Mukherjee C, Clark CG, Lohia A. Entamoeba shows reversible variation in ploidy under different growth conditions and between life cycle phases.
PLoS Negl Trop Dis 2008;
2:e281. [PMID:
18714361 PMCID:
PMC2500184 DOI:
10.1371/journal.pntd.0000281]
[Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2008] [Accepted: 07/18/2008] [Indexed: 11/18/2022] Open
Abstract
Under axenic growth conditions, trophozoites of Entamoeba histolytica contain heterogenous amounts of DNA due to the presence of both multiple nuclei and different amounts of DNA in individual nuclei. In order to establish if the DNA content and the observed heterogeneity is maintained during different growth conditions, we have compared E. histolytica cells growing in xenic and axenic cultures. Our results show that the nuclear DNA content of E. histolytica trophozoites growing in axenic cultures is at least 10 fold higher than in xenic cultures. Re-association of axenic cultures with their bacterial flora led to a reduction of DNA content to the original xenic values. Thus switching between xenic and axenic growth conditions was accompanied by significant changes in the nuclear DNA content of this parasite. Changes in DNA content during encystation-excystation were studied in the related reptilian parasite E. invadens. During excystation of E. invadens cysts, it was observed that the nuclear DNA content increased approximately 40 fold following emergence of trophozoites in axenic cultures. Based on the observed large changes in nuclear size and DNA content, and the minor differences in relative abundance of representative protein coding sequences, rDNA and tRNA sequences, it appears that gain or loss of whole genome copies may be occurring during changes in the growth conditions. Our studies demonstrate the inherent plasticity and dynamic nature of the Entamoeba genome in at least two species.
In contrast to the perception that DNA content of an organism is stable and maintained during different conditions and life cycle stages, new evidence shows that many organisms display changes in their DNA content at different stages of their life cycle. We have earlier identified intra-cellular and inter-cellular differences in DNA content of the protist pathogen Entamoeba histolytica and established that this organism can tolerate large variations in DNA content during axenic culture. In this study we have made an important advancement in the understanding of amoeba biology where we have shown that changes in growth conditions and life cycle stages are accompanied by large differences in DNA content involving gain or loss of whole genome copies. This property may well regulate the outcome of infection and subsequently the disease.
Collapse