1
|
Pérez-López DO, Shively AA, Torres FJL, Abu-Salah MT, Garcia ML, Arnold WD, Lorson MA, Lorson CL. Novel neurofilament light ( Nefl) E397K mouse models of Charcot-Marie-Tooth type 2E (CMT2E) present early and chronic axonal neuropathy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.02.636117. [PMID: 39975190 PMCID: PMC11838447 DOI: 10.1101/2025.02.02.636117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Charcot-Marie-Tooth (CMT) is the most common hereditary peripheral neuropathy with an incidence of 1:2,500. CMT2 clinical symptoms include distal muscle weakness and atrophy, sensory loss, toe and foot deformities, with some patients presenting with reduced nerve conduction velocity. Mutations in the neurofilament light chain (NEFL) gene result in a specific form of CMT2 disease, CMT2E. NEFL encodes the protein, NF-L, one of the core intermediate filament proteins that contribute to the maintenance and stability of the axonal cytoskeleton. To better understand the underlying biology of CMT2E disease and advance the development of therapeutics, we generated a Nefl +/E397K mouse model. While the Nefl +/E397K mutation is inherited in a dominant manner, we also characterized Nefl E397K/E397K mice to determine whether disease onset, progression or severity would be impacted. Consistent with CMT2E, lifespan was not altered in these novel mouse models. A longitudinal electrophysiology study demonstrated significant in vivo functional abnormalities as early as P21 in distal latency, compound muscle action potential (CMAP) amplitude and negative area. A significant reduction in the sciatic nerve axon area, diameter, and G-ratio was also present as early as P21. Evidence of axon sprouting was observed with disease progression. Through the twelve months measured, disease became more evident in all assessments. Collectively, these results demonstrate an early and robust in vivo electrophysiological phenotype and axonal pathology, making Nefl +/E397K and Nefl E397K/E397K mice ideal for the evaluation of therapeutic approaches.
Collapse
Affiliation(s)
- Dennis O. Pérez-López
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Audrey A. Shively
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA
| | - F. Javier Llorente Torres
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Mohammed T. Abu-Salah
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA
| | - Michael L. Garcia
- Department of Biological Sciences, College of Arts and Science, University of Missouri, Columbia, MO 65211, USA
| | - W. David Arnold
- Physical Medicine and Rehabilitation, School of Medicine, University of Missouri, Columbia, MO 65211, USA
- NextGen Precision Health, University of Missouri, Columbia, MO 65212, USA
| | - Monique A. Lorson
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Christian L. Lorson
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
2
|
Pérez-López DO, Shively AA, Torres FJL, Muchow R, Abu-Salah Z, Abu-Salah MT, Garcia ML, Smith CL, Nichols NL, Lorson MA, Lorson CL. The Nefl E397K mouse model demonstrates muscle pathology and motor function deficits consistent with CMT2E. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.02.636119. [PMID: 39975380 PMCID: PMC11838438 DOI: 10.1101/2025.02.02.636119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Charcot-Marie-Tooth (CMT) disease affects approximately 1 in 2,500 people and represents a heterogeneous group of inherited peripheral neuropathies characterized by progressive motor and sensory dysfunction. CMT type 2E is a result of mutations in the neurofilament light (NEFL) gene with predominantly autosomal dominant inheritance, often presenting with a progressive neuropathy with distal muscle weakness, sensory loss, gait disturbances, foot deformities, reduced nerve conduction velocity (NCV) without demyelination and typically reduced compound muscle action potential (CMAP) amplitude values. Several Nefl mouse models exist that either alter the mouse Nefl gene or overexpress a mutated human NEFL transgene, each recapitulating various aspects of CMT2E disease. We generated the orthologous NEFL E396K mutation in the mouse C57BL/6 background, Nefl E397K . In a separate report, we extensively characterized the electrophysiology deficits and axon pathology in Nefl E397K mice. In this manuscript, we report our characterization of Nefl E397K motor function deficits, muscle pathology and changes in breathing Nefl +/E397K and Nefl E397K/E397K mice demonstrated progressive motor coordination deficits and muscle weakness through the twelve months of age analyzed, consistent with our electrophysiology findings. Additionally, Nefl +/E397K and Nefl E397K/E397K mice showed alterations in muscle fiber area, diameter and composition as disease developed. Lastly, Nefl mutant mice showed increased number of apneas under normoxia conditions and increased erratic breathing as well as tidal volume under respiratory challenge conditions. Nefl E397K/E397K mice phenotypes and pathology were consistently more severe than Nefl +/E397K mice. Collectively, these novel CMT2E models present with a clinically relevant phenotype and make it an ideal model for the evaluation of therapeutics.
Collapse
Affiliation(s)
- Dennis O. Pérez-López
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Audrey A. Shively
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - F. Javier Llorente Torres
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Roxanne Muchow
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Zaid Abu-Salah
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | | | - Michael L. Garcia
- Department of Biological Sciences, College of Arts and Science, University of Missouri, Columbia, MO 65211, USA
| | - Catherine L. Smith
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA
| | - Nicole L. Nichols
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, MO, USA
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA
| | - Monique A. Lorson
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Christian L. Lorson
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
3
|
Dua PH, Simon BMJ, Marley CB, Feliciano CM, Watry HL, Steury D, Abraham A, Gilbertson EN, Ramey GD, Capra JA, Conklin BR, Judge LM. Haplotype editing with CRISPR/Cas9 as a therapeutic approach for dominant-negative missense mutations in NEFL. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.20.629813. [PMID: 39763989 PMCID: PMC11702708 DOI: 10.1101/2024.12.20.629813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2025]
Abstract
Inactivation of disease alleles by allele-specific editing is a promising approach to treat dominant-negative genetic disorders, provided the causative gene is haplo-sufficient. We previously edited a dominant NEFL missense mutation with inactivating frameshifts and rescued disease-relevant phenotypes in induced pluripotent stem cell (iPSC)-derived motor neurons. However, a multitude of different NEFL missense mutations cause disease. Here, we addressed this challenge by targeting common single-nucleotide polymorphisms in cis with NEFL disease mutations for gene excision. We validated this haplotype editing approach for two different missense mutations and demonstrated its therapeutic potential in iPSC-motor neurons. Surprisingly, our analysis revealed that gene inversion, a frequent byproduct of excision editing, failed to reliably disrupt mutant allele expression. We deployed alternative strategies and novel molecular assays to increase therapeutic editing outcomes while maintaining specificity for the mutant allele. Finally, population genetics analysis demonstrated the power of haplotype editing to enable therapeutic development for the greatest number of patients. Our data serve as an important case study for many dominant genetic disorders amenable to this approach.
Collapse
Affiliation(s)
- Poorvi H. Dua
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA
- Gladstone Institutes, San Francisco, CA, United States
| | | | - Chiara B.E. Marley
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA
- Gladstone Institutes, San Francisco, CA, United States
| | - Carissa M. Feliciano
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA
- Gladstone Institutes, San Francisco, CA, United States
| | | | - Dylan Steury
- Gladstone Institutes, San Francisco, CA, United States
- University of California, Berkeley, Berkeley, CA, USA
| | - Abin Abraham
- Vanderbilt Genetics Institute, Vanderbilt University, Nashville, TN, USA
- Vanderbilt University Medical Center, Vanderbilt University, Nashville, TN, USA
- Division of Neonatology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Erin N. Gilbertson
- Biomedical Informatics Graduate Program, University of California, San Francisco, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, CA, USA
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Grace D. Ramey
- Biomedical Informatics Graduate Program, University of California, San Francisco, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, CA, USA
| | - John A. Capra
- Bakar Computational Health Sciences Institute, University of California, San Francisco, CA, USA
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA
| | - Bruce R. Conklin
- Gladstone Institutes, San Francisco, CA, United States
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, United States
- Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
- Innovative Genomics Institute, Berkeley, CA, United States
| | - Luke M. Judge
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA
- Gladstone Institutes, San Francisco, CA, United States
| |
Collapse
|
4
|
Medina J, Rebelo A, Danzi MC, Jacobs EH, Xu IRL, Ahrens KP, Chen S, Raposo J, Yanick C, Zuchner S, Saporta MA. Customized antisense oligonucleotide-based therapy for neurofilament-associated Charcot-Marie-Tooth disease. Brain 2024; 147:4227-4239. [PMID: 39008620 PMCID: PMC11629702 DOI: 10.1093/brain/awae225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/06/2024] [Accepted: 06/13/2024] [Indexed: 07/17/2024] Open
Abstract
DNA-based therapeutics have emerged as a revolutionary approach for addressing the treatment gap in rare inherited conditions by targeting the fundamental genetic causes of disease. Charcot-Marie-Tooth (CMT) disease, a group of inherited neuropathies, represents one of the most prevalent Mendelian disease groups in neurology and is characterized by diverse genetic aetiology. Axonal forms of CMT, known as CMT2, are caused by dominant mutations in >30 different genes that lead to degeneration of lower motor neuron axons. Recent advances in antisense oligonucleotide therapeutics have shown promise in targeting neurodegenerative disorders. Here, we elucidate pathomechanistic changes contributing to variant specific molecular phenotypes in CMT2E, caused by a single nucleotide substitution (p.N98S) in the neurofilament light chain gene (NEFL). We used a patient-derived induced pluripotent stem cell-induced motor neuron model that recapitulates several cellular and biomarker phenotypes associated with CMT2E. Using an antisense oligonucleotide treatment strategy targeting a heterozygous gain-of-function variant, we aimed to resolve molecular phenotypic changes observed in the CMT2E p.N98S subtype. To determine the therapeutic potential of antisense oligonucleotide, we applied our treatment strategy in induced pluripotent stem cell-derived motor neurons and used both established and new biomarkers of peripheral nervous system axonal degeneration. Our findings demonstrated a significant decrease in clinically relevant biomarkers of axonal degeneration, presenting the first clinically viable genetic therapeutic for CMT2E. Similar strategies could be used to develop precision medicine approaches for otherwise untreatable gain-of-function inherited disorders.
Collapse
Affiliation(s)
- Jessica Medina
- Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Adriana Rebelo
- Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Matt C Danzi
- Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Elizabeth H Jacobs
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Medical Scientist Training Program, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Isaac R L Xu
- Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Kathleen P Ahrens
- Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Sitong Chen
- Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Jacquelyn Raposo
- Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Christopher Yanick
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Stephan Zuchner
- Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Mario A Saporta
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
5
|
Waltz TB, Chao D, Prodoehl EK, Enders JD, Ehlers VL, Dharanikota BS, Dahms NM, Isaeva E, Hogan QH, Pan B, Stucky CL. Fabry disease Schwann cells release p11 to induce sensory neuron hyperactivity. JCI Insight 2024; 9:e172869. [PMID: 38646936 PMCID: PMC11141882 DOI: 10.1172/jci.insight.172869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 03/05/2024] [Indexed: 04/25/2024] Open
Abstract
Patients with Fabry disease suffer from chronic debilitating pain and peripheral sensory neuropathy with minimal treatment options, but the cellular drivers of this pain are unknown. Here, we propose a mechanism we believe to be novel in which altered signaling between Schwann cells and sensory neurons underlies the peripheral sensory nerve dysfunction we observed in a genetic rat model of Fabry disease. Using in vivo and in vitro electrophysiological recordings, we demonstrated that Fabry rat sensory neurons exhibited pronounced hyperexcitability. Schwann cells probably contributed to this finding because application of mediators released from cultured Fabry Schwann cells induced spontaneous activity and hyperexcitability in naive sensory neurons. We examined putative algogenic mediators using proteomic analysis and found that Fabry Schwann cells released elevated levels of the protein p11 (S100A10), which induced sensory neuron hyperexcitability. Removal of p11 from Fabry Schwann cell media caused hyperpolarization of neuronal resting membrane potentials, indicating that p11 may contribute to the excessive neuronal excitability caused by Fabry Schwann cells. These findings demonstrate that sensory neurons from rats with Fabry disease exhibit hyperactivity caused in part by Schwann cell release of the protein p11.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Nancy M. Dahms
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Elena Isaeva
- Department of Cell Biology, Neurobiology & Anatomy
| | | | - Bin Pan
- Department of Anesthesiology; and
| | | |
Collapse
|
6
|
Chen Y, Baraz J, Xuan SY, Yang X, Castoro R, Xuan Y, Roth AR, Dortch RD, Li J. Multiparametric Quantitative MRI of Peripheral Nerves in the Leg: A Reliability Study. J Magn Reson Imaging 2024; 59:563-574. [PMID: 37191075 PMCID: PMC11188919 DOI: 10.1002/jmri.28778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/30/2023] [Accepted: 05/01/2023] [Indexed: 05/17/2023] Open
Abstract
BACKGROUND Patients with polyneuropathies typically have demyelination and/or axonal degeneration in peripheral nerves. Currently, there is a lack of imaging biomarkers to track the changes in these pathologies. PURPOSE To develop and evaluate the reliability of a multiparametric quantitative magnetic resonance imaging (qMRI) method of peripheral nerves in the leg. STUDY TYPE Prospective. SUBJECTS Seventeen healthy volunteers (36.2 ± 13.8 years old, 9 males) with 10 of them scanned twice for test-retest. FIELD STRENGTH/SEQUENCE 3 T, three-dimensional gradient echo and diffusion tensor imaging. ASSESSMENT A qMRI protocol and processing pipeline was established for quantifying the following nerve parameters that are sensitive to myelin and axonal pathologies: magnetization transfer (MT) ratio (MTR), MT saturation index (MTsat), T2 *, T1 , proton density (PD), fractional anisotropy (FA), and mean/axial/radial diffusivities (MD, AD, and RD). The qMRI protocol also measures the volume of nerve fascicles (fVOL) and the fat fraction (FF) of muscles. STATISTICAL TESTS The intersession reproducibility and inter-rater reliability of each qMRI parameter were assessed by Bland-Altman analysis and intraclass correlation coefficient (ICC). Pairwise Pearson correlation analyses were performed to investigate the intrinsic association between qMRI parameters. Distal-to-proximal variations were evaluated by paired t-tests with Bonferroni-Holm multiple comparison corrections. P < 0.05 was considered statistically significant. RESULTS The MTR, MTsat, T2 *, T1 , PD, FA, AD, and fVOL of the sciatic and tibial nerves, and the FF of leg muscles, had an overall good-to-excellent test-retest agreement (ICC varying from 0.78 to 0.99). All the qMRI parameters had good-to-excellent inter-rater reliability (ICC > 0.80). The data demonstrated a pattern of distal-to-proximal changes of an increased nerve MTsat and FA, and a decreased nerve T1 , PD, MD, and RD, as well as a significantly increased muscle FF. DATA CONCLUSION The proposed multiparametric qMRI method of the peripheral nerves is highly reproducible and provided healthy control data which will be used in developing monitoring biomarkers in patients with polyneuropathies. LEVEL OF EVIDENCE 1 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Yongsheng Chen
- Department of Neurology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Jacob Baraz
- Department of Neurology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Stephanie Yan Xuan
- Department of Neurology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Xue Yang
- Department of Neurology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Ryan Castoro
- Department of Neurology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Yang Xuan
- Department of Radiology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Alison R. Roth
- Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Richard D. Dortch
- Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Jun Li
- Department of Neurology, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Neurology, Houston Methodist Research Institute, Houston, TX, USA
| |
Collapse
|
7
|
Kotaich F, Caillol D, Bomont P. Neurofilaments in health and Charcot-Marie-Tooth disease. Front Cell Dev Biol 2023; 11:1275155. [PMID: 38164457 PMCID: PMC10758125 DOI: 10.3389/fcell.2023.1275155] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 10/02/2023] [Indexed: 01/03/2024] Open
Abstract
Neurofilaments (NFs) are the most abundant component of mature neurons, that interconnect with actin and microtubules to form the cytoskeleton. Specifically expressed in the nervous system, NFs present the particularity within the Intermediate Filament family of being formed by four subunits, the neurofilament light (NF-L), medium (NF-M), heavy (NF-H) proteins and α-internexin or peripherin. Here, we review the current knowledge on NF proteins and neurofilaments, from their domain structures and their model of assembly to the dynamics of their transport and degradation along the axon. The formation of the filament and its behaviour are regulated by various determinants, including post-transcriptional (miRNA and RBP proteins) and post-translational (phosphorylation and ubiquitination) modifiers. Altogether, the complex set of modifications enable the neuron to establish a stable but elastic NF array constituting the structural scaffold of the axon, while permitting the local expression of NF proteins and providing the dynamics necessary to fulfil local demands and respond to stimuli and injury. Thus, in addition to their roles in mechano-resistance, radial axonal outgrowth and nerve conduction, NFs control microtubule dynamics, organelle distribution and neurotransmission at the synapse. We discuss how the studies of neurodegenerative diseases with NF aggregation shed light on the biology of NFs. In particular, the NEFL and NEFH genes are mutated in Charcot-Marie-Tooth (CMT) disease, the most common inherited neurological disorder of the peripheral nervous system. The clinical features of the CMT forms (axonal CMT2E, CMT2CC; demyelinating CMT1F; intermediate I-CMT) with symptoms affecting the central nervous system (CNS) will allow us to further investigate the physiological roles of NFs in the brain. Thus, NF-CMT mouse models exhibit various degrees of sensory-motor deficits associated with CNS symptoms. Cellular systems brought findings regarding the dominant effect of NF-L mutants on NF aggregation and transport, although these have been recently challenged. Neurofilament detection without NF-L in recessive CMT is puzzling, calling for a re-examination of the current model in which NF-L is indispensable for NF assembly. Overall, we discuss how the fundamental and translational fields are feeding each-other to increase but also challenge our knowledge of NF biology, and to develop therapeutic avenues for CMT and neurodegenerative diseases with NF aggregation.
Collapse
Affiliation(s)
| | | | - Pascale Bomont
- ERC team, NeuroMyoGene Institute-Pathophysiology and Genetics of Neuron and Muscle, Inserm U1315, CNRS UMR5261, University of Lyon 1, Lyon, France
| |
Collapse
|
8
|
Rich KA, Pino MG, Yalvac ME, Fox A, Harris H, Balch MHH, Arnold WD, Kolb SJ. Impaired motor unit recovery and maintenance in a knock-in mouse model of ALS-associated Kif5a variant. Neurobiol Dis 2023; 182:106148. [PMID: 37164288 PMCID: PMC10874102 DOI: 10.1016/j.nbd.2023.106148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 05/03/2023] [Accepted: 05/07/2023] [Indexed: 05/12/2023] Open
Abstract
Kinesin family member 5A (KIF5A) is an essential, neuron-specific microtubule-associated motor protein responsible for the anterograde axonal transport of various cellular cargos. Loss of function variants in the N-terminal, microtubule-binding domain are associated with hereditary spastic paraplegia and hereditary motor neuropathy. These variants result in a loss of the ability of the mutant protein to process along microtubules. Contrastingly, gain of function splice-site variants in the C-terminal, cargo-binding domain of KIF5A are associated with amyotrophic lateral sclerosis (ALS), a neurodegenerative disease involving death of upper and lower motor neurons, ultimately leading to degradation of the motor unit (MU; an alpha motor neuron and all the myofibers it innervates) and death. These ALS-associated variants result in loss of autoinhibition, increased procession of the mutant protein along microtubules, and altered cargo binding. To study the molecular and cellular consequences of ALS-associated variants in vivo, we introduced the murine homolog of an ALS-associated KIF5A variant into C57BL/6 mice using CRISPR-Cas9 gene editing which produced mutant Kif5a mRNA and protein in neuronal tissues of heterozygous (Kif5a+/c.3005+1G>A; HET) and homozygous (Kif5ac.3005+1G>A/c.3005+1G>A; HOM) mice. HET and HOM mice appeared normal in behavioral and electrophysiological (compound muscle action potential [CMAP] and MU number estimation [MUNE]) outcome measures at one year of age. When subjected to sciatic nerve injury, HET and HOM mice have delayed and incomplete recovery of the MUNE compared to wildtype (WT) mice suggesting an impairment in MU repair. Moreover, aged mutant Kif5a mice (aged two years) had reduced MUNE independent of injury, and exacerbation of the delayed and incomplete recovery after injury compared to aged WT mice. These data suggest that ALS-associated variants may result in an impairment of the MU to respond to biological challenges such as injury and aging, leading to a failure of MU repair and maintenance. In this report, we present the behavioral, electrophysiological and pathological characterization of mice harboring an ALS-associated Kif5a variant to understand the functional consequences of KIF5A C-terminal variants in vivo.
Collapse
Affiliation(s)
- Kelly A Rich
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Megan G Pino
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Mehmet E Yalvac
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Ashley Fox
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Hallie Harris
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Maria H H Balch
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - W David Arnold
- NextGen Precision Health, University of Missouri, MO, USA; Department of Physical Medicine and Rehabilitation, University of Missouri, MO, USA
| | - Stephen J Kolb
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Department of Biological Chemistry & Pharmacology, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
| |
Collapse
|
9
|
Waltz TB, Chao D, Prodoehl EK, Ehlers VL, Dharanikota BS, Dahms NM, Isaeva E, Hogan QH, Pan B, Stucky CL. Schwann cell release of p11 induces sensory neuron hyperactivity in Fabry disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.26.542493. [PMID: 37292928 PMCID: PMC10245981 DOI: 10.1101/2023.05.26.542493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Patients with Fabry disease suffer from chronic debilitating pain and peripheral sensory neuropathy with minimal treatment options, but the cellular drivers of this pain are unknown. Here, we propose a novel mechanism by which altered signaling between Schwann cells and sensory neurons underlies the peripheral sensory nerve dysfunction we observe in a genetic rat model of Fabry disease. Using in vivo and in vitro electrophysiological recordings, we demonstrate that Fabry rat sensory neurons exhibit pronounced hyperexcitability. Schwann cells likely contribute to this finding as application of mediators released from cultured Fabry Schwann cells induces spontaneous activity and hyperexcitability in naïve sensory neurons. We examined putative algogenic mediators using proteomic analysis and found that Fabry Schwann cells release elevated levels of the protein p11 (S100-A10) which induces sensory neuron hyperexcitability. Removal of p11 from Fabry Schwann cell media causes hyperpolarization of neuronal resting membrane potential, indicating that p11 contributes to the excessive neuronal excitability caused by Fabry Schwann cells. These findings demonstrate that rats with Fabry disease exhibit sensory neuron hyperexcitability caused in part by Schwann cell release of the protein p11.
Collapse
|
10
|
Bai Y, Treins C, Volpi VG, Scapin C, Ferri C, Mastrangelo R, Touvier T, Florio F, Bianchi F, Del Carro U, Baas FF, Wang D, Miniou P, Guedat P, Shy ME, D'Antonio M. Treatment with IFB-088 Improves Neuropathy in CMT1A and CMT1B Mice. Mol Neurobiol 2022; 59:4159-4178. [PMID: 35501630 PMCID: PMC9167212 DOI: 10.1007/s12035-022-02838-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 04/09/2022] [Indexed: 11/24/2022]
Abstract
Charcot-Marie-Tooth disease type 1A (CMT1A), caused by duplication of the peripheral myelin protein 22 (PMP22) gene, and CMT1B, caused by mutations in myelin protein zero (MPZ) gene, are the two most common forms of demyelinating CMT (CMT1), and no treatments are available for either. Prior studies of the MpzSer63del mouse model of CMT1B have demonstrated that protein misfolding, endoplasmic reticulum (ER) retention and activation of the unfolded protein response (UPR) contributed to the neuropathy. Heterozygous patients with an arginine to cysteine mutation in MPZ (MPZR98C) develop a severe infantile form of CMT1B which is modelled by MpzR98C/ + mice that also show ER stress and an activated UPR. C3-PMP22 mice are considered to effectively model CMT1A. Altered proteostasis, ER stress and activation of the UPR have been demonstrated in mice carrying Pmp22 mutations. To determine whether enabling the ER stress/UPR and readjusting protein homeostasis would effectively treat these models of CMT1B and CMT1A, we administered Sephin1/IFB-088/icerguestat, a UPR modulator which showed efficacy in the MpzS63del model of CMT1B, to heterozygous MpzR98C and C3-PMP22 mice. Mice were analysed by behavioural, neurophysiological, morphological and biochemical measures. Both MpzR98C/ + and C3-PMP22 mice improved in motor function and neurophysiology. Myelination, as demonstrated by g-ratios and myelin thickness, improved in CMT1B and CMT1A mice and markers of UPR activation returned towards wild-type values. Taken together, our results demonstrate the capability of IFB-088 to treat a second mouse model of CMT1B and a mouse model of CMT1A, the most common form of CMT. Given the recent benefits of IFB-088 treatment in amyotrophic lateral sclerosis and multiple sclerosis animal models, these data demonstrate its potential in managing UPR and ER stress for multiple mutations in CMT1 as well as in other neurodegenerative diseases.
Collapse
Affiliation(s)
- Yunhong Bai
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | | | - Vera G Volpi
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute DIBIT, 20132, Milan, Italy
| | - Cristina Scapin
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute DIBIT, 20132, Milan, Italy
| | - Cinzia Ferri
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute DIBIT, 20132, Milan, Italy
| | - Rosa Mastrangelo
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute DIBIT, 20132, Milan, Italy
| | - Thierry Touvier
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute DIBIT, 20132, Milan, Italy
| | - Francesca Florio
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute DIBIT, 20132, Milan, Italy
| | - Francesca Bianchi
- Division of Neuroscience, San Raffaele Scientific Institute DIBIT, 20132, Milan, Italy
| | - Ubaldo Del Carro
- Division of Neuroscience, San Raffaele Scientific Institute DIBIT, 20132, Milan, Italy
| | - Frank F Baas
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - David Wang
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | | | | | - Michael E Shy
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Maurizio D'Antonio
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute DIBIT, 20132, Milan, Italy.
| |
Collapse
|
11
|
Sainio MT, Rasila T, Molchanova SM, Järvilehto J, Torregrosa-Muñumer R, Harjuhaahto S, Pennonen J, Huber N, Herukka SK, Haapasalo A, Zetterberg H, Taira T, Palmio J, Ylikallio E, Tyynismaa H. Neurofilament Light Regulates Axon Caliber, Synaptic Activity, and Organelle Trafficking in Cultured Human Motor Neurons. Front Cell Dev Biol 2022; 9:820105. [PMID: 35237613 PMCID: PMC8883324 DOI: 10.3389/fcell.2021.820105] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 12/28/2021] [Indexed: 11/27/2022] Open
Abstract
Neurofilament light (NFL) is one of the proteins forming multimeric neuron-specific intermediate filaments, neurofilaments, which fill the axonal cytoplasm, establish caliber growth, and provide structural support. Dominant missense mutations and recessive nonsense mutations in the neurofilament light gene (NEFL) are among the causes of Charcot-Marie-Tooth (CMT) neuropathy, which affects the peripheral nerves with the longest axons. We previously demonstrated that a neuropathy-causing homozygous nonsense mutation in NEFL led to the absence of NFL in patient-specific neurons. To understand the disease-causing mechanisms, we investigate here the functional effects of NFL loss in human motor neurons differentiated from induced pluripotent stem cells (iPSC). We used genome editing to generate NEFL knockouts and compared them to patient-specific nonsense mutants and isogenic controls. iPSC lacking NFL differentiated efficiently into motor neurons with normal axon growth and regrowth after mechanical axotomy and contained neurofilaments. Electrophysiological analysis revealed that motor neurons without NFL fired spontaneous and evoked action potentials with similar characteristics as controls. However, we found that, in the absence of NFL, human motor neurons 1) had reduced axonal caliber, 2) the amplitude of miniature excitatory postsynaptic currents (mEPSC) was decreased, 3) neurofilament heavy (NFH) levels were reduced and no compensatory increases in other filament subunits were observed, and 4) the movement of mitochondria and to a lesser extent lysosomes was increased. Our findings elaborate the functional roles of NFL in human motor neurons. NFL is not only a structural protein forming neurofilaments and filling the axonal cytoplasm, but our study supports the role of NFL in the regulation of synaptic transmission and organelle trafficking. To rescue the NFL deficiency in the patient-specific nonsense mutant motor neurons, we used three drugs, amlexanox, ataluren (PTC-124), and gentamicin to induce translational read-through or inhibit nonsense-mediated decay. However, the drugs failed to increase the amount of NFL protein to detectable levels and were toxic to iPSC-derived motor neurons.
Collapse
Affiliation(s)
- Markus T. Sainio
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Tiina Rasila
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Svetlana M. Molchanova
- Molecular and Integrative Biosciences Research Program, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Julius Järvilehto
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Rubén Torregrosa-Muñumer
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Sandra Harjuhaahto
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Jana Pennonen
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Nadine Huber
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Sanna-Kaisa Herukka
- Department of Neurology, Kuopio University Hospital, Kuopio, Finland
- Neurology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Annakaisa Haapasalo
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Henrik Zetterberg
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, United Kingdom
- UK Dementia Research Institute at UCL, London, United Kingdom
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, Hong Kong SAR, China
| | - Tomi Taira
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, Department of Veterinary Biosciences for Electrophysiology, University of Helsinki, Helsinki, Finland
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Johanna Palmio
- Neuromuscular Research Center, Tampere University Hospital and Tampere University, Tampere, Finland
| | - Emil Ylikallio
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Clinical Neurosciences, Neurology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Henna Tyynismaa
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
| |
Collapse
|
12
|
Pipis M, Cortese A, Polke JM, Poh R, Vandrovcova J, Laura M, Skorupinska M, Jacquier A, Juntas-Morales R, Latour P, Petiot P, Sole G, Fromes Y, Shah S, Blake J, Choi BO, Chung KW, Stojkovic T, Rossor AM, Reilly MM. Charcot-Marie-Tooth disease type 2CC due to NEFH variants causes a progressive, non-length-dependent, motor-predominant phenotype. J Neurol Neurosurg Psychiatry 2022; 93:48-56. [PMID: 34518334 PMCID: PMC8685631 DOI: 10.1136/jnnp-2021-327186] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 08/08/2021] [Indexed: 01/05/2023]
Abstract
OBJECTIVE Neurofilaments are the major scaffolding proteins for the neuronal cytoskeleton, and variants in NEFH have recently been described to cause axonal Charcot-Marie-Tooth disease type 2CC (CMT2CC). METHODS In this large observational study, we present phenotype-genotype correlations on 30 affected and 3 asymptomatic mutation carriers from eight families. RESULTS The majority of patients presented in adulthood with motor-predominant and lower limb-predominant symptoms and the average age of onset was 31.0±15.1 years. A prominent feature was the development of proximal weakness early in the course of the disease. The disease progressed rapidly, unlike other Charcot-Marie-Tooth disease (CMT) subtypes, and half of the patients (53%) needed to use a wheelchair on average 24.1 years after symptom onset. Furthermore, 40% of patients had evidence of early ankle plantarflexion weakness, a feature which is observed in only a handful of CMT subtypes. Neurophysiological studies and MRI of the lower limbs confirmed the presence of a non-length-dependent neuropathy in the majority of patients.All families harboured heterozygous frameshift variants in the last exon of NEFH, resulting in a reading frameshift to an alternate open reading frame and the translation of approximately 42 additional amino acids from the 3' untranslated region (3'-UTR). CONCLUSIONS This phenotype-genotype study highlights the unusual phenotype of CMT2CC, which is more akin to spinal muscular atrophy rather than classic CMT. Furthermore, the study will enable more informative discussions on the natural history of the disease and will aid in NEFH variant interpretation in the context of the disease's unique molecular genetics.
Collapse
Affiliation(s)
- Menelaos Pipis
- Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Andrea Cortese
- Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - James M Polke
- Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Roy Poh
- Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Jana Vandrovcova
- Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Matilde Laura
- Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Mariola Skorupinska
- Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Arnaud Jacquier
- Institut NeuroMyoGène, CNRS UMR5310, INSERM U1217, Universite de Lyon, Lyon, France
| | - Raul Juntas-Morales
- Clinique du Motoneurone et Pathologies Neuromusculaires, CHRU de Montpellier, Montpellier, France
| | - Philippe Latour
- Centre de Biologie et Pathologie Est, Hospices Civils de Lyon, Lyon, France
| | - Philippe Petiot
- Neurologie et Explorations Fonctionnelles Neurologiques, Centre de Référence Maladies Neuromusculaires, Hospices Civils de Lyon, Lyon, France
| | - Guilhem Sole
- Centre de Référence des Maladies Neuromusculaires, CHU Bordeaux GH Pellegrin, Bordeaux, France
| | - Yves Fromes
- Institut de Myologie, Laboratoire RMN, Hôpital Pitié-Salpêtrière, Paris, France
| | - Sachit Shah
- Neuroradiological Academic Unit, UCL Queen Square Institute of Neurology, London, UK
| | - Julian Blake
- Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
- Department of Clinical Neurophysiology, Norfolk and Norwich University Hospital, Norfolk, UK
| | - Byung-Ok Choi
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Ki Wha Chung
- Department of Biological Sciences, Kongju National University, Gongju, South Korea
| | - Tanya Stojkovic
- AP-HP, Reference Center for Neuromuscular Disorders, University Hospital Pitié Salpêtrière, Paris, France
- Centre de Recherche en Myologie, Inserm UMRS974, Sorbonne Universite, Paris, France
| | - Alexander M Rossor
- Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Mary M Reilly
- Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| |
Collapse
|
13
|
Mammel AE, Delgado KC, Chin AL, Condon AF, Hill JQ, Aicher SA, Wang Y, Fedorov LM, Robinson FL. Distinct roles for the Charcot-Marie-tooth disease-causing endosomal regulators Mtmr5 and Mtmr13 in axon radial sorting and Schwann cell myelination. Hum Mol Genet 2021; 31:1216-1229. [PMID: 34718573 DOI: 10.1093/hmg/ddab311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 09/29/2021] [Accepted: 10/19/2021] [Indexed: 11/12/2022] Open
Abstract
The form of Charcot-Marie-Tooth type 4B (CMT4B) disease caused by mutations in myotubularin-related 5 (MTMR5; also called SET Binding Factor 1; SBF1) shows a spectrum of axonal and demyelinating nerve phenotypes. This contrasts with the CMT4B subtypes caused by MTMR2 or MTMR13 (SBF2) mutations, which are characterized by myelin outfoldings and classic demyelination. Thus, it is unclear whether MTMR5 plays an analogous or distinct role from that of its homolog, MTMR13, in the peripheral nervous system (PNS). MTMR5 and MTMR13 are pseudophosphatases predicted to regulate endosomal trafficking by activating Rab GTPases and binding to the phosphoinositide 3-phosphatase MTMR2. In the mouse PNS, Mtmr2 was required to maintain wild type levels of Mtmr5 and Mtmr13, suggesting that these factors function in discrete protein complexes. Genetic elimination of both Mtmr5 and Mtmr13 in mice led to perinatal lethality, indicating that the two proteins have partially redundant functions during embryogenesis. Loss of Mtmr5 in mice did not cause CMT4B-like myelin outfoldings. However, adult Mtmr5-/- mouse nerves contained fewer myelinated axons than control nerves, likely as a result of axon radial sorting defects. Consistently, Mtmr5 levels were highest during axon radial sorting and fell sharply after postnatal day seven. Our findings suggest that Mtmr5 and Mtmr13 ensure proper axon radial sorting and Schwann cell myelination, respectively, perhaps through their direct interactions with Mtmr2. This study enhances our understanding of the non-redundant roles of the endosomal regulators MTMR5 and MTMR13 during normal peripheral nerve development and disease.
Collapse
Affiliation(s)
- Anna E Mammel
- The Jungers Center for Neurosciences Research, Department of Neurology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA.,Cell, Developmental & Cancer Biology Graduate Program, Oregon Health & Science University
| | - Katherine C Delgado
- The Jungers Center for Neurosciences Research, Department of Neurology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Andrea L Chin
- The Jungers Center for Neurosciences Research, Department of Neurology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Alec F Condon
- The Jungers Center for Neurosciences Research, Department of Neurology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA.,Neuroscience Graduate Program, Oregon Health & Science University
| | - Jo Q Hill
- Department of Physiology and Pharmacology, Oregon Health & Science University
| | - Sue A Aicher
- Department of Physiology and Pharmacology, Oregon Health & Science University
| | - Yingming Wang
- OHSU Transgenic Mouse Models Shared Resource, Knight Cancer Institute, Oregon Health & Science University
| | - Lev M Fedorov
- OHSU Transgenic Mouse Models Shared Resource, Knight Cancer Institute, Oregon Health & Science University
| | - Fred L Robinson
- The Jungers Center for Neurosciences Research, Department of Neurology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA.,Vollum Institute, Oregon Health & Science University
| |
Collapse
|
14
|
Bosco L, Falzone YM, Previtali SC. Animal Models as a Tool to Design Therapeutical Strategies for CMT-like Hereditary Neuropathies. Brain Sci 2021; 11:1237. [PMID: 34573256 PMCID: PMC8465478 DOI: 10.3390/brainsci11091237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 09/05/2021] [Accepted: 09/07/2021] [Indexed: 02/07/2023] Open
Abstract
Since ancient times, animal models have provided fundamental information in medical knowledge. This also applies for discoveries in the field of inherited peripheral neuropathies (IPNs), where they have been instrumental for our understanding of nerve development, pathogenesis of neuropathy, molecules and pathways involved and to design potential therapies. In this review, we briefly describe how animal models have been used in ancient medicine until the use of rodents as the prevalent model in present times. We then travel along different examples of how rodents have been used to improve our understanding of IPNs. We do not intend to describe all discoveries and animal models developed for IPNs, but just to touch on a few arbitrary and paradigmatic examples, taken from our direct experience or from literature. The idea is to show how strategies have been developed to finally arrive to possible treatments for IPNs.
Collapse
Affiliation(s)
| | | | - Stefano Carlo Previtali
- Institute of Experimental Neurology (INSPE), Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; (L.B.); (Y.M.F.)
| |
Collapse
|
15
|
Cavallaro T, Tagliapietra M, Fabrizi GM, Bai Y, Shy ME, Vallat JM. Hereditary neuropathies: A pathological perspective. J Peripher Nerv Syst 2021; 26 Suppl 2:S42-S60. [PMID: 34499384 DOI: 10.1111/jns.12467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/30/2021] [Accepted: 08/24/2021] [Indexed: 12/29/2022]
Abstract
Hereditary neuropathies may result from mutations in genes expressed by Schwann cells or neurons that affect selectively the peripheral nervous system (PNS) or may represent a minor or major component of complex inherited diseases that involve also the central nervous system and/or other organs and tissues. The chapter is constantly expanding and reworking, thanks to advances of molecular genetics; next-generation sequencing is identifying a plethora of new genes and is revolutionizing the diagnostic approach. In the past, diagnostic sural nerve biopsies paved the way to the discovery and elucidation of major genes and molecular pathways associated to most frequent hereditary motor-sensory neuropathies. Nowadays, a sural nerve biopsy may prove useful in selected cases for the differential diagnosis of an acquired neuropathy when clinical examination, nerve conduction studies, and molecular tests are not sufficiently informative. Skin biopsy has emerged as a minimally invasive window on the PNS, which may provide biomarkers of progression and clues to the physiopathology and molecular pathology of inherited neuropathies. The aim of our review is to illustrate the pathological features of more frequent and paradigmatic hereditary neuropathies and to highlight their correlations with the roles of the involved genes and functional consequences of related molecular defects.
Collapse
Affiliation(s)
- Tiziana Cavallaro
- Department of Neurosciences, Biomedicine, and Movement Sciences, University of Verona, Verona, VR, Italy
| | - Matteo Tagliapietra
- Department of Neurosciences, Biomedicine, and Movement Sciences, University of Verona, Verona, VR, Italy
| | - Gian Maria Fabrizi
- Department of Neurosciences, Biomedicine, and Movement Sciences, University of Verona, Verona, VR, Italy
| | - Yunhong Bai
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Michael E Shy
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Jean-Michel Vallat
- Department of Neurology, National Reference Center for "Rare Peripheral Neuropathies", CHU Dupuytren, Limoges, France
| |
Collapse
|
16
|
Markworth R, Bähr M, Burk K. Held Up in Traffic-Defects in the Trafficking Machinery in Charcot-Marie-Tooth Disease. Front Mol Neurosci 2021; 14:695294. [PMID: 34483837 PMCID: PMC8415527 DOI: 10.3389/fnmol.2021.695294] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 07/23/2021] [Indexed: 12/13/2022] Open
Abstract
Charcot-Marie-Tooth disease (CMT), also known as motor and sensory neuropathy, describes a clinically and genetically heterogenous group of disorders affecting the peripheral nervous system. CMT typically arises in early adulthood and is manifested by progressive loss of motor and sensory functions; however, the mechanisms leading to the pathogenesis are not fully understood. In this review, we discuss disrupted intracellular transport as a common denominator in the pathogenesis of different CMT subtypes. Intracellular transport via the endosomal system is essential for the delivery of lipids, proteins, and organelles bidirectionally to synapses and the soma. As neurons of the peripheral nervous system are amongst the longest neurons in the human body, they are particularly susceptible to damage of the intracellular transport system, leading to a loss in axonal integrity and neuronal death. Interestingly, defects in intracellular transport, both in neurons and Schwann cells, have been found to provoke disease. This review explains the mechanisms of trafficking and subsequently summarizes and discusses the latest findings on how defects in trafficking lead to CMT. A deeper understanding of intracellular trafficking defects in CMT will expand our understanding of CMT pathogenesis and will provide novel approaches for therapeutic treatments.
Collapse
Affiliation(s)
- Ronja Markworth
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany.,Center for Biostructural Imaging of Neurodegeneration, Göttingen, Germany
| | - Mathias Bähr
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Katja Burk
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany.,Center for Biostructural Imaging of Neurodegeneration, Göttingen, Germany
| |
Collapse
|
17
|
Feliciano CM, Wu K, Watry HL, Marley CBE, Ramadoss GN, Ghanim HY, Liu AZ, Zholudeva LV, McDevitt TC, Saporta MA, Conklin BR, Judge LM. Allele-Specific Gene Editing Rescues Pathology in a Human Model of Charcot-Marie-Tooth Disease Type 2E. Front Cell Dev Biol 2021; 9:723023. [PMID: 34485306 PMCID: PMC8415563 DOI: 10.3389/fcell.2021.723023] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 07/22/2021] [Indexed: 12/26/2022] Open
Abstract
Many neuromuscular disorders are caused by dominant missense mutations that lead to dominant-negative or gain-of-function pathology. This category of disease is challenging to address via drug treatment or gene augmentation therapy because these strategies may not eliminate the effects of the mutant protein or RNA. Thus, effective treatments are severely lacking for these dominant diseases, which often cause severe disability or death. The targeted inactivation of dominant disease alleles by gene editing is a promising approach with the potential to completely remove the cause of pathology with a single treatment. Here, we demonstrate that allele-specific CRISPR gene editing in a human model of axonal Charcot-Marie-Tooth (CMT) disease rescues pathology caused by a dominant missense mutation in the neurofilament light chain gene (NEFL, CMT type 2E). We utilized a rapid and efficient method for generating spinal motor neurons from human induced pluripotent stem cells (iPSCs) derived from a patient with CMT2E. Diseased motor neurons recapitulated known pathologic phenotypes at early time points of differentiation, including aberrant accumulation of neurofilament light chain protein in neuronal cell bodies. We selectively inactivated the disease NEFL allele in patient iPSCs using Cas9 enzymes to introduce a frameshift at the pathogenic N98S mutation. Motor neurons carrying this allele-specific frameshift demonstrated an amelioration of the disease phenotype comparable to that seen in an isogenic control with precise correction of the mutation. Our results validate allele-specific gene editing as a therapeutic approach for CMT2E and as a promising strategy to silence dominant mutations in any gene for which heterozygous loss-of-function is well tolerated. This highlights the potential for gene editing as a therapy for currently untreatable dominant neurologic diseases.
Collapse
Affiliation(s)
- Carissa M. Feliciano
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA, United States
- Gladstone Institutes, San Francisco, CA, United States
| | - Kenneth Wu
- Gladstone Institutes, San Francisco, CA, United States
| | | | - Chiara B. E. Marley
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA, United States
- Gladstone Institutes, San Francisco, CA, United States
| | - Gokul N. Ramadoss
- Gladstone Institutes, San Francisco, CA, United States
- Biomedical Sciences Ph.D. Program, University of California, San Francisco, San Francisco, CA, United States
| | | | - Angela Z. Liu
- Gladstone Institutes, San Francisco, CA, United States
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, United States
| | | | - Todd C. McDevitt
- Gladstone Institutes, San Francisco, CA, United States
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, United States
| | - Mario A. Saporta
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Bruce R. Conklin
- Gladstone Institutes, San Francisco, CA, United States
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, United States
- Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
- Innovative Genomics Institute, Berkeley, CA, United States
| | - Luke M. Judge
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA, United States
- Gladstone Institutes, San Francisco, CA, United States
| |
Collapse
|
18
|
Stone EJ, Kolb SJ, Brown A. A review and analysis of the clinical literature on Charcot-Marie-Tooth disease caused by mutations in neurofilament protein L. Cytoskeleton (Hoboken) 2021; 78:97-110. [PMID: 33993654 PMCID: PMC10174713 DOI: 10.1002/cm.21676] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/05/2021] [Accepted: 05/06/2021] [Indexed: 01/22/2023]
Abstract
Charcot-Marie-Tooth disease (CMT) is one of the most common inherited neurological disorders and can be caused by mutations in over 100 different genes. One of the causative genes is NEFL on chromosome 8 which encodes neurofilament light protein (NEFL), one of five proteins that co-assemble to form neurofilaments. At least 34 different CMT-causing mutations in NEFL have been reported which span the head, rod, and tail domains of the protein. The majority of these mutations are inherited dominantly, but some are inherited recessively. The resulting disease is classified variably in clinical reports based on electrodiagnostic studies as either axonal (type 2; CMT2E), demyelinating (type 1; CMT1F), or a form intermediate between the two (dominant intermediate; DI-CMTG). In this article, we first present a brief introduction to CMT and neurofilaments. We then collate and analyze the data from the clinical literature on the disease classification, age of onset and electrodiagnostic test results for the various mutations. We find that mutations in the head, rod, and tail domains can all cause disease with early onset and profound neurological impairment, with a trend toward greater severity for head domain mutations. We also find that the disease classification does not correlate with specific mutation or domain. In fact, different individuals with the same mutation can be classified as having axonal, demyelinating, or dominant intermediate forms of the disease. This suggests that the classification of the disease as CMT2E, CMT1F or DI-CMTG has more to do with variable disease presentation than to differences in the underlying disease mechanism, which is most likely primarily axonal in all cases.
Collapse
Affiliation(s)
- Elizabeth J Stone
- Department of Neuroscience, Ohio State University, Columbus, Ohio, USA.,Neuroscience Graduate Program, Ohio State University, Columbus, Ohio, USA
| | - Stephen J Kolb
- Department of Neurology, Ohio State University, Columbus, Ohio, USA.,Department of Biological Chemistry and Pharmacology, Ohio State University, Columbus, Ohio, USA
| | - Anthony Brown
- Department of Neuroscience, Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
19
|
Bosanac T, Hughes RO, Engber T, Devraj R, Brearley A, Danker K, Young K, Kopatz J, Hermann M, Berthemy A, Boyce S, Bentley J, Krauss R. Pharmacological SARM1 inhibition protects axon structure and function in paclitaxel-induced peripheral neuropathy. Brain 2021; 144:3226-3238. [PMID: 33964142 PMCID: PMC8634121 DOI: 10.1093/brain/awab184] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/02/2021] [Accepted: 04/27/2021] [Indexed: 11/26/2022] Open
Abstract
Axonal degeneration is an early and ongoing event that causes disability and disease progression in many neurodegenerative disorders of the peripheral and central nervous systems. Chemotherapy-induced peripheral neuropathy (CIPN) is a major cause of morbidity and the main cause of dose reductions and discontinuations in cancer treatment. Preclinical evidence indicates that activation of the Wallerian-like degeneration pathway driven by sterile alpha and TIR motif containing 1 (SARM1) is responsible for axonopathy in CIPN. SARM1 is the central driver of an evolutionarily conserved programme of axonal degeneration downstream of chemical, inflammatory, mechanical or metabolic insults to the axon. SARM1 contains an intrinsic NADase enzymatic activity essential for its pro-degenerative functions, making it a compelling therapeutic target to treat neurodegeneration characterized by axonopathies of the peripheral and central nervous systems. Small molecule SARM1 inhibitors have the potential to prevent axonal degeneration in peripheral and central axonopathies and to provide a transformational disease-modifying treatment for these disorders. Using a biochemical assay for SARM1 NADase we identified a novel series of potent and selective irreversible isothiazole inhibitors of SARM1 enzymatic activity that protected rodent and human axons in vitro. In sciatic nerve axotomy, we observed that these irreversible SARM1 inhibitors decreased a rise in nerve cADPR and plasma neurofilament light chain released from injured sciatic nerves in vivo. In a mouse paclitaxel model of CIPN we determined that Sarm1 knockout mice prevented loss of axonal function, assessed by sensory nerve action potential amplitudes of the tail nerve, in a gene-dosage-dependent manner. In that CIPN model, the irreversible SARM1 inhibitors prevented loss of intraepidermal nerve fibres induced by paclitaxel and provided partial protection of axonal function assessed by sensory nerve action potential amplitude and mechanical allodynia.
Collapse
Affiliation(s)
- Todd Bosanac
- Disarm Therapeutics, a wholly owned subsidiary of Eli Lilly & Co., Cambridge MA 02142, USA
| | - Robert O Hughes
- Disarm Therapeutics, a wholly owned subsidiary of Eli Lilly & Co., Cambridge MA 02142, USA
| | - Thomas Engber
- Disarm Therapeutics, a wholly owned subsidiary of Eli Lilly & Co., Cambridge MA 02142, USA
| | - Rajesh Devraj
- Disarm Therapeutics, a wholly owned subsidiary of Eli Lilly & Co., Cambridge MA 02142, USA
| | | | | | | | | | | | | | | | | | - Raul Krauss
- Disarm Therapeutics, a wholly owned subsidiary of Eli Lilly & Co., Cambridge MA 02142, USA
| |
Collapse
|
20
|
Hain HS, Pandey R, Bakay M, Strenkowski BP, Harrington D, Romer M, Motley WW, Li J, Lancaster E, Roth L, Grinspan JB, Scherer SS, Hakonarson H. Inducible knockout of Clec16a in mice results in sensory neurodegeneration. Sci Rep 2021; 11:9319. [PMID: 33927318 PMCID: PMC8084945 DOI: 10.1038/s41598-021-88895-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/30/2021] [Indexed: 12/11/2022] Open
Abstract
CLEC16A has been shown to play a role in autophagy/mitophagy processes. Additionally, genetic variants in CLEC16A have been implicated in multiple autoimmune diseases. We generated an inducible whole-body knockout, Clec16aΔUBC mice, to investigate the loss of function of CLEC16A. The mice exhibited a neuronal phenotype including tremors and impaired gait that rapidly progressed to dystonic postures. Nerve conduction studies and pathological analysis revealed loss of sensory axons that are associated with this phenotype. Activated microglia and astrocytes were found in regions of the CNS. Several mitochondrial-related proteins were up- or down-regulated. Upregulation of interferon stimulated gene 15 (IGS15) were observed in neuronal tissues. CLEC16A expression inversely related to IGS15 expression. ISG15 may be the link between CLEC16A and downstream autoimmune, inflammatory processes. Our results demonstrate that a whole-body, inducible knockout of Clec16a in mice results in an inflammatory neurodegenerative phenotype resembling spinocerebellar ataxia.
Collapse
Affiliation(s)
- Heather S Hain
- The Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA.
| | - Rahul Pandey
- The Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Marina Bakay
- The Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Bryan P Strenkowski
- The Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Danielle Harrington
- The Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Micah Romer
- Department of Neurology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - William W Motley
- Department of Neurology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jian Li
- Department of Neurology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Eunjoo Lancaster
- Department of Neurology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Lindsay Roth
- Department of Neurology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Judith B Grinspan
- Department of Neurology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Steven S Scherer
- Department of Neurology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Hakon Hakonarson
- The Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA.
- Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
21
|
Momenzadeh S, Zamani S, Dehghan F, Barreiro C, Jami MS. Comparative proteome analyses highlight several exercise-like responses of mouse sciatic nerve after IP injection of irisin. Eur J Neurosci 2021; 53:3263-3278. [PMID: 33759230 DOI: 10.1111/ejn.15202] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 02/19/2021] [Accepted: 03/12/2021] [Indexed: 12/16/2022]
Abstract
Many beneficial effects of exercise on the nervous system are mediated by hormone (growth factor)/receptor signaling. Considering the accumulating evidence on the similarity of some beneficial effects, irisin can be a proposed effector of exercise; however, the mechanism underlying these effects remains largely unknown. More evidence on the mechanism of action might reveal its potential as a treatment strategy to substitute exercise recovery protocols for nerve injuries in physically disabled patients. To evaluate the underlying mechanism of irisin involvement in nerve adaptation and exerting beneficial effects, we studied the proteome profile alteration of mouse sciatic nerve after irisin administration. We also compared it with two 8-week protocols of resistance exercise and endurance exercise. The results indicate that irisin contributes to the regulation of nerve metabolism via overexpression of Ckm and ATP5j2 proteins. Irisin administration may improve sciatic nerve function by maintaining the architecture, enhancing axonal transport, and promoting synapse plasticity through increased structural and regulatory proteins and NO production. We also showed that irisin has the potential to induce neurotrophic support on the sciatic nerve by maintaining cell redox homeostasis, and responses to oxidative stress via the upregulation of disulfide-isomerase and superoxide dismutase enzymes. Comparing with exercise groups, these effects are somewhat exercise-like responses. These data suggest that irisin can be a promising therapeutic candidate for specific targeting of defects in peripheral neuropathies and nerve injuries as an alternative for physical therapy.
Collapse
Affiliation(s)
- Sedigheh Momenzadeh
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran.,Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Saeed Zamani
- Department of Anatomical Sciences, School of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Fariba Dehghan
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Carlos Barreiro
- 5 INBIOTEC (Instituto de Biotecnología de León), León, Spain.,Departamento de Biología Molecular, Universidad de León, Ponferrada, Spain
| | - Mohammad-Saeid Jami
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.,Department of Neurology, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA, USA
| |
Collapse
|
22
|
Moss KR, Bopp TS, Johnson AE, Höke A. New evidence for secondary axonal degeneration in demyelinating neuropathies. Neurosci Lett 2021; 744:135595. [PMID: 33359733 PMCID: PMC7852893 DOI: 10.1016/j.neulet.2020.135595] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 10/31/2020] [Accepted: 12/19/2020] [Indexed: 12/28/2022]
Abstract
Development of peripheral nervous system (PNS) myelin involves a coordinated series of events between growing axons and the Schwann cell (SC) progenitors that will eventually ensheath them. Myelin sheaths have evolved out of necessity to maintain rapid impulse propagation while accounting for body space constraints. However, myelinating SCs perform additional critical functions that are required to preserve axonal integrity including mitigating energy consumption by establishing the nodal architecture, regulating axon caliber by organizing axonal cytoskeleton networks, providing trophic and potentially metabolic support, possibly supplying genetic translation materials and protecting axons from toxic insults. The intermediate steps between the loss of these functions and the initiation of axon degeneration are unknown but the importance of these processes provides insightful clues. Prevalent demyelinating diseases of the PNS include the inherited neuropathies Charcot-Marie-Tooth Disease, Type 1 (CMT1) and Hereditary Neuropathy with Liability to Pressure Palsies (HNPP) and the inflammatory diseases Acute Inflammatory Demyelinating Polyneuropathy (AIDP) and Chronic Inflammatory Demyelinating Polyneuropathy (CIDP). Secondary axon degeneration is a common feature of demyelinating neuropathies and this process is often correlated with clinical deficits and long-lasting disability in patients. There is abundant electrophysiological and histological evidence for secondary axon degeneration in patients and rodent models of PNS demyelinating diseases. Fully understanding the involvement of secondary axon degeneration in these diseases is essential for expanding our knowledge of disease pathogenesis and prognosis, which will be essential for developing novel therapeutic strategies.
Collapse
Affiliation(s)
- Kathryn R Moss
- Department of Neurology, Neuromuscular Division, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Taylor S Bopp
- Department of Neurology, Neuromuscular Division, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Anna E Johnson
- Department of Neurology, Neuromuscular Division, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Ahmet Höke
- Department of Neurology, Neuromuscular Division, Johns Hopkins School of Medicine, Baltimore, MD, United States.
| |
Collapse
|
23
|
Guillaud L, El-Agamy SE, Otsuki M, Terenzio M. Anterograde Axonal Transport in Neuronal Homeostasis and Disease. Front Mol Neurosci 2020; 13:556175. [PMID: 33071754 PMCID: PMC7531239 DOI: 10.3389/fnmol.2020.556175] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 08/26/2020] [Indexed: 12/12/2022] Open
Abstract
Neurons are highly polarized cells with an elongated axon that extends far away from the cell body. To maintain their homeostasis, neurons rely extensively on axonal transport of membranous organelles and other molecular complexes. Axonal transport allows for spatio-temporal activation and modulation of numerous molecular cascades, thus playing a central role in the establishment of neuronal polarity, axonal growth and stabilization, and synapses formation. Anterograde and retrograde axonal transport are supported by various molecular motors, such as kinesins and dynein, and a complex microtubule network. In this review article, we will primarily discuss the molecular mechanisms underlying anterograde axonal transport and its role in neuronal development and maturation, including the establishment of functional synaptic connections. We will then provide an overview of the molecular and cellular perturbations that affect axonal transport and are often associated with axonal degeneration. Lastly, we will relate our current understanding of the role of axonal trafficking concerning anterograde trafficking of mRNA and its involvement in the maintenance of the axonal compartment and disease.
Collapse
Affiliation(s)
- Laurent Guillaud
- Molecular Neuroscience Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Sara Emad El-Agamy
- Molecular Neuroscience Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Miki Otsuki
- Molecular Neuroscience Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Marco Terenzio
- Molecular Neuroscience Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| |
Collapse
|
24
|
Sase S, Almad AA, Boecker CA, Guedes-Dias P, Li JJ, Takanohashi A, Patel A, McCaffrey T, Patel H, Sirdeshpande D, Curiel J, Shih-Hwa Liu J, Padiath Q, Holzbaur EL, Scherer SS, Vanderver A. TUBB4A mutations result in both glial and neuronal degeneration in an H-ABC leukodystrophy mouse model. eLife 2020; 9:52986. [PMID: 32463361 PMCID: PMC7255805 DOI: 10.7554/elife.52986] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 04/13/2020] [Indexed: 12/20/2022] Open
Abstract
Mutations in TUBB4A result in a spectrum of leukodystrophy including Hypomyelination with Atrophy of Basal Ganglia and Cerebellum (H-ABC), a rare hypomyelinating leukodystrophy, often associated with a recurring variant p.Asp249Asn (D249N). We have developed a novel knock-in mouse model harboring heterozygous (Tubb4aD249N/+) and the homozygous (Tubb4aD249N/D249N) mutation that recapitulate the progressive motor dysfunction with tremor, dystonia and ataxia seen in H-ABC. Tubb4aD249N/D249N mice have myelination deficits along with dramatic decrease in mature oligodendrocytes and their progenitor cells. Additionally, a significant loss occurs in the cerebellar granular neurons and striatal neurons in Tubb4aD249N/D249N mice. In vitro studies show decreased survival and dysfunction in microtubule dynamics in neurons from Tubb4aD249N/D249N mice. Thus Tubb4aD249N/D249N mice demonstrate the complex cellular physiology of H-ABC, likely due to independent effects on oligodendrocytes, striatal neurons, and cerebellar granule cells in the context of altered microtubule dynamics, with profound neurodevelopmental deficits.
Collapse
Affiliation(s)
- Sunetra Sase
- Department of Neurology, The Children's Hospital of Philadelphia, Philadelphia, United States
| | - Akshata A Almad
- Department of Neurology, The Children's Hospital of Philadelphia, Philadelphia, United States
| | - C Alexander Boecker
- Department of Physiology, the Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - Pedro Guedes-Dias
- Department of Physiology, the Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - Jian J Li
- Department of Neurology, the Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - Asako Takanohashi
- Department of Neurology, The Children's Hospital of Philadelphia, Philadelphia, United States
| | - Akshilkumar Patel
- Department of Neurology, The Children's Hospital of Philadelphia, Philadelphia, United States
| | - Tara McCaffrey
- Department of Neurology, The Children's Hospital of Philadelphia, Philadelphia, United States
| | - Heta Patel
- Department of Neurology, The Children's Hospital of Philadelphia, Philadelphia, United States
| | - Divya Sirdeshpande
- Department of Neurology, The Children's Hospital of Philadelphia, Philadelphia, United States
| | - Julian Curiel
- Department of Neurology, The Children's Hospital of Philadelphia, Philadelphia, United States
| | - Judy Shih-Hwa Liu
- Department of Neurology, Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, United States
| | - Quasar Padiath
- Department of Human Genetics and Neurobiology, University of Pittsburgh, Pittsburgh, United States
| | - Erika Lf Holzbaur
- Department of Physiology, the Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - Steven S Scherer
- Department of Neurology, the Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - Adeline Vanderver
- Department of Neurology, The Children's Hospital of Philadelphia, Philadelphia, United States.,Department of Neurology, the Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| |
Collapse
|
25
|
Ranard KM, Kuchan MJ, Bruno RS, Juraska JM, Erdman JW. Synthetic α-Tocopherol, Compared with Natural α-Tocopherol, Downregulates Myelin Genes in Cerebella of Adolescent Ttpa-null Mice. J Nutr 2020; 150:1031-1040. [PMID: 31883016 DOI: 10.1093/jn/nxz330] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/01/2019] [Accepted: 12/09/2019] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Vitamin E (α-tocopherol; α-T) deficiency causes spinocerebellar ataxia. α-T supplementation improves neurological symptoms, but little is known about the differential bioactivities of natural versus synthetic α-T during early life. OBJECTIVE We assessed the effects of dietary α-T dose and source on tissue α-T accumulation and gene expression in adolescent α-tocopherol transfer protein-null (Ttpa-/-) mice. METHODS Three-week-old male Ttpa-/- mice (n = 7/group) were fed 1 of 4 AIN-93G-based diets for 4 wk: vitamin E deficient (VED; below α-T limit of detection); natural α-T, 600 mg/kg diet (NAT); synthetic α-T, 816 mg/kg diet (SYN); or high synthetic α-T, 1200 mg/kg diet (HSYN). Male Ttpa+/+ littermates fed AIN-93G [75 mg synthetic α-T (CON)] served as controls (n = 7). At 7 wk of age, tissue α-T concentrations and stereoisomer profiles were measured for all groups. RNA-sequencing was performed on cerebella of Ttpa-/- groups. RESULTS Ttpa-/- mice fed VED had undetectable brain α-T concentrations. Cerebral cortex α-T concentrations were greater in Ttpa-/- mice fed NAT (9.1 ± 0.7 nmol/g), SYN (10.8 ± 1.0 nmol/g), and HSYN (13.9 ± 1.6 nmol/g) compared with the VED group but were significantly lower than in Ttpa+/+ mice fed CON (24.6 ± 1.2 nmol/g) (P < 0.001). RRR-α-T was the predominant stereoisomer in brains of Ttpa+/+ mice (∼40%) and Ttpa-/- mice fed NAT (∼94%). α-T stereoisomer composition was similar in brains of Ttpa-/- mice fed SYN and HSYN (2R: ∼53%; 2S: ∼47%). Very few of the 16,774 genes measured were differentially expressed. However, compared with the NAT diet, HSYN significantly downregulated 20 myelin genes, including 2 transcription factors: SRY-box transcription factor 10 (Sox10) and myelin regulatory factor (Myrf), and several downstream target genes (false discovery rate <0.05). CONCLUSIONS High-dose synthetic α-T compared with natural α-T alters myelin gene expression in the adolescent mouse cerebellum, which could lead to morphological and functional abnormalities later in life.
Collapse
Affiliation(s)
- Katherine M Ranard
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | | | - Richard S Bruno
- Human Nutrition Program, The Ohio State University, Columbus, OH, USA
| | - Janice M Juraska
- Department of Psychology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - John W Erdman
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
26
|
Beijer D, Sisto A, Van Lent J, Baets J, Timmerman V. Defects in Axonal Transport in Inherited Neuropathies. J Neuromuscul Dis 2020; 6:401-419. [PMID: 31561383 PMCID: PMC6918914 DOI: 10.3233/jnd-190427] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Axonal transport is a highly complex process essential for sustaining proper neuronal functioning. Disturbances can result in an altered neuronal homeostasis, aggregation of cargoes, and ultimately a dying-back degeneration of neurons. The impact of dysfunction in axonal transport is shown by genetic defects in key proteins causing a broad spectrum of neurodegenerative diseases, including inherited peripheral neuropathies. In this review, we provide an overview of the cytoskeletal components, molecular motors and adaptor proteins involved in axonal transport mechanisms and their implication in neuronal functioning. In addition, we discuss the involvement of axonal transport dysfunction in neurodegenerative diseases with a particular focus on inherited peripheral neuropathies. Lastly, we address some recent scientific advances most notably in therapeutic strategies employed in the area of axonal transport, patient-derived iPSC models, in vivo animal models, antisense-oligonucleotide treatments, and novel chemical compounds.
Collapse
Affiliation(s)
- Danique Beijer
- Neurogenetics Research Group, Department of Medical Sciences, University of Antwerp, Antwerpen, Belgium.,Neurogenetics Laboratory, Institute Born Bunge, Antwerpen, Belgium
| | - Angela Sisto
- Peripheral Neuropathy Research Group, Department of Biomedical Sciences, University of Antwerp, Antwerpen, Belgium.,Neurogenetics Laboratory, Institute Born Bunge, Antwerpen, Belgium
| | - Jonas Van Lent
- Peripheral Neuropathy Research Group, Department of Biomedical Sciences, University of Antwerp, Antwerpen, Belgium.,Neurogenetics Laboratory, Institute Born Bunge, Antwerpen, Belgium
| | - Jonathan Baets
- Neurogenetics Research Group, Department of Medical Sciences, University of Antwerp, Antwerpen, Belgium.,Neurogenetics Laboratory, Institute Born Bunge, Antwerpen, Belgium.,Neurology Department, University Hospital Antwerp, Antwerpen, Belgium
| | - Vincent Timmerman
- Peripheral Neuropathy Research Group, Department of Biomedical Sciences, University of Antwerp, Antwerpen, Belgium.,Neurogenetics Laboratory, Institute Born Bunge, Antwerpen, Belgium
| |
Collapse
|
27
|
Ciocanel MV, Jung P, Brown A. A mechanism for neurofilament transport acceleration through nodes of Ranvier. Mol Biol Cell 2020; 31:640-654. [PMID: 32023144 PMCID: PMC7202067 DOI: 10.1091/mbc.e19-09-0509] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Neurofilaments are abundant space-filling cytoskeletal polymers in axons that are transported along microtubule tracks. Neurofilament transport is accelerated at nodes of Ranvier, where axons are locally constricted. Strikingly, these constrictions are accompanied by sharp decreases in neurofilament number, no decreases in microtubule number, and increases in the packing density of these polymers, which collectively bring nodal neurofilaments closer to their microtubule tracks. We hypothesize that this leads to an increase in the proportion of time that the filaments spend moving and that this can explain the local acceleration. To test this, we developed a stochastic model of neurofilament transport that tracks their number, kinetic state, and proximity to nearby microtubules in space and time. The model assumes that the probability of a neurofilament moving is dependent on its distance from the nearest available microtubule track. Taking into account experimentally reported numbers and densities for neurofilaments and microtubules in nodes and internodes, we show that the model is sufficient to explain the local acceleration of neurofilaments within nodes of Ranvier. This suggests that proximity to microtubule tracks may be a key regulator of neurofilament transport in axons, which has implications for the mechanism of neurofilament accumulation in development and disease.
Collapse
Affiliation(s)
| | - Peter Jung
- Quantitative Biology Institute and Department of Physics and Astronomy, Ohio University, Athens, OH 45701
| | - Anthony Brown
- Department of Neuroscience, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
28
|
Maciel R, Correa R, Bosso Taniguchi J, Prufer Araujo I, Saporta MA. Human Tridimensional Neuronal Cultures for Phenotypic Drug Screening in Inherited Peripheral Neuropathies. Clin Pharmacol Ther 2019; 107:1231-1239. [PMID: 31715019 DOI: 10.1002/cpt.1718] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 09/20/2019] [Indexed: 01/04/2023]
Abstract
Length-dependent axonal degeneration is the pathologic hallmark of several neurodegenerative disorders, including inherited peripheral neuropathies (Charcot-Marie-Tooth (CMT) disease). CMT is currently an untreatable disorder. This is partially due to lack of translational models suitable for drug discovery. In vitro models of CMT have been hindered by the 2D configuration of neuronal cultures, which limits visualization and orientation of axons. To overcome these limitations, we cultured induced pluripotent stem cell (iPSC)-derived spinal motor neurons as 3D spheroids, which grow axons in a centrifugal fashion when plated. Using these iPSC-derived spinal spheroids, we demonstrate neurofilament deposits in motor neuron axons of three patients with CMT2E, caused by mutations in the NEFL gene. This phenotype is partially reversed by two kinase inhibitors. In summary, we developed a human tridimensional in vitro system that models length-dependent axonopathies, recapitulates key pathophysiologic features of CMT2E, and should facilitate the identification of new therapeutic compounds for CMT.
Collapse
Affiliation(s)
- Renata Maciel
- Department of Neurology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Renata Correa
- Department of Neurology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | | | - Igor Prufer Araujo
- Department of Neurology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Mario A Saporta
- Department of Neurology, University of Miami Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
29
|
Stone EJ, Uchida A, Brown A. Charcot-Marie-Tooth disease Type 2E/1F mutant neurofilament proteins assemble into neurofilaments. Cytoskeleton (Hoboken) 2019; 76:423-439. [PMID: 31574566 DOI: 10.1002/cm.21566] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/30/2019] [Accepted: 09/13/2019] [Indexed: 11/12/2022]
Abstract
Charcot-Marie-Tooth disease Type 2E/1F (CMT2E/1F) is a peripheral neuropathy caused by mutations in neurofilament protein L (NFL), which is one of five neurofilament subunit proteins that co-assemble to form neurofilaments in vivo. Prior studies on cultured cells have shown that CMT2E/1F mutations disrupt neurofilament assembly and lead to protein aggregation, suggesting a possible disease mechanism. However, electron microscopy of axons in peripheral nerve biopsies from patients has revealed accumulations of neurofilament polymers of normal appearance and no evidence of protein aggregates. To reconcile these observations, we reexamined the assembly of seven CMT2E/1F NFL mutants in cultured cells. None of the mutants assembled into homopolymers in SW13vim- cells, but P8R, P22S, L268/269P, and P440/441L mutant NFL assembled into heteropolymers in the presence of neurofilament protein M (NFM) alone, and N98S, Q332/333P, and E396/397K mutant NFL assembled in the presence of NFM and peripherin. P8R, P22S, N98S, L268/269P, E396/397K, and P440/441L mutant NFL co-assembled into neurofilaments with endogenous NFL, NFM, and α-internexin in cultured neurons, although the N98S and E396/397K mutants showed reduced filament incorporation, and the Q332/333P mutant showed limited incorporation. We conclude that all the mutants are capable of assembling into neurofilaments, but for some of the mutants this was dependent on the identity of the other neurofilament proteins available for co-assembly, and most likely also their relative expression level. Thus, caution should be exercised when drawing conclusions about the assembly capacity of CMT2E/1F mutants based on transient transfections in cultured cells.
Collapse
Affiliation(s)
- Elizabeth J Stone
- Department of Neuroscience, Ohio State University, Columbus, Ohio.,Neuroscience Graduate Program, Ohio State University, Columbus, Ohio
| | - Atsuko Uchida
- Department of Neuroscience, Ohio State University, Columbus, Ohio
| | - Anthony Brown
- Department of Neuroscience, Ohio State University, Columbus, Ohio
| |
Collapse
|
30
|
Local Acceleration of Neurofilament Transport at Nodes of Ranvier. J Neurosci 2018; 39:663-677. [PMID: 30541916 DOI: 10.1523/jneurosci.2272-18.2018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/24/2018] [Accepted: 10/26/2018] [Indexed: 11/21/2022] Open
Abstract
Myelinated axons are constricted at nodes of Ranvier. These constrictions are important physiologically because they increase the speed of saltatory nerve conduction, but they also represent potential bottlenecks for the movement of axonally transported cargoes. One type of cargo are neurofilaments, which are abundant space-filling cytoskeletal polymers that function to increase axon caliber. Neurofilaments move bidirectionally along axons, alternating between rapid movements and prolonged pauses. Strikingly, axon constriction at nodes is accompanied by a reduction in neurofilament number that can be as much as 10-fold in the largest axons. To investigate how neurofilaments navigate these constrictions, we developed a transgenic mouse strain that expresses a photoactivatable fluorescent neurofilament protein in neurons. We used the pulse-escape fluorescence photoactivation technique to analyze neurofilament transport in mature myelinated axons of tibial nerves from male and female mice of this strain ex vivo Fluorescent neurofilaments departed the activated region more rapidly in nodes than in flanking internodes, indicating that neurofilament transport is faster in nodes. By computational modeling, we showed that this nodal acceleration can be explained largely by a local increase in the duty cycle of neurofilament transport (i.e., the proportion of the time that the neurofilaments spend moving). We propose that this transient acceleration functions to maintain a constant neurofilament flux across nodal constrictions, much as the current increases where a river narrows its banks. In this way, neurofilaments are prevented from piling up in the flanking internodes, ensuring a stable neurofilament distribution and uniform axonal morphology across these physiologically important axonal domains.SIGNIFICANCE STATEMENT Myelinated axons are constricted at nodes of Ranvier, resulting in a marked local decrease in neurofilament number. These constrictions are important physiologically because they increase the efficiency of saltatory nerve conduction, but they also represent potential bottlenecks for the axonal transport of neurofilaments, which move along axons in a rapid intermittent manner. Imaging of neurofilament transport in mature myelinated axons ex vivo reveals that neurofilament polymers navigate these nodal axonal constrictions by accelerating transiently, much as the current increases where a river narrows its banks. This local acceleration is necessary to ensure a stable axonal morphology across nodal constrictions, which may explain the vulnerability of nodes of Ranvier to neurofilament accumulations in animal models of neurotoxic neuropathies and neurodegenerative diseases.
Collapse
|
31
|
Rumora AE, LoGrasso G, Haidar JA, Dolkowski JJ, Lentz SI, Feldman EL. Chain length of saturated fatty acids regulates mitochondrial trafficking and function in sensory neurons. J Lipid Res 2018; 60:58-70. [PMID: 30442656 DOI: 10.1194/jlr.m086843] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 10/17/2018] [Indexed: 12/21/2022] Open
Abstract
Dyslipidemia associated with T2D leads to diabetic neuropathy, a complication characterized by sensory neuronal dysfunction and peripheral nerve damage. Sensory dorsal root ganglion (DRG) neurons are dependent on axonal mitochondrial energy production facilitated by mitochondrial transport mechanisms that distribute mitochondria throughout the axon. Because long-chain saturated FAs (SFAs) damage DRG neurons and medium-chain SFAs are reported to improve neuronal function, we evaluated the impact of SFA chain length on mitochondrial trafficking, mitochondrial function, and apoptosis. DRG neurons were exposed to SFAs with C12:0-C18:0 chain lengths and evaluated for changes in mitochondrial trafficking, mitochondrial polarization, and apoptosis. DRG neurons treated with C16:0 and C18:0 SFAs showed a significant decrease in the percentage of motile mitochondria and velocity of mitochondrial trafficking, whereas C12:0 and C14:0 SFAs had no impact on motility. Treatment with C16:0 and C18:0 SFAs exhibited mitochondrial depolarization correlating with impaired mitochondrial motility; the C12:0- and C14:0-treated neurons retained mitochondrial polarization. The reduction in mitochondrial trafficking and function in C16:0- and C18:0-treated DRG neurons correlated with apoptosis that was blocked in C12:0 and C14:0 SFA treatments. These results suggest that SFA chain length plays an important role in regulating axonal mitochondrial trafficking and function in DRG neurons.
Collapse
Affiliation(s)
- Amy E Rumora
- Departments of Neurology University of Michigan, Ann Arbor, MI 48109
| | - Giovanni LoGrasso
- Departments of Neurology University of Michigan, Ann Arbor, MI 48109
| | - Julia A Haidar
- Departments of Neurology University of Michigan, Ann Arbor, MI 48109
| | - Justin J Dolkowski
- Departments of Internal Medicine, University of Michigan, Ann Arbor, MI 48109
| | - Stephen I Lentz
- Departments of Internal Medicine, University of Michigan, Ann Arbor, MI 48109
| | - Eva L Feldman
- Departments of Neurology University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|