1
|
Liu X, Zhang X, Wang D, Cao Y, Zhang L, Li Z, Zhang Q, Shen Y, Lu X, Fan K, Liu M, Wei J, Hu S, Liu H. A Neural Circuit From Paraventricular Nucleus of the Thalamus to the Nucleus Accumbens Mediates Inflammatory Pain in Mice. Brain Behav 2025; 15:e70218. [PMID: 39740781 DOI: 10.1002/brb3.70218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 11/22/2024] [Accepted: 12/01/2024] [Indexed: 01/02/2025] Open
Abstract
BACKGROUND Pain is a prevalent comorbidity in numerous clinical conditions and causes suffering; however, the mechanism of pain is intricate, and the neural circuitry underlying pain in the brain remains incompletely elucidated. More research into the perception and modulation of pain within the central nervous system is essential. The nucleus accumbens (NAc) plays a pivotal role in the regulation of animal behavior, and extensive research has unequivocally demonstrated its significant involvement in the occurrence and development of pain. NAc receives projections from various other neural nuclei within the brain, including the paraventricular nucleus of the thalamus (PVT). In this experiment, we demonstrate that the specific glutamatergic neural circuit projection from PVT to NAc (PVTGlut→NAc) is implicated in the modulation of inflammatory pain in mice. METHODS We compared the difference in pain thresholds between complete Freund's adjuvant (CFA)-induced inflammatory pain models and controls. Then in a well-established mouse model of CFA-induced inflammatory pain, immunofluorescence staining was utilized to evaluate changes in c-Fos protein expression within PVT neurons. To investigate the role of PVTGlut→NAc in the modulation of pain, we used optogenetics to modulate this neural circuit, and nociceptive behavioral tests were employed to investigate the functional role of the PVTGlut→NAc circuit in the modulation of inflammatory pain. RESULTS In the mice with the inflammatory pain group, both the paw withdrawal latencies (PWLs) and paw withdrawal thresholds (PWTs) of the right hind paw were decreased compared to the control group. In addition, compared to the control group, CFA-induced inflammatory pain led to increased c-Fos protein expression in PVT, which means that some of the neurons in this area of the brain region have been activated. Following the injection of retrograde transport fluorescent-labeled virus into NAc, glutamatergic neurons projecting from the PVT to NAc were observed, confirming the projection relationship between PVT and NAc. In the experiments in optogenetic regulation, normal mice exhibited pain behavior when the PVTGlut→NAc circuit was stimulated by a 473 nm blue laser, resulting in decreased PWLs and PWTs compared to the control group, which means activating this neural circuit can lead to painful behaviors. In the CFA-induced pain group, inhibition of the PVTGlut→NAc circuit by a 589 nm yellow laser alleviated pain behavior, leading to increased PWLs and PWTs compared to the control group, representing the fact that inhibition of this neural circuit relieves pain behaviors. CONCLUSIONS The findings unveil a pivotal role of the PVTGlut→NAc circuit in modulating inflammatory pain induced by CFA in mice.
Collapse
Affiliation(s)
- Xi Liu
- Department of Anesthesiology & Clinical Research Center for Anesthesia and Perioperative Medicine & Key Laboratory of Anesthesia and Analgesia Application Technology, Huzhou Central Hospital, The Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Huzhou, China
- Department of Anesthesiology & Clinical Research Center for Anesthesia and Perioperative Medicine & Key Laboratory of Anesthesia and Analgesia Application Technology, Huzhou Central Hospital, The Affiliated Central Hospital of Huzhou University, Huzhou, China
- Department of Anesthesiology & Clinical Research Center for Anesthesia and Perioperative Medicine & Key Laboratory of Anesthesia and Analgesia Application Technology, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou, China
- Department of Anesthesiology, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou, China
| | - Xi Zhang
- Department of Anesthesiology & Clinical Research Center for Anesthesia and Perioperative Medicine & Key Laboratory of Anesthesia and Analgesia Application Technology, Huzhou Central Hospital, The Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Huzhou, China
- Department of Anesthesiology & Clinical Research Center for Anesthesia and Perioperative Medicine & Key Laboratory of Anesthesia and Analgesia Application Technology, Huzhou Central Hospital, The Affiliated Central Hospital of Huzhou University, Huzhou, China
- Department of Anesthesiology & Clinical Research Center for Anesthesia and Perioperative Medicine & Key Laboratory of Anesthesia and Analgesia Application Technology, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou, China
- School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Dongxu Wang
- Department of Anesthesiology & Clinical Research Center for Anesthesia and Perioperative Medicine & Key Laboratory of Anesthesia and Analgesia Application Technology, Huzhou Central Hospital, The Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Huzhou, China
- Department of Anesthesiology & Clinical Research Center for Anesthesia and Perioperative Medicine & Key Laboratory of Anesthesia and Analgesia Application Technology, Huzhou Central Hospital, The Affiliated Central Hospital of Huzhou University, Huzhou, China
- Department of Anesthesiology & Clinical Research Center for Anesthesia and Perioperative Medicine & Key Laboratory of Anesthesia and Analgesia Application Technology, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou, China
| | - Ya Cao
- Department of Anesthesiology & Clinical Research Center for Anesthesia and Perioperative Medicine & Key Laboratory of Anesthesia and Analgesia Application Technology, Huzhou Central Hospital, The Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Huzhou, China
- Department of Anesthesiology & Clinical Research Center for Anesthesia and Perioperative Medicine & Key Laboratory of Anesthesia and Analgesia Application Technology, Huzhou Central Hospital, The Affiliated Central Hospital of Huzhou University, Huzhou, China
- Department of Anesthesiology & Clinical Research Center for Anesthesia and Perioperative Medicine & Key Laboratory of Anesthesia and Analgesia Application Technology, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou, China
| | - Ling Zhang
- Department of Anesthesiology & Clinical Research Center for Anesthesia and Perioperative Medicine & Key Laboratory of Anesthesia and Analgesia Application Technology, Huzhou Central Hospital, The Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Huzhou, China
- Department of Anesthesiology & Clinical Research Center for Anesthesia and Perioperative Medicine & Key Laboratory of Anesthesia and Analgesia Application Technology, Huzhou Central Hospital, The Affiliated Central Hospital of Huzhou University, Huzhou, China
- Department of Anesthesiology & Clinical Research Center for Anesthesia and Perioperative Medicine & Key Laboratory of Anesthesia and Analgesia Application Technology, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou, China
| | - Zhonghua Li
- Department of Anesthesiology & Clinical Research Center for Anesthesia and Perioperative Medicine & Key Laboratory of Anesthesia and Analgesia Application Technology, Huzhou Central Hospital, The Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Huzhou, China
- Department of Anesthesiology & Clinical Research Center for Anesthesia and Perioperative Medicine & Key Laboratory of Anesthesia and Analgesia Application Technology, Huzhou Central Hospital, The Affiliated Central Hospital of Huzhou University, Huzhou, China
- Department of Anesthesiology & Clinical Research Center for Anesthesia and Perioperative Medicine & Key Laboratory of Anesthesia and Analgesia Application Technology, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou, China
| | - Qin Zhang
- Department of Anesthesiology & Clinical Research Center for Anesthesia and Perioperative Medicine & Key Laboratory of Anesthesia and Analgesia Application Technology, Huzhou Central Hospital, The Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Huzhou, China
- Department of Anesthesiology & Clinical Research Center for Anesthesia and Perioperative Medicine & Key Laboratory of Anesthesia and Analgesia Application Technology, Huzhou Central Hospital, The Affiliated Central Hospital of Huzhou University, Huzhou, China
- Department of Anesthesiology & Clinical Research Center for Anesthesia and Perioperative Medicine & Key Laboratory of Anesthesia and Analgesia Application Technology, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou, China
| | - Yu Shen
- Department of Anesthesiology & Clinical Research Center for Anesthesia and Perioperative Medicine & Key Laboratory of Anesthesia and Analgesia Application Technology, Huzhou Central Hospital, The Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Huzhou, China
- Department of Anesthesiology & Clinical Research Center for Anesthesia and Perioperative Medicine & Key Laboratory of Anesthesia and Analgesia Application Technology, Huzhou Central Hospital, The Affiliated Central Hospital of Huzhou University, Huzhou, China
- Department of Anesthesiology & Clinical Research Center for Anesthesia and Perioperative Medicine & Key Laboratory of Anesthesia and Analgesia Application Technology, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou, China
| | - Xian Lu
- Department of Anesthesiology & Clinical Research Center for Anesthesia and Perioperative Medicine & Key Laboratory of Anesthesia and Analgesia Application Technology, Huzhou Central Hospital, The Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Huzhou, China
- Department of Anesthesiology & Clinical Research Center for Anesthesia and Perioperative Medicine & Key Laboratory of Anesthesia and Analgesia Application Technology, Huzhou Central Hospital, The Affiliated Central Hospital of Huzhou University, Huzhou, China
- Department of Anesthesiology & Clinical Research Center for Anesthesia and Perioperative Medicine & Key Laboratory of Anesthesia and Analgesia Application Technology, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou, China
| | - Keyu Fan
- Department of Anesthesiology & Clinical Research Center for Anesthesia and Perioperative Medicine & Key Laboratory of Anesthesia and Analgesia Application Technology, Huzhou Central Hospital, The Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Huzhou, China
- Department of Anesthesiology & Clinical Research Center for Anesthesia and Perioperative Medicine & Key Laboratory of Anesthesia and Analgesia Application Technology, Huzhou Central Hospital, The Affiliated Central Hospital of Huzhou University, Huzhou, China
- Department of Anesthesiology & Clinical Research Center for Anesthesia and Perioperative Medicine & Key Laboratory of Anesthesia and Analgesia Application Technology, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou, China
| | - Mingxia Liu
- Department of Anesthesiology & Clinical Research Center for Anesthesia and Perioperative Medicine & Key Laboratory of Anesthesia and Analgesia Application Technology, Huzhou Central Hospital, The Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Huzhou, China
- Department of Anesthesiology & Clinical Research Center for Anesthesia and Perioperative Medicine & Key Laboratory of Anesthesia and Analgesia Application Technology, Huzhou Central Hospital, The Affiliated Central Hospital of Huzhou University, Huzhou, China
- Department of Anesthesiology & Clinical Research Center for Anesthesia and Perioperative Medicine & Key Laboratory of Anesthesia and Analgesia Application Technology, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou, China
| | - Jingqiu Wei
- Department of Anesthesiology & Clinical Research Center for Anesthesia and Perioperative Medicine & Key Laboratory of Anesthesia and Analgesia Application Technology, Huzhou Central Hospital, The Affiliated Central Hospital of Huzhou University, Huzhou, China
- Department of Anesthesiology & Clinical Research Center for Anesthesia and Perioperative Medicine & Key Laboratory of Anesthesia and Analgesia Application Technology, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou, China
- Department of Education & Training, Huzhou Central Hospital, The Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Hangzhou, China
| | - Siping Hu
- Department of Anesthesiology & Clinical Research Center for Anesthesia and Perioperative Medicine & Key Laboratory of Anesthesia and Analgesia Application Technology, Huzhou Central Hospital, The Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Huzhou, China
- Department of Anesthesiology & Clinical Research Center for Anesthesia and Perioperative Medicine & Key Laboratory of Anesthesia and Analgesia Application Technology, Huzhou Central Hospital, The Affiliated Central Hospital of Huzhou University, Huzhou, China
- Department of Anesthesiology & Clinical Research Center for Anesthesia and Perioperative Medicine & Key Laboratory of Anesthesia and Analgesia Application Technology, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou, China
| | - He Liu
- Department of Anesthesiology & Clinical Research Center for Anesthesia and Perioperative Medicine & Key Laboratory of Anesthesia and Analgesia Application Technology, Huzhou Central Hospital, The Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Huzhou, China
- Department of Anesthesiology & Clinical Research Center for Anesthesia and Perioperative Medicine & Key Laboratory of Anesthesia and Analgesia Application Technology, Huzhou Central Hospital, The Affiliated Central Hospital of Huzhou University, Huzhou, China
- Department of Anesthesiology & Clinical Research Center for Anesthesia and Perioperative Medicine & Key Laboratory of Anesthesia and Analgesia Application Technology, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou, China
| |
Collapse
|
2
|
Dedek C, Azadgoleh MA, Prescott SA. Reproducible and fully automated testing of nocifensive behavior in mice. CELL REPORTS METHODS 2023; 3:100650. [PMID: 37992707 PMCID: PMC10783627 DOI: 10.1016/j.crmeth.2023.100650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/11/2023] [Accepted: 10/30/2023] [Indexed: 11/24/2023]
Abstract
Pain in rodents is often inferred from their withdrawal from noxious stimulation. Threshold stimulus intensity or response latency is used to quantify pain sensitivity. This usually involves applying stimuli by hand and measuring responses by eye, which limits reproducibility and throughput. We describe a device that standardizes and automates pain testing by providing computer-controlled aiming, stimulation, and response measurement. Optogenetic and thermal stimuli are applied using blue and infrared light, respectively. Precise mechanical stimulation is also demonstrated. Reflectance of red light is used to measure paw withdrawal with millisecond precision. We show that consistent stimulus delivery is crucial for resolving stimulus-dependent variations in withdrawal and for testing with sustained stimuli. Moreover, substage video reveals "spontaneous" behaviors for consideration alongside withdrawal metrics to better assess the pain experience. The entire process was automated using machine learning. RAMalgo (reproducible automated multimodal algometry) improves the standardization, comprehensiveness, and throughput of preclinical pain testing.
Collapse
Affiliation(s)
- Christopher Dedek
- Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
| | - Mehdi A Azadgoleh
- Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Steven A Prescott
- Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada; Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
3
|
Hsiao IH, Liao HY, Lin YW. Optogenetic modulation of electroacupuncture analgesia in a mouse inflammatory pain model. Sci Rep 2022; 12:9067. [PMID: 35641558 PMCID: PMC9156770 DOI: 10.1038/s41598-022-12771-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 04/22/2022] [Indexed: 11/09/2022] Open
Abstract
Peripheral tissue damage and associated inflammation can trigger neuroplastic changes in somatic pain pathways, such as reduced neuronal firing thresholds and synaptic potentiation, that ultimately lead to peripheral sensitization and chronic pain. Electroacupuncture (EA) can relieve chronic inflammatory pain, but the underlying mechanisms are unknown, including the contributions of higher pain centers such as somatosensory cortex (SSC). We investigated these mechanisms using optogenetic modulation of SSC activity in a mouse inflammatory pain model. Injection of Complete Freund's Adjuvant into the hind paw reliably induced inflammation accompanied by reduced mechanical and thermal pain thresholds (hyperalgesia) within three days (mechanical: 1.54 ± 0.13 g; thermal: 3.94 ± 0.43 s). Application of EA produced significant thermal and mechanical analgesia, but these responses were reversed by optogenetic activation of SSC neurons, suggesting that EA-induced analgesia involves modulation of central pain pathways. Western blot and immunostaining revealed that EA also attenuated CaMKIIα signaling in the dorsal root ganglion, central spinal cord, SSC, and anterior cingulate cortex (ACC). In contrast, optogenetic activation of the SSC induced CaMKIIα signaling in SSC and ACC. These findings suggest that AE can relieve inflammatory pain by suppressing CaMKIIα-dependent plasticity in cortical pain pathways. The SSC and ACC CaMKIIα signaling pathways may be valuable therapeutic targets for chronic inflammatory pain treatment.
Collapse
Affiliation(s)
- I-Han Hsiao
- College of Chinese Medicine, Graduate Institute of Acupuncture Science, China Medical University, 91 Hsueh-Shih Road, Taichung, 40402, Taiwan
- Department of Neurosurgery, China Medical University Hospital, Taichung, 404332, Taiwan
| | - Hsien-Yin Liao
- College of Chinese Medicine, School of Post-Baccalaureate Chinese Medicine, China Medical University, 91 Hsueh-Shih Road, Taichung, 40402, Taiwan.
| | - Yi-Wen Lin
- College of Chinese Medicine, Graduate Institute of Acupuncture Science, China Medical University, 91 Hsueh-Shih Road, Taichung, 40402, Taiwan.
- Chinese Medicine Research Center, China Medical University, Taichung, 40402, Taiwan.
| |
Collapse
|
9
|
Tang Y, Yin HY, Liu J, Rubini P, Illes P. P2X receptors and acupuncture analgesia. Brain Res Bull 2018; 151:144-152. [PMID: 30458249 DOI: 10.1016/j.brainresbull.2018.10.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 10/13/2018] [Accepted: 10/18/2018] [Indexed: 12/20/2022]
Abstract
Purinergic signaling has recently been suggested to constitute the cellular mechanism underlying acupuncture-induced analgesia (AA). By extending the original hypothesis on endogenous opioids being released during AA, Geoffrey Burnstock and Maiken Nedergaard supplied evidence for the involvement of purinoceptors (P2 and P1/A1 receptors) in the beneficial effects of AA. In view of certain pain states (e.g. neuropathic pain) which respond only poorly to therapy with standard analgesics, as well as with respect to the numerous unwanted effects of opioids and non-steroidal anti-inflammatory drugs, it is of great significance to search for alternative therapeutic options. Because clinical studies on AA yielded sometimes heterogeneous results, it is of eminent importance to relay on experiments carried out on laboratory animals, by evaluating the data with stringent statistical methods including comparison with a sufficient number of control groups. In this review, we summarize the state of the art situation with respect to the participation of P2 receptors in AA and try to forecast how the field is likely to move forward in the future.
Collapse
Affiliation(s)
- Yong Tang
- Medical & Nursing School, Chengdu University, 610106 Chengdu, China; Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, 610075 Chengdu, China.
| | - Hai-Yan Yin
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, 610075 Chengdu, China
| | - Juan Liu
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, 610075 Chengdu, China
| | - Patrizia Rubini
- Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, Universität Leipzig, 04107 Leipzig, Germany
| | - Peter Illes
- Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, Universität Leipzig, 04107 Leipzig, Germany; Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, 610075 Chengdu, China.
| |
Collapse
|