1
|
Simonsen E, Mortensen C, Riis C, Steffensen K, Olesen M, Ernst M, Stage T, Pottegård A. The Molecular and Clinical Impact of Atorvastatin Exposure on Paclitaxel Neurotoxicity in Sensory Neurons and Cancer Patients. Basic Clin Pharmacol Toxicol 2025; 136:e70022. [PMID: 40143680 PMCID: PMC11955935 DOI: 10.1111/bcpt.70022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 03/05/2025] [Accepted: 03/06/2025] [Indexed: 03/28/2025]
Abstract
Recent evidence suggests that atorvastatin exacerbates paclitaxel neurotoxicity via P-glycoprotein inhibition. We used a translational approach to investigate if atorvastatin or simvastatin exacerbates (i) paclitaxel neurotoxicity in human sensory neurons and (ii) paclitaxel-induced peripheral neuropathy (PIPN) in cancer patients. Paclitaxel neurotoxicity was assessed by quantifying neuronal networks of human induced pluripotent stem cell-derived sensory neurons (iPSC-SNs) with and without atorvastatin or simvastatin exposure. We estimated the odds ratio (OR) of early paclitaxel discontinuation due to PIPN in a nationwide cohort of paclitaxel-treated women (2014-2018), comparing atorvastatin users to simvastatin users and nonusers of statins. Only the highest concentration of atorvastatin (100 nM) significantly exacerbated paclitaxel neurotoxicity in iPSC-SNs (p < 0.05). Among 576 paclitaxel-treated women, atorvastatin use was not significantly associated with early paclitaxel discontinuation due to PIPN, with adjusted ORs of 0.80 [95% confidence interval (CI) 0.34-1.88] compared with simvastatin, and 1.24 [95% CI 0.44-3.53] compared with nonuse. Supplementary analyses showed varying but statistically nonsignificant results. Our in vitro findings suggest that atorvastatin, not simvastatin, significantly worsens paclitaxel neurotoxicity. However, no link was found between atorvastatin use and early paclitaxel discontinuation due to PIPN. Larger, well-designed studies are required to clarify the discrepancy between in vitro and clinical data and the inconsistencies with previous clinical evidence.
Collapse
Affiliation(s)
- Emma Simonsen
- Department of Public Health, Clinical Pharmacology, Pharmacy and Environmental MedicineUniversity of Southern DenmarkOdenseDenmark
| | - Christina Mortensen
- Department of Public Health, Clinical Pharmacology, Pharmacy and Environmental MedicineUniversity of Southern DenmarkOdenseDenmark
| | | | - Karina Dahl Steffensen
- Department of OncologyLillebaelt University Hospital of Southern DenmarkVejleDenmark
- Department of Regional Health ResearchUniversity of Southern DenmarkOdenseDenmark
| | - Morten Olesen
- Department of Public Health, Clinical Pharmacology, Pharmacy and Environmental MedicineUniversity of Southern DenmarkOdenseDenmark
| | - Martin Thomsen Ernst
- Department of Public Health, Clinical Pharmacology, Pharmacy and Environmental MedicineUniversity of Southern DenmarkOdenseDenmark
| | - Tore Bjerregaard Stage
- Department of Public Health, Clinical Pharmacology, Pharmacy and Environmental MedicineUniversity of Southern DenmarkOdenseDenmark
- Department of Clinical PharmacologyOdense University HospitalOdenseDenmark
| | - Anton Pottegård
- Department of Public Health, Clinical Pharmacology, Pharmacy and Environmental MedicineUniversity of Southern DenmarkOdenseDenmark
| |
Collapse
|
2
|
Bosc L, Pero ME, Balayssac D, Jacquemot N, Allard J, Suzanne P, Vollaire J, Cottet-Rousselle C, Michallet S, Villaret J, Torch S, Marais S, Elena-Herrmann B, Schlattner U, Mercier A, Josserand V, Thibert C, Dallemagne P, Bartolini F, Lafanechère L. Preventing neuropathy and improving anti-cancer chemotherapy with a carbazole-based compound. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.10.642317. [PMID: 40161707 PMCID: PMC11952460 DOI: 10.1101/2025.03.10.642317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Advances in cancer treatment have led to a steady increase in the rate of disease remission. However, while many treatment-related adverse effects gradually resolve after therapy, chemotherapy-induced peripheral neuropathy (CIPN) often persists, with no means of prevention or direct treatment available. Herein, we present Carba1, a novel bi-functional carbazole that mitigates neuropathy through two distinct mechanisms. First, by interacting with tubulin, Carba1 reduces the required dose of taxanes, widely used chemotherapy drugs notorious for their toxic side effects, including CIPN. Second, Carba1 activates nicotinamide phosphoribosyltransferase (NAMPT), the rate-limiting enzyme in the NAD salvage pathway, triggering a metabolic rewiring that enhances the resilience of neurons and Schwann cells against chemotherapy-induced toxicity. We demonstrate the neuroprotective efficacy of Carba1 both in vitro, against neurotoxicity induced by paclitaxel (PTX), cisplatin, and bortezomib, and in vivo in a rat model of PTX-induced neuropathy. Importantly, we establish that Carba1 does not compromise the therapeutic efficacy of PTX nor promotes tumor growth. Comparative analyses of Carba1 derivatives further suggest the potential of designing compounds with either dual synergistic and neuroprotective activity or exclusive neuroprotective properties. Altogether, our findings position Carba1 as a promising therapeutic candidate for preventing CIPN, with the potential, if successfully translated to clinical settings, to improve both the quality of life and treatment outcome for cancer patients.
Collapse
Affiliation(s)
- Lauriane Bosc
- Institute for Advanced Biosciences, Université Grenoble Alpes, INSERM U1209, CNRS UMR 5309; Grenoble, France
| | - Maria Elena Pero
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University; New York, NY 10032, USA
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II; 80137 Naples, Italy
| | - David Balayssac
- Université Clermont Auvergne, U1107, NEURO-DOL, INSERM, CHU Clermont-Ferrand, Direction de la recherche clinique et de l’innovation ; Clermont-Ferrand, France
| | - Nathalie Jacquemot
- Université Clermont Auvergne, U1107, NEURO-DOL, INSERM, Clermont-Ferrand, France
| | - Jordan Allard
- Institute for Advanced Biosciences, Université Grenoble Alpes, INSERM U1209, CNRS UMR 5309; Grenoble, France
| | - Peggy Suzanne
- Université Normandie, UNICAEN, CERMN ; 14032 Caen, France
| | - Julien Vollaire
- Institute for Advanced Biosciences, Université Grenoble Alpes, INSERM U1209, CNRS UMR 5309; Grenoble, France
| | - Cécile Cottet-Rousselle
- Laboratory of Fundamental and Applied Bioenergetics, Université Grenoble Alpes, INSERM U1055; Grenoble, France
| | - Sophie Michallet
- Institute for Advanced Biosciences, Université Grenoble Alpes, INSERM U1209, CNRS UMR 5309; Grenoble, France
| | - Joran Villaret
- Institute for Advanced Biosciences, Université Grenoble Alpes, INSERM U1209, CNRS UMR 5309; Grenoble, France
| | - Sakina Torch
- Institute for Advanced Biosciences, Université Grenoble Alpes, INSERM U1209, CNRS UMR 5309; Grenoble, France
| | - Sumari Marais
- Department of Physiology, School of Medicine, Faculty of Health Sciences, University of Pretoria; Pretoria 0028, South Africa
| | - Bénédicte Elena-Herrmann
- Institute for Advanced Biosciences, Université Grenoble Alpes, INSERM U1209, CNRS UMR 5309; Grenoble, France
| | - Uwe Schlattner
- Laboratory of Fundamental and Applied Bioenergetics, Université Grenoble Alpes, INSERM U1055; Grenoble, France
- Institut Universitaire de France (IUF) ; 75231 Paris, France
| | - Anne Mercier
- Department of Physiology, School of Medicine, Faculty of Health Sciences, University of Pretoria; Pretoria 0028, South Africa
| | - Véronique Josserand
- Institute for Advanced Biosciences, Université Grenoble Alpes, INSERM U1209, CNRS UMR 5309; Grenoble, France
| | - Chantal Thibert
- Institute for Advanced Biosciences, Université Grenoble Alpes, INSERM U1209, CNRS UMR 5309; Grenoble, France
| | | | - Francesca Bartolini
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University; New York, NY 10032, USA
| | - Laurence Lafanechère
- Institute for Advanced Biosciences, Université Grenoble Alpes, INSERM U1209, CNRS UMR 5309; Grenoble, France
- Department of Physiology, School of Medicine, Faculty of Health Sciences, University of Pretoria; Pretoria 0028, South Africa
| |
Collapse
|
3
|
de Jager L, Jansen KI, Hoogebeen R, Akhmanova A, Kapitein LC, Förster F, Howes SC. StableMARK-decorated microtubules in cells have expanded lattices. J Cell Biol 2025; 224:e202206143. [PMID: 39387699 PMCID: PMC11471893 DOI: 10.1083/jcb.202206143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 05/10/2024] [Accepted: 09/27/2024] [Indexed: 10/15/2024] Open
Abstract
Microtubules are crucial in cells and are regulated by various mechanisms like posttranslational modifications, microtubule-associated proteins, and tubulin isoforms. Recently, the conformation of the microtubule lattice has also emerged as a potential regulatory factor, but it has remained unclear to what extent different lattices co-exist within the cell. Using cryo-electron tomography, we find that, while most microtubules have a compacted lattice (∼41 Å monomer spacing), approximately a quarter of the microtubules displayed more expanded lattice spacings. The addition of the microtubule-stabilizing agent Taxol increased the lattice spacing of all microtubules, consistent with results on reconstituted microtubules. Furthermore, correlative cryo-light and electron microscopy revealed that the stable subset of microtubules labeled by StableMARK, a marker for stable microtubules, predominantly displayed a more expanded lattice spacing (∼41.9 Å), further suggesting a close connection between lattice expansion and microtubule stability. The coexistence of different lattices and their correlation with stability implicate lattice spacing as an important factor in establishing specific microtubule subsets.
Collapse
Affiliation(s)
- Leanne de Jager
- Structural Biochemistry, Department of Chemistry, Bijvoet Centre for Biomolecular Research, Utrecht University, Utrecht, Netherlands
| | - Klara I. Jansen
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Robin Hoogebeen
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Anna Akhmanova
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Lukas C. Kapitein
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Friedrich Förster
- Structural Biochemistry, Department of Chemistry, Bijvoet Centre for Biomolecular Research, Utrecht University, Utrecht, Netherlands
| | - Stuart C. Howes
- Structural Biochemistry, Department of Chemistry, Bijvoet Centre for Biomolecular Research, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
4
|
Cavaletti G, Alberti P, Canta A, Carozzi V, Cherchi L, Chiorazzi A, Crippa L, Marmiroli P, Meregalli C, Pozzi E, Rodriguez-Menendez V, Steinkühler C, Licandro SA. Translation of paclitaxel-induced peripheral neurotoxicity from mice to patients: the importance of model selection. Pain 2024; 165:2482-2493. [PMID: 38723182 PMCID: PMC11474912 DOI: 10.1097/j.pain.0000000000003268] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/20/2024] [Accepted: 03/22/2024] [Indexed: 10/17/2024]
Abstract
ABSTRACT Paclitaxel-induced peripheral neurotoxicity (PIPN) is a potentially dose-limiting side effect in anticancer chemotherapy. Several animal models of PIPN exist, but their results are sometimes difficult to be translated into the clinical setting. We compared 2 widely used PIPN models characterized by marked differences in their methodologies. Female C57BL/6JOlaHsd mice were used, and they received only paclitaxel vehicle (n = 38) or paclitaxel via intravenous injection (n = 19, 70 mg/kg) once a week for 4 weeks (Study 1) or intraperitoneally (n = 19, 10 mg/kg) every 2 days for 7 times (Study 2). At the end of treatment and in the follow-up, mice underwent behavioral and neurophysiological assessments of PIPN. At the same time points, some mice were killed and dorsal root ganglia, skin, and sciatic and caudal nerve samples underwent pathological examination. Serum neurofilament light levels were also measured. The differences in the neurotoxicity parameters were analyzed using a nonparametric Mann-Whitney test, with significance level set at P < 0.05. Study 1 showed significant and consistent behavioral, neurophysiological, pathological, and serological changes induced by paclitaxel administration at the end of treatment, and most of these changes were still evident in the follow-up period. By contrast, study 2 evidenced only a transient small fiber neuropathy, associated with neuropathic pain. Our comparative study clearly distinguished a PIPN model recapitulating all the clinical features of the human condition and a model showing only small fiber neuropathy with neuropathic pain induced by paclitaxel.
Collapse
Affiliation(s)
- Guido Cavaletti
- Experimental Neurology Unit, University of Milano-Bicocca, Monza, Italy
- Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Paola Alberti
- Experimental Neurology Unit, University of Milano-Bicocca, Monza, Italy
- Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Annalisa Canta
- Experimental Neurology Unit, University of Milano-Bicocca, Monza, Italy
| | - Valentina Carozzi
- Experimental Neurology Unit, University of Milano-Bicocca, Monza, Italy
| | - Laura Cherchi
- Experimental Neurology Unit, University of Milano-Bicocca, Monza, Italy
| | - Alessia Chiorazzi
- Experimental Neurology Unit, University of Milano-Bicocca, Monza, Italy
| | - Luca Crippa
- Experimental Neurology Unit, University of Milano-Bicocca, Monza, Italy
| | - Paola Marmiroli
- Experimental Neurology Unit, University of Milano-Bicocca, Monza, Italy
| | | | - Eleonora Pozzi
- Experimental Neurology Unit, University of Milano-Bicocca, Monza, Italy
| | | | | | | |
Collapse
|
5
|
Yang Y, He Z, Wu S. Ursolic acid alleviates paclitaxel-induced peripheral neuropathy through PPARγ activation. Toxicol Appl Pharmacol 2024; 484:116883. [PMID: 38437959 DOI: 10.1016/j.taap.2024.116883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/10/2024] [Accepted: 03/01/2024] [Indexed: 03/06/2024]
Abstract
BACKGROUND Chemotherapy-induced peripheral neuropathy (CIPN) reduces the overall quality of life and leads to interruption of chemotherapy. Ursolic acid, a triterpenoid naturally which presents in fruit peels and in many herbs and spices, can function as a peroxisome proliferator-activated receptor γ (PPARγ) agonist, and has been widely used as an herbal medicine with a wide spectrum of pharmacological activities, including anti-cancer, anti-inflammatory and neuroprotective effect. METHODS We used a phenotypic drug screening approach to identify ursolic acid as a potential neuroprotective drug in vitro and in vivo and carried out additional biochemical experiments to identify its mechanism of action. RESULTS Our study demonstrated that ursolic acid reduced neurotoxicity and cell apoptosis induced by pacilitaxel, resulting in an improvement of CIPN. Moreover, we explored the potential mechanisms of ursolic acid on CIPN. As a result, ursolic acid inhibited CHOP (C/EBP Homologous Protein) expression, indicating the endoplasmic reticulum (ER) stress suppression, and regulating CHOP related apoptosis regulator (the Bcl2 family) to reverse pacilitaxel induced apoptosis. Moreover, we showed that the therapeutic effect of ursolic acid on the pacilitaxel-induced peripheral neuropathy is PPARγ dependent. CONCLUSIONS Taken together, the present study suggests ursolic acid has potential as a new PPARγ agonist targeting ER stress-related apoptotic pathways to ameliorate pacilitaxel-induced peripheral neuropathic pain and nerve injury, providing new clinical therapeutic method for CIPN.
Collapse
Affiliation(s)
- Yulian Yang
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, Shaanxi 710072, China
| | - Zhongzheng He
- Department of Neurosurgery, Mini-invasive Neurosurgery and Translational Medical Center, Xi'an Central Hospital, Xi'an Jiaotong University, Shaanxi 710003, China
| | - Shuangchan Wu
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, Shaanxi 710072, China; Research & Development Institute of Northwestern Polytechnical University, Shenzhen, Guangdong 518057, China.
| |
Collapse
|
6
|
Danziger M, Noble H, Roque DM, Xu F, Rao GG, Santin AD. Microtubule-Targeting Agents: Disruption of the Cellular Cytoskeleton as a Backbone of Ovarian Cancer Therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1452:1-19. [PMID: 38805122 DOI: 10.1007/978-3-031-58311-7_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Microtubules are dynamic polymers composed of α- and β-tubulin heterodimers. Microtubules are universally conserved among eukaryotes and participate in nearly every cellular process, including intracellular trafficking, replication, polarity, cytoskeletal shape, and motility. Due to their fundamental role in mitosis, they represent a classic target of anti-cancer therapy. Microtubule-stabilizing agents currently constitute a component of the most effective regimens for ovarian cancer therapy in both primary and recurrent settings. Unfortunately, the development of resistance continues to present a therapeutic challenge. An understanding of the underlying mechanisms of resistance to microtubule-active agents may facilitate the development of novel and improved approaches to this disease.
Collapse
Affiliation(s)
- Michael Danziger
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Helen Noble
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Dana M Roque
- Division of Gynecologic Oncology, Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Fuhua Xu
- Division of Gynecologic Oncology, Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Gautam G Rao
- Division of Gynecologic Oncology, Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | | |
Collapse
|