-ECM) with gingival mesenchymal stem cells (GMSCs) or their derivative exosomes promoted tongue lingual papillae recovery and taste bud regeneration as evidenced by increased expression of CK14, CK8, and markers for type I, II, and III taste bud cells (NTPdase 2, PLC-β2, and AADC, respectively). In addition, our results indicate that GMSCs or their derivative exosomes could increase BDNF expression, a growth factor that plays an important role in the proliferation and differentiation of epithelial basal progenitor cells into taste bud cells. Meanwhile, we showed an elevated expression level of Shh-which is essential for development, homeostasis, and maintenance of the taste bud organ-in wounded areas of the tongue among animals treated with GMSC/SIS-ECM or exosome/SIS-ECM as compared with SIS-ECM control. Moreover, our data show that GMSCs or their derivative exosomes promoted innervation of regenerated taste buds, as evidenced by elevated expressions of neurofilament and P2X3 at the injury areas. Together, our findings indicate that GMSC/SIS-ECM and exosome/SIS-ECM constructs can facilitate taste bud regeneration and reinnervation with promising potential application in postsurgery tongue reconstruction of patients with tongue cancer.
Collapse
Affiliation(s)
- Y Zhang
- 1 Department of Oral and Maxillofacial Surgery and Pharmacology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA.,2 Department of Orthodontics, West China School of Stomatology, Sichuan University, Chengdu, China
| | - S Shi
- 1 Department of Oral and Maxillofacial Surgery and Pharmacology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Q Xu
- 1 Department of Oral and Maxillofacial Surgery and Pharmacology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Q Zhang
- 1 Department of Oral and Maxillofacial Surgery and Pharmacology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - R M Shanti
- 1 Department of Oral and Maxillofacial Surgery and Pharmacology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA.,3 Department of Otorhinolaryngology-Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,4 Department of Oral and Maxillofacial Surgery, Penn Medicine Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - A D Le
- 1 Department of Oral and Maxillofacial Surgery and Pharmacology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA.,4 Department of Oral and Maxillofacial Surgery, Penn Medicine Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
11
|
Biphasic functions for the GDNF-Ret signaling pathway in chemosensory neuron development and diversification. Proc Natl Acad Sci U S A 2017; 115:E516-E525. [PMID: 29282324 PMCID: PMC5776963 DOI: 10.1073/pnas.1708838115] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
While knowledge of signaling mechanisms orchestrating the development and diversification of peripheral somatosensory neurons is extensive, our understanding of the mechanisms controlling chemosensory neuron specification remains rudimentary. Lingually projecting sensory neurons of the geniculate ganglion are receptive to the five taste qualities, as well as temperature and tactile stimuli, but the mechanisms responsible for the diversification of the unique subpopulations that respond to one, or several, of these stimuli remain unknown. Here we demonstrate that the GDNF-Ret signaling pathway exerts a unique, dual function in peripheral taste system development and postnatal function. Ret acts embryonically to regulate the expression of the chemosensory master regulator Phox2b, thus inducing chemosensory differentiation, while postnatally acting to specify a molecularly unique subpopulation of lingual mechanoreceptors. The development of the taste system relies on the coordinated regulation of cues that direct the simultaneous development of both peripheral taste organs and innervating sensory ganglia, but the underlying mechanisms remain poorly understood. In this study, we describe a novel, biphasic function for glial cell line-derived neurotrophic factor (GDNF) in the development and subsequent diversification of chemosensory neurons within the geniculate ganglion (GG). GDNF, acting through the receptor tyrosine kinase Ret, regulates the expression of the chemosensory fate determinant Phox2b early in GG development. Ret−/− mice, but not Retfx/fx; Phox2b-Cre mice, display a profound loss of Phox2b expression with subsequent chemosensory innervation deficits, indicating that Ret is required for the initial amplification of Phox2b expression but not its maintenance. Ret expression is extinguished perinatally but reemerges postnatally in a subpopulation of large-diameter GG neurons expressing the mechanoreceptor marker NF200 and the GDNF coreceptor GFRα1. Intriguingly, we observed that ablation of these neurons in adult Ret-Cre/ERT2; Rosa26LSL-DTA mice caused a specific loss of tactile, but not chemical or thermal, electrophysiological responses. Overall, the GDNF-Ret pathway exerts two critical and distinct functions in the peripheral taste system: embryonic chemosensory cell fate determination and the specification of lingual mechanoreceptors.
Collapse
|
12
|
Ohman-Gault L, Huang T, Krimm R. The transcription factor Phox2b distinguishes between oral and non-oral sensory neurons in the geniculate ganglion. J Comp Neurol 2017; 525:3935-3950. [PMID: 28856690 DOI: 10.1002/cne.24312] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 08/04/2017] [Accepted: 08/08/2017] [Indexed: 02/01/2023]
Abstract
Many basic characteristics of gustatory neurons remain unknown, partly due to the absence of specific markers. Some neurons in the geniculate ganglion project to taste regions in the oral cavity, whereas others innervate the outer ear. We hypothesized that the transcription factor Phox2b would identify oral cavity-projecting neurons in the geniculate ganglion. To test this possibility, we characterized mice in which Phox2b-Cre mediated gene recombination labeled neurons with tdTomato. Nerve labeling revealed that all taste neurons projecting through the chorda tympani (27%) and greater superficial petrosal nerves (15%) expressed Phox2b during development, whereas non-oral somatosensory neurons (58%) in the geniculate ganglion did not. We found tdTomato-positive innervation within all taste buds. Most (57%) of the fungiform papillae had labeled innervation only in taste buds, whereas 43% of the fungiform papillae also had additional labeled innervation to the papilla epithelium. Chorda tympani nerve transection eliminated all labeled innervation to taste buds, but most of the additional innervation in the fungiform papillae remained. Some of these additional fibers also expressed tyrosine hydroxylase, suggesting a sympathetic origin. Consistent with this, both sympathetic and parasympathetic fibers innervating blood vessels and salivary glands contained tdTomato labeling. Phox2b-tdTomato labels nerve fascicles in the tongue of the developing embryo and demonstrates a similar stereotyped branching pattern DiI-labeling.
Collapse
Affiliation(s)
- Lisa Ohman-Gault
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky
| | - Tao Huang
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky
| | - Robin Krimm
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky
| |
Collapse
|
13
|
Tang T, Rios-Pilier J, Krimm R. Taste bud-derived BDNF maintains innervation of a subset of TrkB-expressing gustatory nerve fibers. Mol Cell Neurosci 2017; 82:195-203. [PMID: 28600222 DOI: 10.1016/j.mcn.2017.06.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 05/08/2017] [Accepted: 06/05/2017] [Indexed: 02/07/2023] Open
Abstract
Taste receptor cells transduce different types of taste stimuli and transmit this information to gustatory neurons that carry it to the brain. Taste receptor cells turn over continuously in adulthood, requiring constant new innervation from nerve fibers. Therefore, the maintenance of innervation to taste buds is an active process mediated by many factors, including brain-derived neurotrophic factor (BDNF). Specifically, 40% of taste bud innervation is lost when Bdnf is removed during adulthood. Here we speculated that not all gustatory nerve fibers express the BDNF receptor, TrkB, resulting in subsets of neurons that vary in their response to BDNF. However, it is also possible that the partial loss of innervation occurred because the Bdnf gene was not effectively removed. To test these possibilities, we first determined that not all gustatory nerve fibers express the TrkB receptor in adult mice. We then verified the efficiency of Bdnf removal specifically in taste buds of K14-CreER:Bdnf mice and found that Bdnf expression was reduced to 1%, indicating efficient Bdnf gene recombination. BDNF removal resulted in a 55% loss of TrkB-expressing nerve fibers, which was greater than the loss of P2X3-positive fibers (39%), likely because taste buds were innervated by P2X3+/TrkB- fibers that were unaffected by BDNF removal. We conclude that gustatory innervation consists of both TrkB-positive and TrkB-negative taste fibers and that BDNF is specifically important for maintaining TrkB-positive innervation to taste buds. In addition, although taste bud size was not affected by inducible Bdnf removal, the expression of the γ subunit of the ENaC channel was reduced. So, BDNF may regulate expression of some molecular components of taste transduction pathways.
Collapse
Affiliation(s)
- Tao Tang
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Jennifer Rios-Pilier
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Robin Krimm
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY 40292, USA.
| |
Collapse
|