1
|
Hamilton AM, Blackmer-Raynolds L, Li Y, Kelly SD, Kebede N, Williams AE, Chang J, Garraway SM, Srinivasan S, Sampson TR. Diet-microbiome interactions promote enteric nervous system resilience following spinal cord injury. NPJ Biofilms Microbiomes 2024; 10:75. [PMID: 39209925 PMCID: PMC11362535 DOI: 10.1038/s41522-024-00556-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024] Open
Abstract
Spinal cord injury (SCI) results in numerous systemic dysfunctions, including intestinal dysmotility and enteric nervous system (ENS) atrophy. The ENS has capacity to recover following perturbation, yet intestinal pathologies persist. With emerging evidence demonstrating SCI-induced alterations to gut microbiome composition, we hypothesized that microbiome modulation contributes to post-injury enteric recovery. Here, we show that intervention with the dietary fiber, inulin, prevents SCI-induced ENS atrophy and dysmotility in mice. While SCI-associated microbiomes and specific injury-sensitive gut microbes are not sufficient to modulate intestinal dysmotility after injury, intervention with microbially-derived short-chain fatty acid (SCFA) metabolites prevents ENS dysfunctions in injured mice. Notably, inulin-mediated resilience is dependent on IL-10 signaling, highlighting a critical diet-microbiome-immune axis that promotes ENS resilience post-injury. Overall, we demonstrate that diet and microbially-derived signals distinctly impact ENS survival after traumatic spinal injury and represent a foundation to uncover etiological mechanisms and future therapeutics for SCI-induced neurogenic bowel.
Collapse
Affiliation(s)
- Adam M Hamilton
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, USA
| | | | - Yaqing Li
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, USA
| | - Sean D Kelly
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, USA
| | - Nardos Kebede
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, USA
| | - Anna E Williams
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, USA
| | - Jianjun Chang
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, USA
| | - Sandra M Garraway
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, USA
| | - Shanthi Srinivasan
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
- Atlanta Veterans Affairs Health Care System, Decatur, GA, USA
| | - Timothy R Sampson
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
2
|
Rao J, Xie H, Liang Z, Yang Z, Chen P, Zhou M, Xu X, Lin Y, Lin F, Wang R, Wang C, Chen C. Hypoxic-preconditioned mesenchymal stem cell-derived small extracellular vesicles inhibit neuronal death after spinal cord injury by regulating the SIRT1/Nrf2/HO-1 pathway. Front Pharmacol 2024; 15:1419390. [PMID: 39246654 PMCID: PMC11377843 DOI: 10.3389/fphar.2024.1419390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 08/19/2024] [Indexed: 09/10/2024] Open
Abstract
Background Oxidative stress and apoptosis of neurons significantly contribute to the pathophysiological cascade of spinal cord injury (SCI). However, the role of hypoxic-preconditioned mesenchymal stem cell-derived small extracellular vesicles (H-sEVs) in promoting SCI repair remains unclear. Hence, the present study aims to investigate the regulatory effects of H-sEVs on neuronal oxidative stress and apoptotic responses following SCI. Methods The administration of H-sEVs of SCI rats was assessed using behavioral evaluations such as Basso-Beattie-Bresnahan (BBB) scores, neuroelectrophysiological monitoring, and Catwalk gait analysis. Indices of oxidative stress (including superoxide dismutase [SOD], total antioxidant capacity [T-AOC], and malondialdehyde [MDA]) were measured. Neuronal survival was evaluated through Nissl staining, while the expression level of sirtuin 1 (SIRT1) was examined using immunohistochemical staining. Additionally, histological evaluation of lesion size was performed using hematoxylin-eosin (HE) staining. Tunel cell apoptosis staining and analysis of apoptosis-associated proteins (B-cell lymphoma-2 [Bcl2] and BCL2-Associated X [Bax]) were conducted through immunofluorescence staining and western blot, respectively. Furthermore, the model of oxidative stress was established using PC12 cells, and apoptosis levels were assessed via flow cytometry and western blot analysis. Importantly, to ascertain the critical role of SIRT1, we performed SIRT1 knockout experiments in PC12 cells using lentivirus transfection, followed by western blot. Results Using those behavioral evaluations, we observed significant functional improvement after H-sEVs treatment. Nissl staining revealed that H-sEVs treatment promoted neuronal survival. Moreover, we found that H-sEVs effectively reduced oxidative stress levels after SCI. HE staining demonstrated that H-sEVs could reduce lesion area. Immunohistochemical analysis revealed that H-sEVs enhanced SIRT1 expression. Furthermore, Tunel cell apoptosis staining and western blot analysis of apoptosis-related proteins confirmed the anti-apoptotic effects of H-sEVs. The PC12 cells were used to further substantiate the neuroprotective properties of H-sEVs by significantly inhibiting neuronal death and attenuating oxidative stress. Remarkably, SIRT1 knockout in PC12 cells reversed the antioxidant stress effects induced by H-sEVs treatment. Additionally, we elucidated the involvement of the downstream Nrf2/HO-1 signaling pathway. Conclusion Our study provides valuable insights into the effects of H-sEVs on neuronal oxidative stress and apoptosis after SCI. These findings underscore the potential clinical significance of H-sEVs-based therapies for SCI.
Collapse
Affiliation(s)
- Jian Rao
- Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
- Fujian Neurosurgical Institute, Fuzhou, Fujian, China
| | - Haishu Xie
- Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
- Fujian Neurosurgical Institute, Fuzhou, Fujian, China
| | - Zeyan Liang
- Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
- Fujian Neurosurgical Institute, Fuzhou, Fujian, China
| | - Zhelun Yang
- Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
- Fujian Neurosurgical Institute, Fuzhou, Fujian, China
| | - Pingping Chen
- Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
- Fujian Neurosurgical Institute, Fuzhou, Fujian, China
| | - Maochao Zhou
- Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
- Fujian Neurosurgical Institute, Fuzhou, Fujian, China
| | - Xiongjie Xu
- Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
- Fujian Neurosurgical Institute, Fuzhou, Fujian, China
| | - Yike Lin
- Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
- Fujian Neurosurgical Institute, Fuzhou, Fujian, China
| | - Fabin Lin
- Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
- Fujian Neurosurgical Institute, Fuzhou, Fujian, China
| | - Rui Wang
- Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
- Fujian Neurosurgical Institute, Fuzhou, Fujian, China
| | - Chunhua Wang
- Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
- Fujian Neurosurgical Institute, Fuzhou, Fujian, China
| | - Chunmei Chen
- Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
- Fujian Neurosurgical Institute, Fuzhou, Fujian, China
| |
Collapse
|
3
|
Hamilton AM, Blackmer-Raynolds L, Li Y, Kelly S, Kebede N, Williams A, Chang J, Garraway SM, Srinivasan S, Sampson TR. Diet-microbiome interactions promote enteric nervous system resilience following spinal cord injury. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.06.597793. [PMID: 38895207 PMCID: PMC11185755 DOI: 10.1101/2024.06.06.597793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Spinal cord injury (SCI) results in a plethora of physiological dysfunctions across all body systems, including intestinal dysmotility and atrophy of the enteric nervous system (ENS). Typically, the ENS has capacity to recover from perturbation, so it is unclear why intestinal pathophysiologies persist after traumatic spinal injury. With emerging evidence demonstrating SCI-induced alterations to the gut microbiome composition, we hypothesized that modulation of the gut microbiome could contribute to enteric nervous system recovery after injury. Here, we show that intervention with the dietary fiber, inulin prevents ENS atrophy and limits SCI-induced intestinal dysmotility in mice. However, SCI-associated microbiomes and exposure to specific SCI-sensitive gut microbes are not sufficient to modulate injury-induced intestinal dysmotility. Intervention with microbially-derived short-chain fatty acid (SCFA) metabolites prevents ENS dysfunctions and phenocopies inulin treatment in injured mice, implicating these microbiome metabolites in protection of the ENS. Notably, inulin-mediated resilience is dependent on signaling by the cytokine IL-10, highlighting a critical diet-microbiome-immune axis that promotes ENS resilience following SCI. Overall, we demonstrate that diet and microbially-derived signals distinctly impact recovery of the ENS after traumatic spinal injury. This protective diet-microbiome-immune axis may represent a foundation to uncover etiological mechanisms and future therapeutics for SCI-induced neurogenic bowel.
Collapse
Affiliation(s)
- Adam M. Hamilton
- Department of Cell Biology, Emory University School of Medicine, Atlanta GA 30329
| | | | - Yaqing Li
- Department of Cell Biology, Emory University School of Medicine, Atlanta GA 30329
| | - Sean Kelly
- Department of Cell Biology, Emory University School of Medicine, Atlanta GA 30329
| | - Nardos Kebede
- Department of Cell Biology, Emory University School of Medicine, Atlanta GA 30329
| | - Anna Williams
- Department of Cell Biology, Emory University School of Medicine, Atlanta GA 30329
| | - Jianjun Chang
- Department of Cell Biology, Emory University School of Medicine, Atlanta GA 30329
| | - Sandra M. Garraway
- Department of Cell Biology, Emory University School of Medicine, Atlanta GA 30329
| | - Shanthi Srinivasan
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta GA 30329
| | - Timothy R. Sampson
- Department of Cell Biology, Emory University School of Medicine, Atlanta GA 30329
| |
Collapse
|
4
|
Nemeth C, Banik NL, Haque A. Disruption of Neuromuscular Junction Following Spinal Cord Injury and Motor Neuron Diseases. Int J Mol Sci 2024; 25:3520. [PMID: 38542497 PMCID: PMC10970763 DOI: 10.3390/ijms25063520] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/16/2024] [Accepted: 03/18/2024] [Indexed: 02/01/2025] Open
Abstract
The neuromuscular junction (NMJ) is a crucial structure that connects the cholinergic motor neurons to the muscle fibers and allows for muscle contraction and movement. Despite the interruption of the supraspinal pathways that occurs in spinal cord injury (SCI), the NMJ, innervated by motor neurons below the injury site, has been found to remain intact. This highlights the importance of studying the NMJ in rodent models of various nervous system disorders, such as amyotrophic lateral sclerosis (ALS), Charcot-Marie-Tooth disease (CMT), spinal muscular atrophy (SMA), and spinal and bulbar muscular atrophy (SBMA). The NMJ is also involved in myasthenic disorders, such as myasthenia gravis (MG), and is vulnerable to neurotoxin damage. Thus, it is important to analyze the integrity of the NMJ in rodent models during the early stages of the disease, as this may allow for a better understanding of the condition and potential treatment options. The spinal cord also plays a crucial role in the functioning of the NMJ, as the junction relays information from the spinal cord to the muscle fibers, and the integrity of the NMJ could be disrupted by SCI. Therefore, it is vital to study SCI and muscle function when studying NMJ disorders. This review discusses the formation and function of the NMJ after SCI and potential interventions that may reverse or improve NMJ dysfunction, such as exercise, nutrition, and trophic factors.
Collapse
Affiliation(s)
- Colin Nemeth
- Department of Microbiology and Immunology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA; (C.N.); (N.L.B.)
- Department of Neurosurgery, Medical University of South Carolina, 96 Jonathan Lucas Street, Charleston, SC 29425, USA
| | - Naren L. Banik
- Department of Microbiology and Immunology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA; (C.N.); (N.L.B.)
- Department of Neurosurgery, Medical University of South Carolina, 96 Jonathan Lucas Street, Charleston, SC 29425, USA
- Ralph H. Johnson Veterans Administration Medical Center, 109 Bee Street, Charleston, SC 29401, USA
| | - Azizul Haque
- Department of Microbiology and Immunology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA; (C.N.); (N.L.B.)
- Department of Neurosurgery, Medical University of South Carolina, 96 Jonathan Lucas Street, Charleston, SC 29425, USA
- Ralph H. Johnson Veterans Administration Medical Center, 109 Bee Street, Charleston, SC 29401, USA
| |
Collapse
|
5
|
Werner CM, Willing LB, Goudsward HJ, McBride AR, Stella SL, Holmes GM. Plasticity of colonic enteric nervous system following spinal cord injury in male and female rats. Neurogastroenterol Motil 2023; 35:e14646. [PMID: 37480186 PMCID: PMC11298951 DOI: 10.1111/nmo.14646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/30/2023] [Accepted: 06/27/2023] [Indexed: 07/23/2023]
Abstract
BACKGROUND Neurogenic bowel is a dysmotility disorder following spinal cord injury (SCI) that negatively impacts quality of life, social integration, and physical health. Colonic transit is directly modulated by the enteric nervous system. Interstitial Cells of Cajal (ICC) distributed throughout the small intestine and colon serve as specialized pacemaker cells, generating rhythmic electrical slow waves within intestinal smooth muscle, or serve as an interface between smooth muscle cells and enteric motor neurons of the myenteric plexus. Interstitial Cells of Cajal loss has been reported for other preclinical models of dysmotility, and our previous experimental SCI study provided evidence of reduced excitatory and inhibitory enteric neuronal count and smooth muscle neural control. METHODS Immunohistochemistry for the ICC-specific marker c-Kit was utilized to examine neuromuscular remodeling of the distal colon in male and female rats with experimental SCI. KEY RESULTS Myenteric plexus ICC (ICC-MP) exhibited increased cell counts 3 days following SCI in male rats, but did not significantly increase in females until 3 weeks after SCI. On average, ICC-MP total primary arborization length increased significantly in male rats at 3-day, 3-week, and 6-week time points, whereas in females, this increase occurred most frequently at 6 weeks post-SCI. Conversely, circular muscle ICC (ICC-CM) did not demonstrate post-SCI changes. CONCLUSIONS AND INFERENCES These data demonstrate resiliency of the ICC-MP in neurogenic bowel following SCI, unlike seen in other related disease states. This plasticity underscores the need to further understand neuromuscular changes driving colonic dysmotility after SCI in order to advance therapeutic targets for neurogenic bowel treatment.
Collapse
Affiliation(s)
- Claire M Werner
- Department of Neural and Behavioral Sciences, Penn State University College of Medicine, Hershey, Pennsylvania, USA
| | - Lisa B Willing
- Department of Neural and Behavioral Sciences, Penn State University College of Medicine, Hershey, Pennsylvania, USA
| | - Hannah J Goudsward
- Department of Neural and Behavioral Sciences, Penn State University College of Medicine, Hershey, Pennsylvania, USA
| | - Amanda R McBride
- Department of Neural and Behavioral Sciences, Penn State University College of Medicine, Hershey, Pennsylvania, USA
| | - Salvatore L Stella
- Department of Neural and Behavioral Sciences, Penn State University College of Medicine, Hershey, Pennsylvania, USA
| | - Gregory M Holmes
- Department of Neural and Behavioral Sciences, Penn State University College of Medicine, Hershey, Pennsylvania, USA
| |
Collapse
|
6
|
Lefèvre C, Le Roy C, Bessard A, Le Berre-Scoul C, Marchix J, Coron E, Le Rhun M, Brochard C, Perrouin-Verbe B, Neunlist M. Region-specific remodeling of the enteric nervous system and enteroendocrine cells in the colon of spinal cord injury patients. Sci Rep 2023; 13:16902. [PMID: 37803037 PMCID: PMC10558436 DOI: 10.1038/s41598-023-44057-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 10/03/2023] [Indexed: 10/08/2023] Open
Abstract
Patients with spinal cord injury (SCI) suffer from major bowel dysfunction, whose exact pathophysiology, particularly the involvement of the enteric nervous system or epithelial dysfunction is poorly understood. Herein, we aimed to characterize the mucosal biopsies of the right and left colon in SCI patients vs controls (CT): (1) remodeling of key enteric neurotransmitters, (2) remodeling of enteroendocrine cells, and (3) mucosal inflammation compared to those in controls. In SCI, mucosal ACh concentration was lower in the right colon as compared to CT, but no change was observed in the left colon, and AChE expression was lower in both the right and left colons than in CT. While the VIP concentration was similar in the right and left colons, VIP mRNA expression was increased in the right colon and decreased in the left colon, in SCI patients as compared to CT. Interestingly, 5-HT concentration was reduced in the left colon but not in the right colon in SCI patients. Moreover, in SCI patients, as compared to CT, SERT mRNA expression was selectively increased in the left colon while TPH1 mRNA expression was increased in the right and left colons. Although mucosal TNFα and IL-1β mRNA expression did not significantly differ between SCI and CT groups, we identified a significant positive correlation between TNFα and IL-1β mRNA expression and left colon transit time in the SCI group. In conclusion, region-specific changes occur in the enteric neurotransmitter, serotonergic, and inflammatory pathways in the colon of SCI patients. The significant correlations between these pathways and clinical parameters in the left colon further set a scientific basis for designing therapeutic targets to improve colonic motor dysfunction in patients.Biobank information: Spinal cord injury patients: PHRC ConstiCAPE-clinical trial NCT02566746. Controls: Anosain-clinical trial NCT03054415 and biobank of the "Institut des Maladies de l'Appareil Digestif (IMAD)" registered under number DC-2008-402.
Collapse
Affiliation(s)
- Chloë Lefèvre
- Nantes Université, INSERM, CHU Nantes, IMAD, "The Enteric Nervous System in Gut and Brain Disorders", 44000, Nantes, France
- Service de Médecine Physique et Réadaptation Neurologique, Nantes Université, CHU Nantes, 44000, Nantes, France
| | - Camille Le Roy
- Nantes Université, INSERM, CHU Nantes, IMAD, "The Enteric Nervous System in Gut and Brain Disorders", 44000, Nantes, France
- Service de Médecine Physique et Réadaptation Neurologique, Nantes Université, CHU Nantes, 44000, Nantes, France
| | - Anne Bessard
- Nantes Université, INSERM, CHU Nantes, IMAD, "The Enteric Nervous System in Gut and Brain Disorders", 44000, Nantes, France
| | - Catherine Le Berre-Scoul
- Nantes Université, INSERM, CHU Nantes, IMAD, "The Enteric Nervous System in Gut and Brain Disorders", 44000, Nantes, France
| | - Justine Marchix
- Nantes Université, INSERM, CHU Nantes, IMAD, "The Enteric Nervous System in Gut and Brain Disorders", 44000, Nantes, France
| | - Emmanuel Coron
- Nantes Université, INSERM, CHU Nantes, IMAD, "The Enteric Nervous System in Gut and Brain Disorders", 44000, Nantes, France
- Service de Gastroentérologie, Nantes Université, CHU Nantes, IMAD, 44000, Nantes, France
| | - Marc Le Rhun
- Service de Gastroentérologie, Nantes Université, CHU Nantes, IMAD, 44000, Nantes, France
| | - Charlène Brochard
- Nantes Université, INSERM, CHU Nantes, IMAD, "The Enteric Nervous System in Gut and Brain Disorders", 44000, Nantes, France
- CHU Rennes, Explorations Fonctionnelles Digestives, 35000, Rennes, France
| | - Brigitte Perrouin-Verbe
- Nantes Université, INSERM, CHU Nantes, IMAD, "The Enteric Nervous System in Gut and Brain Disorders", 44000, Nantes, France
- Service de Médecine Physique et Réadaptation Neurologique, Nantes Université, CHU Nantes, 44000, Nantes, France
| | - Michel Neunlist
- Nantes Université, INSERM, CHU Nantes, IMAD, "The Enteric Nervous System in Gut and Brain Disorders", 44000, Nantes, France.
| |
Collapse
|
7
|
Wang Z, Duan H, Hao F, Hao P, Zhao W, Gao Y, Gu Y, Song J, Li X, Yang Z. Circuit reconstruction of newborn neurons after spinal cord injury in adult rats via an NT3-chitosan scaffold. Prog Neurobiol 2023; 220:102375. [PMID: 36410665 DOI: 10.1016/j.pneurobio.2022.102375] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 11/07/2022] [Accepted: 11/15/2022] [Indexed: 11/22/2022]
Abstract
An implanted neurotrophin-3 (NT3)-chitosan scaffold can recruit endogenous neural stem cells to migrate to a lesion region and differentiate into mature neurons after adult spinal cord injury (SCI). However, the identities of these newborn neurons and whether they can form functional synapses and circuits to promote recovery after paraplegia remain unknown. By using combined advanced technologies, we revealed here that the newborn neurons of several subtypes received synaptic input from the corticospinal tract (CST), rubrospinal tract (RST), and supraspinal tracts. They formed a functional neural circuit at the injured spinal region, further driving the local circuits beneath the lesion. Our results showed that the NT3-chitosan scaffold facilitated the maturation of spinal neurons and the reestablishment of the spinal neural circuit in the lesion region 12 weeks after SCI. Transsynaptic virus experiments revealed that these newborn spinal neurons received synaptic connections from the CST and RST and drove the neural circuit beneath the lesion via newly formed synapses. These re-established circuits successfully recovered the formation and function of the neuromuscular junction (NMJ) beneath the lesion spinal segments. These findings suggest that the NT3-chitosan scaffold promotes the formation of relay neural circuits to accommodate various types of brain descending inputs and facilitate functional recovery after paraplegia.
Collapse
Affiliation(s)
- Zijue Wang
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Hongmei Duan
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Fei Hao
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, School of Engineering Medicine, Beihang University, Beijing 100191, China
| | - Peng Hao
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Wen Zhao
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Yudan Gao
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Yiming Gu
- Physical Education Department, Capital University of Economics and Business, Beijing 100070, China
| | - Jianren Song
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China; Clinical Center for Brain and Spinal Cord Research, Tongji University, Shanghai 200092, China.
| | - Xiaoguang Li
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; Department of Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China.
| | - Zhaoyang Yang
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
8
|
Interaction between the Gut Microbiota and Intestinal Motility. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:3240573. [DOI: 10.1155/2022/3240573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 09/27/2022] [Accepted: 10/15/2022] [Indexed: 11/16/2022]
Abstract
The gut microbiota is the largest symbiotic ecosystem with the host and has been proven to play an important role in maintaining the stability of the intestinal environment. The imbalance of the gut microbiota is caused by the imbalance between the symbiotic microbiota and the pathogenic microbiota. The commensal microbiome regulates intestinal motility, while the pathogenic microbiome causes intestinal motility disorder, resulting in disease development. Intestinal motility is a relatively general term, and its meaning may include intestinal muscle contraction, intestinal wall biomechanics, intestinal compliance, and transmission. The role of intestinal microecology and intestinal motility are interrelated, intestinal flora disorder mediates intestinal motility, and abnormal intestinal motility affects colonization of the intestinal flora. In this review, we briefly outlined the interaction between gut microbiota and intestinal motility and provided a reference for future studies.
Collapse
|
9
|
Zhang Y, Lang R, Guo S, Luo X, Li H, Liu C, Dong W, Bao C, Yu Y. Intestinal microbiota and melatonin in the treatment of secondary injury and complications after spinal cord injury. Front Neurosci 2022; 16:981772. [PMID: 36440294 PMCID: PMC9682189 DOI: 10.3389/fnins.2022.981772] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 10/24/2022] [Indexed: 09/12/2023] Open
Abstract
Spinal cord injury (SCI) is a central nervous system (CNS) disease that can cause sensory and motor impairment below the level of injury. Currently, the treatment scheme for SCI mainly focuses on secondary injury and complications. Recent studies have shown that SCI leads to an imbalance of intestinal microbiota and the imbalance is also associated with complications after SCI, possibly through the microbial-brain-gut axis. Melatonin is secreted in many parts of the body including pineal gland and gut, effectively protecting the spinal cord from secondary damage. The secretion of melatonin is affected by circadian rhythms, known as the dark light cycle, and SCI would also cause dysregulation of melatonin secretion. In addition, melatonin is closely related to the intestinal microbiota, which protects the barrier function of the gut through its antioxidant and anti-inflammatory effects, and increases the abundance of intestinal microbiota by influencing the metabolism of the intestinal microbiota. Furthermore, the intestinal microbiota can influence melatonin formation by regulating tryptophan and serotonin metabolism. This paper summarizes and reviews the knowledge on the relationship among intestinal microbiota, melatonin, and SCI in recent years, to provide new theories and ideas for clinical research related to SCI treatment.
Collapse
Affiliation(s)
- Yiwen Zhang
- Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Rui Lang
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Shunyu Guo
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xiaoqin Luo
- Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Huiting Li
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention of Cardiovascular Diseases, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Cencen Liu
- Department of Pathology, People’s Hospital of Zhongjiang County, Deyang, China
| | - Wei Dong
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention of Cardiovascular Diseases, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Changshun Bao
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Clinical Research Center for Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Neurological Diseases and Brain Function Laboratory, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yang Yu
- Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention of Cardiovascular Diseases, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| |
Collapse
|
10
|
Hamilton AM, Sampson TR. Traumatic spinal cord injury and the contributions of the post-injury microbiome. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2022; 167:251-290. [PMID: 36427958 DOI: 10.1016/bs.irn.2022.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Spinal cord injuries are an enormous burden on injured individuals and their caregivers. The pathophysiological effects of injury are not limited to the spine and limb function, but affect numerous body systems. Growing observations in human studies and experimental models suggest that the gut microbiome is altered following spinal cord injury. Given the importance of signals derived from the gut microbiome for host physiology, it is possible that injury-triggered dysbiosis subsequently affects aspects of recovery. Here, we review emerging literature on the role of the microbiome following spinal cord injury. Specifically, we highlight findings from both human and experimental studies that correlate taxonomic changes to aspects of injury recovery. Examination of both observational and emerging interventional studies supports the notion that future therapeutic avenues for spinal cord injury pathologies may lie at the interface of the host and indigenous microbes.
Collapse
Affiliation(s)
- Adam M Hamilton
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States
| | - Timothy R Sampson
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States.
| |
Collapse
|
11
|
Spinal cord injury-mediated changes in electrophysiological properties of rat gastric nodose ganglion neurons. Exp Neurol 2022; 348:113927. [PMID: 34798136 PMCID: PMC8727501 DOI: 10.1016/j.expneurol.2021.113927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 10/30/2021] [Accepted: 11/11/2021] [Indexed: 02/03/2023]
Abstract
In preclinical rodent models, spinal cord injury (SCI) manifests as gastric vagal afferent dysfunction both acutely and chronically. However, the mechanism that underlies this dysfunction remains unknown. In the current study, we examined the effect of SCI on gastric nodose ganglia (NG) neuron excitability and on voltage-gated Na+ (NaV) channels expression and function in rats after an acute (i.e. 3-days) and chronic (i.e. 3-weeks) period. Rats randomly received either T3-SCI or sham control surgery 3-days or 3-weeks prior to experimentation as well as injections of 3% DiI solution into the stomach to identify gastric NG neurons. Single cell qRT-PCR was performed on acutely dissociated DiI-labeled NG neurons to measure NaV1.7, NaV1.8 and NaV1.9 expression levels. The results indicate that all 3 channel subtypes decreased. Current- and voltage-clamp whole-cell patch-clamp recordings were performed on acutely dissociated DiI-labeled NG neurons to measure active and passive properties of C- and A-fibers as well as the biophysical characteristics of NaV1.8 channels in gastric NG neurons. Acute and chronic SCI did not demonstrate deleterious effects on either passive properties of dissociated gastric NG neurons or biophysical properties of NaV1.8. These findings suggest that although NaV gene expression levels change following SCI, NaV1.8 function is not altered. The disruption throughout the entirety of the vagal afferent neuron has yet to be investigated.
Collapse
|