1
|
Hegyi A, Lăzărescu AV, Ciobanu AA, Ionescu BA, Grebenişan E, Chira M, Florean C, Vermeşan H, Stoian V. Study on the Possibilities of Developing Cementitious or Geopolymer Composite Materials with Specific Performances by Exploiting the Photocatalytic Properties of TiO 2 Nanoparticles. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16103741. [PMID: 37241366 DOI: 10.3390/ma16103741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/06/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023]
Abstract
Starting from the context of the principles of Sustainable Development and Circular Economy concepts, the paper presents a synthesis of research in the field of the development of materials of interest, such as cementitious composites or alkali-activated geopolymers. Based on the reviewed literature, the influence of compositional or technological factors on the physical-mechanical performance, self-healing capacity and biocidal capacity obtained was analyzed. The inclusion of TiO2 nanoparticles in the matrix increase the performances of cementitious composites, producing a self-cleaning capacity and an anti-microbial biocidal mechanism. As an alternative, the self-cleaning capacity can be achieved through geopolymerization, which provides a similar biocidal mechanism. The results of the research carried out indicate the real and growing interest for the development of these materials but also the existence of some elements still controversial or insufficiently analyzed, therefore concluding the need for further research in these areas. The scientific contribution of this study consists of bringing together two apparently distinct research directions in order to identify convergent points, to create a favorable framework for the development of an area of research little addressed so far, namely, the development of innovative building materials by combining improved performance with the possibility of reducing environmental impact, awareness and implementation of the concept of a Circular Economy.
Collapse
Affiliation(s)
- Andreea Hegyi
- NIRD URBAN-INCERC Cluj-Napoca Branch, 117 Calea Floresti, 400524 Cluj-Napoca, Romania
| | | | | | | | - Elvira Grebenişan
- NIRD URBAN-INCERC Cluj-Napoca Branch, 117 Calea Floresti, 400524 Cluj-Napoca, Romania
| | - Mihail Chira
- NIRD URBAN-INCERC Cluj-Napoca Branch, 117 Calea Floresti, 400524 Cluj-Napoca, Romania
| | - Carmen Florean
- NIRD URBAN-INCERC Cluj-Napoca Branch, 117 Calea Floresti, 400524 Cluj-Napoca, Romania
- NIRD URBAN-INCERC Iaşi Branch, 6 Anton Şesan Street, 700048 Iaşi, Romania
| | - Horaţiu Vermeşan
- Faculty of Materials and Environmental Engineering, Technical University of Cluj-Napoca, 103-105 Muncii Boulevard, 400641 Cluj-Napoca, Romania
| | - Vlad Stoian
- Department of Microbiology, Facutly of Agriculture, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 3-5 Calea Mănăştur, 400372 Cluj-Napoca, Romania
| |
Collapse
|
2
|
Silerio-Vázquez F, Proal Nájera JB, Bundschuh J, Alarcon-Herrera MT. Photocatalysis for arsenic removal from water: considerations for solar photocatalytic reactors. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:61594-61607. [PMID: 34533752 DOI: 10.1007/s11356-021-16507-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 09/07/2021] [Indexed: 06/13/2023]
Abstract
The following work provides a perspective on the potential application of solar heterogeneous photocatalysis, which is a nonselective advanced oxidation process considered as a sustainable technology, to assist in arsenic removal from water, which is a global threat to human health. Heterogeneous photocatalysis can oxidize trivalent arsenic to pentavalent arsenic, decreasing its toxicity and easing its removal with other technologies, such as chemical precipitation and adsorption. Several lab-scale arsenic photocatalytic oxidation and diverse solar heterogeneous photocatalytic operations carried out in different reactor designs are analyzed. It was found out that this technology has not been translated to operational pilot plant scale prototypes. General research on reactors is scarce, comprising a small percentage of the photocatalysis related scientific literature. It was possible to elucidate some operational parameters that a reactor must comply to operate efficiently. Reports on small-scale application shed light that in areas where other water purification technologies are economically and/or technically not suitable, and the solar energy is available, shed light on the fact that solar heterogeneous photocatalysis is highly promissory within a water purification process for removal of arsenic from water.
Collapse
Affiliation(s)
- Felipe Silerio-Vázquez
- Departamento de Ingeniería Sustentable, Centro de Investigación en Materiales Avanzados, S.C. Calle CIMAV 110, Colonia 15 de mayo, C.P, 34147, Durango, México
| | - José B Proal Nájera
- Instituto Politécnico Nacional, CIIDIR-Durango, Calle Sigma 119, Fraccionamiento 20 de Noviembre II, C. P, 34220, Durango, México
| | - Jochen Bundschuh
- UNESCO Chair on Groundwater Arsenic within the 2030 Agenda for Sustainable Development, and School of Civil Engineering, Faculty of Health, Engineering and Sciences, University of Southern Queensland, West Street, Toowoomba, Queensland, 4350, Australia
| | - María T Alarcon-Herrera
- Departamento de Ingeniería Sustentable, Centro de Investigación en Materiales Avanzados, S.C. Calle CIMAV 110, Colonia 15 de mayo, C.P, 34147, Durango, México.
| |
Collapse
|
3
|
A Review of the Use of Semiconductors as Catalysts in the Photocatalytic Inactivation of Microorganisms. Catalysts 2021. [DOI: 10.3390/catal11121498] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Obtaining clean and high-quality water free of pathogenic microorganisms is a worldwide challenge. Various techniques have been investigated for achieving an effective removal or inactivation of these pathogenic microorganisms. One of those promising techniques is photocatalysis. In recent years, photocatalytic processes used semiconductors as photocatalysts. They were widely studied as a green and safe technology for water disinfection due to their high efficiency, being non-toxic and inexpensive, and their ability to disinfect a wide range of microorganisms under UV or visible light. In this review, we summarized the inactivation mechanisms of different waterborne pathogenic microorganisms by semiconductor photocatalysts. However, the photocatalytic efficiency of semiconductors photocatalysts, especially titanium dioxide, under visible light is limited and hence needs further improvements. Several strategies have been studied to improve their efficiencies which are briefly discussed in this review. With the developing of nanotechnology, doping with nanomaterials can increase and promote the semiconductor’s photocatalytic efficiency, which can enhance the deactivation or damage of a large number of waterborne pathogenic microorganisms. Here, we present an overview of antimicrobial effects for a wide range of nano-photocatalysts, including titanium dioxide-based, other metal-containing, and metal-free photocatalysts. Promising future directions and challenges for materials research in photocatalytic water disinfection are also concluded in this review.
Collapse
|
4
|
Hegyi A, Grebenişan E, Lăzărescu AV, Stoian V, Szilagyi H. Influence of TiO 2 Nanoparticles on the Resistance of Cementitious Composite Materials to the Action of Fungal Species. MATERIALS 2021; 14:ma14164442. [PMID: 34442965 PMCID: PMC8398090 DOI: 10.3390/ma14164442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 07/27/2021] [Accepted: 08/05/2021] [Indexed: 11/27/2022]
Abstract
The development of mold films on the cement surfaces of buildings is a health and safety problem for the population, aesthetic but also in terms of their durability. The use of specific performance of cementitious composites containing TiO2 nanoparticles, photoactivated by UV radiation, can be a viable solution to mitigate to eliminate these problems. The experimental studies presented aim to analyze the capacity to inhibit the development of mold type Aspergillus and Penicillium on the surface of composite materials with nano-TiO2 content and the identification of the optimal range of nanomaterial addition. The identification and analysis of the inhibition halo (zone with a biological load of maximum 1–10 colonies of microorganisms) confirmed the biocidal capacity of the cementitious composites, but also indicated the possibility that an excess of TiO2 nanoparticles in the mixture could induce a development of cell resistance, which would be unfavorable both in terms of behavior and in terms of cost.
Collapse
Affiliation(s)
- Andreea Hegyi
- NIRD URBAN-INCERC Cluj-Napoca Branch, 117 Calea Floreşti, 400524 Cluj-Napoca, Romania;
- Correspondence: (A.H.); (A.-V.L.); (V.S.); (H.S.)
| | - Elvira Grebenişan
- NIRD URBAN-INCERC Cluj-Napoca Branch, 117 Calea Floreşti, 400524 Cluj-Napoca, Romania;
- IOSUD-UTCN Doctoral School, Technical University of Cluj-Napoca, 15 Daicoviciu Street, 400020 Cluj-Napoca, Romania
| | - Adrian-Victor Lăzărescu
- NIRD URBAN-INCERC Cluj-Napoca Branch, 117 Calea Floreşti, 400524 Cluj-Napoca, Romania;
- IOSUD-UTCN Doctoral School, Technical University of Cluj-Napoca, 15 Daicoviciu Street, 400020 Cluj-Napoca, Romania
- Correspondence: (A.H.); (A.-V.L.); (V.S.); (H.S.)
| | - Vlad Stoian
- Department of Microbiology, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 3-5 Calea Mănăştur, 400372 Cluj-Napoca, Romania
- Correspondence: (A.H.); (A.-V.L.); (V.S.); (H.S.)
| | - Henriette Szilagyi
- NIRD URBAN-INCERC Cluj-Napoca Branch, 117 Calea Floreşti, 400524 Cluj-Napoca, Romania;
- Correspondence: (A.H.); (A.-V.L.); (V.S.); (H.S.)
| |
Collapse
|
5
|
Sharma G, Kalra SK, Tejan N, Ghoshal U. Nanoparticles based therapeutic efficacy against Acanthamoeba: Updates and future prospect. Exp Parasitol 2020; 218:108008. [PMID: 32979343 DOI: 10.1016/j.exppara.2020.108008] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 09/17/2020] [Accepted: 09/23/2020] [Indexed: 12/15/2022]
Abstract
Acanthamoeba sp. is a free living amoeba that causes severe, painful and fatal infections, viz. Acanthamoeba keratitis and granulomatous amoebic encephalitis among humans. Antimicrobial chemotherapy used against Acanthamoeba is toxic to human cells and show side effects as well. Infections due to Acanthamoeba also pose challenges towards currently used antimicrobial treatment including resistance and transformation of trophozoites to resistant cyst forms that can lead to recurrence of infection. Therapeutic agents targeting central nervous system infections caused by Acanthamoeba should be able to cross blood-brain barrier. Nanoparticles based drug delivery put forth an effective therapeutic method to overcome the limitations of currently used antimicrobial chemotherapy. In recent years, various researchers investigated the effectiveness of nanoparticles conjugated drug and/or naturally occurring plant compounds against both trophozoites and cyst form of Acanthamoeba. In the current review, a reasonable effort has been made to provide a comprehensive overview of various nanoparticles tested for their efficacy against Acanthamoeba. This review summarizes the noteworthy details of research performed to elucidate the effect of nanoparticles conjugated drugs against Acanthamoeba.
Collapse
Affiliation(s)
- Geetansh Sharma
- Faculty of Applied Sciences & Biotechnology, Shoolini University of Biotechnology & Management Sciences, Bajhol, District Solan, H.P, 173229, India
| | - Sonali K Kalra
- Faculty of Applied Sciences & Biotechnology, Shoolini University of Biotechnology & Management Sciences, Bajhol, District Solan, H.P, 173229, India.
| | - Nidhi Tejan
- Department of Microbiology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Raebareili Road, Lucknow, U.P, 226014, India
| | - Ujjala Ghoshal
- Department of Microbiology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Raebareili Road, Lucknow, U.P, 226014, India
| |
Collapse
|
6
|
Rodríguez-González V, Obregón S, Patrón-Soberano OA, Terashima C, Fujishima A. An approach to the photocatalytic mechanism in the TiO 2-nanomaterials microorganism interface for the control of infectious processes. APPLIED CATALYSIS. B, ENVIRONMENTAL 2020; 270:118853. [PMID: 32292243 PMCID: PMC7111711 DOI: 10.1016/j.apcatb.2020.118853] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/27/2020] [Accepted: 03/03/2020] [Indexed: 05/08/2023]
Abstract
The approach of this timely review considers the current literature that is focused on the interface nanostructure/cell-wall microorganism to understand the annihilation mechanism. Morphological studies use optical and electronic microscopes to determine the physical damage on the cell-wall and the possible cell lysis that confirms the viability and microorganism death. The key parameters of the tailoring the surface of the photoactive nanostructures such as the metal functionalization with bacteriostatic properties, hydrophilicity, textural porosity, morphology and the formation of heterojunction systems, can achieve the effective eradication of the microorganisms under natural conditions, ranging from practical to applications in environment, agriculture, and so on. However, to our knowledge, a comprehensive review of the microorganism/nanomaterial interface approach has rarely been conducted. The final remarks point the ideal photocatalytic way for the effective prevention/eradication of microorganisms, considering the resistance that the microorganism could develop without the appropriate regulatory aspects for human and ecosystem safety.
Collapse
Affiliation(s)
- Vicente Rodríguez-González
- Photocatalysis International Research Center, Research Institute for Science & Technology, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
- Instituto Potosino de Investigación Científica y Tecnológica (IPICYT), División de Materiales Avanzados, Camino a la Presa San José 2055, Lomas 4a, Sección, 78216, San Luis Potosí, Mexico
| | - Sergio Obregón
- Universidad Autónoma de Nuevo León, UANL, CICFIM-Facultad de Ciencias Físico Matemáticas, Av. Universidad S/N, San Nicolás de los Garza, 66455, Nuevo León, Mexico
| | - Olga A. Patrón-Soberano
- Instituto Potosino de Investigación Científica y Tecnológica (IPICYT), División de Biología Molecular, Camino a la Presa San José 2055, Lomas 4a, Sección, 78216, San Luis Potosí, Mexico
| | - Chiaki Terashima
- Photocatalysis International Research Center, Research Institute for Science & Technology, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Akira Fujishima
- Photocatalysis International Research Center, Research Institute for Science & Technology, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| |
Collapse
|
7
|
Hegde S, Kumar A, Hegde G. Synthesis of Sustainable Carbon Nanospheres from Natural Bioresources and Their Diverse Applications. ACS SYMPOSIUM SERIES 2020. [DOI: 10.1021/bk-2020-1353.ch016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Supriya Hegde
- Centre for Nano-materials and Displays, B.M.S. College of Engineering, Bull Temple Road, Basavanagudi, Bengaluru 560019, India
| | - Anuj Kumar
- Natural Resources Institute Finland (Luke)/Luonnonvarakeskus (Luke), Joensuu Unit, Yliopistokatu 6 80100, JOENSUU, Finland
| | - Gurumurthy Hegde
- Centre for Nano-materials and Displays, B.M.S. College of Engineering, Bull Temple Road, Basavanagudi, Bengaluru 560019, India
| |
Collapse
|
8
|
Can the photocatalyst TiO2 be incorporated into a wastewater treatment method? Background and prospects. Catal Today 2020. [DOI: 10.1016/j.cattod.2018.10.020] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
9
|
Adán C, Magnet A, Fenoy S, Pablos C, Del Águila C, Marugán J. Concomitant inactivation of Acanthamoeba spp. and Escherichia coli using suspended and immobilized TiO 2. WATER RESEARCH 2018; 144:512-521. [PMID: 30081334 DOI: 10.1016/j.watres.2018.07.060] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 07/18/2018] [Accepted: 07/25/2018] [Indexed: 06/08/2023]
Abstract
This work reports the application of photocatalytic disinfection to the inactivation of Acanthamoeba trophozoites, a free-living pathogenic amoeba. Two types of photocatalytic reactors configurations have been used: i) a slurry reactor using suspended titanium dioxide (TiO2); and, ii) a fixed-bed reactor using immobilized TiO2 onto glass Raschig rings. The effect of the chemical composition of water has been analysed, comparing the efficiency of the process in deionized water (DW) and synthetic wastewater treatment plant effluent (SWTPE). The inactivation of Acanthamoeba spp. has been compared to that of Escherichia coli bacteria, being also analysed the concomitant inactivation of both microorganisms. Our results show that 99% of inactivation of E. coli and Acanthamoeba spp. can be achieved using photocatalysis in both reactor configurations, but interestingly, the kinetics of inactivation of both microorganisms together differs from that found with them separately. Particularly, E. coli seems to be more resistant to the inactivation in the presence of Acanthamoeba spp. which has been justified by the screen effect caused by the bigger size of Acanthamoeba spp. This observation is more pronounced in DW as the composition of the SWTPE prevent the microorganisms from suffering osmotic and/or mechanical stress and protect cellular structures to the attack of reactive oxygen species (ROS). On the other hand, the difference between the inactivation rate of E. coli and Acanthamoeba, points out the importance of the different inactivation mechanisms, suggesting that the entry of small TiO2 particles into the cytoplasm of the Acanthamoeba cells provokes the attack of inner structures and as a consequence a faster inactivation. This mechanism is not possible when the catalyst is immobilized leading to a higher cell resistance to inactivation and consequently lower efficiency of the disinfection process.
Collapse
Affiliation(s)
- Cristina Adán
- Department of Chemical and Environmental Technology (ESCET), University Rey Juan Carlos, C/Tulipán s/n, 28933 Móstoles, Madrid, Spain
| | - Angela Magnet
- Laboratorio de Parasitología, Universidad San Pablo-CEU, CEU Universities, Boadilla del Monte (Montepríncipe), Ctra Boadilla del Monte Km. 5.3, 28668 Madrid, Spain
| | - Soledad Fenoy
- Laboratorio de Parasitología, Universidad San Pablo-CEU, CEU Universities, Boadilla del Monte (Montepríncipe), Ctra Boadilla del Monte Km. 5.3, 28668 Madrid, Spain
| | - Cristina Pablos
- Department of Chemical and Environmental Technology (ESCET), University Rey Juan Carlos, C/Tulipán s/n, 28933 Móstoles, Madrid, Spain
| | - Carmen Del Águila
- Laboratorio de Parasitología, Universidad San Pablo-CEU, CEU Universities, Boadilla del Monte (Montepríncipe), Ctra Boadilla del Monte Km. 5.3, 28668 Madrid, Spain
| | - Javier Marugán
- Department of Chemical and Environmental Technology (ESCET), University Rey Juan Carlos, C/Tulipán s/n, 28933 Móstoles, Madrid, Spain.
| |
Collapse
|
10
|
Gomart G, Denis J, Bourcier T, Dory A, Abou-Bacar A, Candolfi E, Sauer A. In Vitro Amoebicidal Activity of Titanium Dioxide/UV-A Combination AgainstAcanthamoeba. ACTA ACUST UNITED AC 2018; 59:4567-4571. [DOI: 10.1167/iovs.18-25003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Gabrielle Gomart
- Service d'Ophtalmologie, Hôpitaux Universitaires de Strasbourg, Nouvel Hôpital Civil, Strasbourg, France
- Institut de Parasitologie et de Pathologie Tropicale de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg, Strasbourg, France
| | - Julie Denis
- Institut de Parasitologie et de Pathologie Tropicale de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg, Strasbourg, France
| | - Tristan Bourcier
- Service d'Ophtalmologie, Hôpitaux Universitaires de Strasbourg, Nouvel Hôpital Civil, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| | - Anne Dory
- Service de Pharmacie, Hôpitaux Universitaires de Strasbourg, Nouvel Hôpital Civil, Strasbourg, France
| | - Ahmed Abou-Bacar
- Institut de Parasitologie et de Pathologie Tropicale de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg, Strasbourg, France
| | - Ermanno Candolfi
- Institut de Parasitologie et de Pathologie Tropicale de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg, Strasbourg, France
| | - Arnaud Sauer
- Service d'Ophtalmologie, Hôpitaux Universitaires de Strasbourg, Nouvel Hôpital Civil, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| |
Collapse
|
11
|
Bogdan J, Pławińska-Czarnak J, Zarzyńska J. Nanoparticles of Titanium and Zinc Oxides as Novel Agents in Tumor Treatment: a Review. NANOSCALE RESEARCH LETTERS 2017; 12:225. [PMID: 28351128 PMCID: PMC5368103 DOI: 10.1186/s11671-017-2007-y] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 03/17/2017] [Indexed: 05/22/2023]
Abstract
Cancer has become a global problem. On all continents, a great number of people are diagnosed with this disease. In spite of the progress in medical care, cancer still ends fatal for a great number of the ill, either as a result of a late diagnosis or due to inefficiency of therapies. The majority of the tumors are resistant to drugs. Thus, the search for new, more effective therapy methods continues. Recently, nanotechnology has been attributed with big expectations in respect of the cancer fight. That interdisciplinary field of science creates nanomaterials (NMs) and nanoparticles (NPs) that can be applied, e.g., in nanomedicine. NMs and NPs are perceived as very promising in cancer therapy since they can perform as drug carriers, as well as photo- or sonosensitizers (compounds that generate the formation of reactive oxygen species as a result of either electromagnetic radiation excitation with an adequate wavelength or ultrasound activation, respectively). Consequently, two new treatment modalities, the photodynamic therapy (PDT) and the sonodynamic therapy (SDT) have been created. The attachment of ligands or antibodies to NMs or to NPs improve their selective distribution into the targeted organ or cell; hence, the therapy effectiveness can be improved. An important advantage of the targeted tumor treatment is lowering the cyto- and genotoxicity of active substance towards healthy cells. Therefore, both PDT and SDT constitute a valuable alternative to chemo- or radiotherapy. The vital role in cancer eradication is attributed to two inorganic sensitizers in their nanosized scale: titanium dioxide and zinc oxide.
Collapse
Affiliation(s)
- Janusz Bogdan
- Department of Food Hygiene and Public Health Protection, Faculty of Veterinary Medicine, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Joanna Pławińska-Czarnak
- Department of Food Hygiene and Public Health Protection, Faculty of Veterinary Medicine, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Joanna Zarzyńska
- Department of Food Hygiene and Public Health Protection, Faculty of Veterinary Medicine, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| |
Collapse
|
12
|
Mac Mahon J, Pillai SC, Kelly JM, Gill LW. Solar photocatalytic disinfection of E. coli and bacteriophages MS2, ΦX174 and PR772 using TiO 2 , ZnO and ruthenium based complexes in a continuous flow system. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 170:79-90. [DOI: 10.1016/j.jphotobiol.2017.03.027] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 03/30/2017] [Accepted: 03/30/2017] [Indexed: 10/19/2022]
|
13
|
An T, Zhao H, Wong PK. Introduction. GREEN CHEMISTRY AND SUSTAINABLE TECHNOLOGY 2017. [PMCID: PMC7123207 DOI: 10.1007/978-3-662-53496-0_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The last 50 years have witnessed a growing awareness of the fragile state of most of the planets’ drinking water resources. Access to freshwater will become even more important in the near future, as the world’s population rises from 7 billion today to 9 billion by 2050. The World Health Organization (WHO) has estimated that 80 % of illnesses in the developing world are water related, resulting from poor water quality and lack of sanitation [1]. There are 3.3 million deaths each year from diarrheal diseases caused by bacteria such as Escherichia coli, Salmonella sp. and Cholera sp., parasites and viral pathogens. In the 1990s, the number of children who died of diarrhoea was greater than the sum of people killed in conflicts since World War II [2]. It is also estimated that around 4 billion people worldwide experience to have no or little access to clean and sanitized water supply, and millions of people died of severe waterborne diseases annually [3, 4].
Collapse
Affiliation(s)
- Taicheng An
- Institute of Environmental Health and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, Guangdong China
| | - Huijun Zhao
- Centre for Clean Environment and Energy, Griffith University, Gold Coast, Queensland Australia
| | - Po Keung Wong
- School of Life Science, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
14
|
TiO2 Solar Photocatalytic Reactor Systems: Selection of Reactor Design for Scale-up and Commercialization—Analytical Review. Catalysts 2016. [DOI: 10.3390/catal6090138] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
15
|
Imran M, Muazzam AG, Habib A, Matin A. Synthesis, characterization and amoebicidal potential of locally synthesized TiO2 nanoparticles against pathogenic Acanthamoeba trophozoites in vitro. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 159:125-32. [DOI: 10.1016/j.jphotobiol.2016.03.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 03/04/2016] [Accepted: 03/07/2016] [Indexed: 11/25/2022]
|
16
|
Lamy R, Chan E, Good SD, Cevallos V, Porco TC, Stewart JM. Riboflavin and ultraviolet A as adjuvant treatment against Acanthamoeba cysts. Clin Exp Ophthalmol 2016; 44:181-7. [PMID: 26355273 DOI: 10.1111/ceo.12644] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 08/02/2015] [Accepted: 09/07/2015] [Indexed: 01/24/2023]
Abstract
BACKGROUND Experimental studies have shown that the standard dose of riboflavin (R) or R + ultraviolet-A (UVA) as solo treatment are not able to exterminate Acanthamoeba cysts or even trophozoites. The purpose of this study is to determine whether the application of R + UVA can enhance the cysticidal effects of cationic antiseptic agents in vitro. METHODS The log of either polyhexamethylene biguanide or chlorhexidine minimal cysticidal concentration in solutions containing riboflavin (concentrations 0.1, 0.05 and 0.025%) plus either Acanthamoeba castellanii cysts or Acanthamoeba polyphaga cysts was determined and compared in groups treated with UVA 30 mW/cm(2) for 30 min and in control groups (with no exposure to UVA). A permutation test was used to determine the P value associated with treatment. RESULTS Regardless of the riboflavin concentration and UVA treatment condition, no trophozoites were seen in plates where the cysts were previously exposed to cationic antiseptic agent concentrations ≥200 µg/mL for Acanthamoeba castellanii samples and ≥100 µg/mL for A. polyphaga samples. There was no statistical evidence that R + UVA treatment was associated with minimal cysticidal concentration (P = 0.82). CONCLUSION R + UVA in doses up to 10 times higher than recommended for corneal crosslinking does not enhance the cysticidal effect of either polyhexamethylene biguanide or chlorhexidine in vitro.
Collapse
Affiliation(s)
- Ricardo Lamy
- Department of Ophthalmology, University of California - San Francisco, San Francisco, California, USA
| | - Elliot Chan
- Department of Ophthalmology, University of California - San Francisco, San Francisco, California, USA
| | - Samuel D Good
- Department of Ophthalmology, University of California - San Francisco, San Francisco, California, USA
| | - Vicky Cevallos
- Francis I. Proctor Foundation, University of California - San Francisco, San Francisco, California, USA
| | - Travis C Porco
- Francis I. Proctor Foundation, University of California - San Francisco, San Francisco, California, USA
| | - Jay M Stewart
- Department of Ophthalmology, University of California - San Francisco, San Francisco, California, USA
| |
Collapse
|
17
|
Chang SY, Huang WJ, Lu BR, Fang GC, Chen Y, Chen HL, Chang MC, Hsu CF. An Environmentally Friendly Method for Testing Photocatalytic Inactivation of Cyanobacterial Propagation on a Hybrid Ag-TiO₂ Photocatalyst under Solar Illumination. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2015; 12:15819-33. [PMID: 26690465 PMCID: PMC4690959 DOI: 10.3390/ijerph121215023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Revised: 12/03/2015] [Accepted: 12/04/2015] [Indexed: 12/04/2022]
Abstract
Cyanobacteria were inactivated under sunlight using mixed phase silver (Ag) and deposited titanium dioxide (TiO₂) coated on the surface of diatomite (DM) as a hybrid photocatalyst (Ag-TiO₂/DM). The endpoints of dose-response experiments were chlorophyll a, photosynthetic efficiency, and flow cytometry measurements. In vitro experiments revealed that axenic cultures of planktonic cyanobacteria lost their photosynthetic activity following photocatalyzed exposure to sunlight for more than 24 h. Nearly 92% of Microcystis aeruginosa cells lost their photosynthetic activity, and their cell morphology was severely damaged within 24 h of the reaction. Preliminary carbon-14 ((14)CO₃(-2)) results suggest that the complete inactivation of cyanobacteria arises from damage to cell wall components (peroxidation). A small concomitant increase in cell wall disorder and a consequent decrease in cell wall functional groups increase the cell wall fluidity prior to cell lysis. A high dosage of Ag-TiO₂/DM during photocatalysis increased the concentration of extracellular polymeric substances (EPSs) in the Microcystis aeruginosa suspension by up to approximately 260%. However, photocatalytic treatment had a small effect on the disinfection by-product (DBP) precursor, as revealed by only a slight increase in the formation of trihalomethanes (THMs) and haloacetic acids (HAAs).
Collapse
Affiliation(s)
- Shu-Yu Chang
- Kuang-Tien General Hospital, No. 117, Satien Road, Shalu District, Taichung 43303, Taiwan.
| | - Winn-Jung Huang
- Department of Safety, Health and Environmental Engineering, Hungkuang University, No. 1018 Sec. 6, Taiwan Boulevard, Shalu District, Taichung 43302, Taiwan.
| | - Ben-Ren Lu
- Department of Electronics and Communication Engineering, Peking University, No. 5, Zhuangyuan Road, Binhu District, Wuxi 214125, China.
| | - Guor-Cheng Fang
- Department of Safety, Health and Environmental Engineering, Hungkuang University, No. 1018 Sec. 6, Taiwan Boulevard, Shalu District, Taichung 43302, Taiwan.
| | - Yeah Chen
- Department of Safety, Health and Environmental Engineering, Hungkuang University, No. 1018 Sec. 6, Taiwan Boulevard, Shalu District, Taichung 43302, Taiwan.
| | - Hsiu-Lin Chen
- Department of Safety, Health and Environmental Engineering, Hungkuang University, No. 1018 Sec. 6, Taiwan Boulevard, Shalu District, Taichung 43302, Taiwan.
| | - Ming-Chin Chang
- Department of Safety, Health and Environmental Engineering, Hungkuang University, No. 1018 Sec. 6, Taiwan Boulevard, Shalu District, Taichung 43302, Taiwan.
| | - Cheng-Feng Hsu
- Department of Safety, Health and Environmental Engineering, Hungkuang University, No. 1018 Sec. 6, Taiwan Boulevard, Shalu District, Taichung 43302, Taiwan.
| |
Collapse
|
18
|
Yin R, Agrawal T, Khan U, Gupta GK, Rai V, Huang YY, Hamblin MR. Antimicrobial photodynamic inactivation in nanomedicine: small light strides against bad bugs. Nanomedicine (Lond) 2015; 10:2379-404. [PMID: 26305189 PMCID: PMC4557875 DOI: 10.2217/nnm.15.67] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The relentless advance of drug-resistance among pathogenic microbes, mandates a search for alternative approaches that will not cause resistance. Photodynamic inactivation (PDI) involves the combination of nontoxic dyes with harmless visible light to produce reactive oxygen species that can selectively kill microbial cells. PDI can be broad-spectrum in nature and can also destroy microbial cells in biofilms. Many different kinds of nanoparticles have been studied to potentiate antimicrobial PDI by improving photosensitizer solubility, photochemistry, photophysics and targeting. This review will cover photocatalytic disinfection with titania nanoparticles, carbon nanomaterials (fullerenes, carbon nanotubes and graphene), liposomes and polymeric nanoparticles. Natural polymers (chitosan and cellulose), gold and silver plasmonic nanoparticles, mesoporous silica, magnetic and upconverting nanoparticles have all been used for PDI.
Collapse
Affiliation(s)
- Rui Yin
- Department of Dermatology, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
- Wellman Center for Photomedicine, Massachusetts General Hospital, BAR414, 40 Blossom Street, Boston, MA 02114, USA
- Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA
| | - Tanupriya Agrawal
- Wellman Center for Photomedicine, Massachusetts General Hospital, BAR414, 40 Blossom Street, Boston, MA 02114, USA
- Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA
| | - Usman Khan
- Wellman Center for Photomedicine, Massachusetts General Hospital, BAR414, 40 Blossom Street, Boston, MA 02114, USA
- Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA
| | - Gaurav K Gupta
- Wellman Center for Photomedicine, Massachusetts General Hospital, BAR414, 40 Blossom Street, Boston, MA 02114, USA
- Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA
| | - Vikrant Rai
- Wilf Family Cardiovascular Research Institute, Division of Cardiology, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Ying-Ying Huang
- Wellman Center for Photomedicine, Massachusetts General Hospital, BAR414, 40 Blossom Street, Boston, MA 02114, USA
- Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, BAR414, 40 Blossom Street, Boston, MA 02114, USA
- Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA
- Harvard-MIT Division of Health Sciences & Technology, Cambridge, MA 02139, USA
| |
Collapse
|
19
|
Brugnera MF, Miyata M, Fujimura Leite CQ, Zanoni MVB. Silver ion release from electrodes of nanotubes of TiO2 impregnated with Ag nanoparticles applied in photoelectrocatalytic disinfection. J Photochem Photobiol A Chem 2014. [DOI: 10.1016/j.jphotochem.2013.12.020] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
20
|
Li M, Yin JJ, Wamer WG, Lo YM. Mechanistic characterization of titanium dioxide nanoparticle-induced toxicity using electron spin resonance. J Food Drug Anal 2014; 22:76-85. [PMID: 24673905 PMCID: PMC9359148 DOI: 10.1016/j.jfda.2014.01.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 12/02/2013] [Accepted: 12/21/2013] [Indexed: 12/29/2022] Open
Abstract
Titanium dioxide nanoparticles (TiO2 NPs) are one of the most widely used nanomaterials that have been manufactured worldwide and applied in different commercial realms. The well-recognized ability of TiO2 to promote the formation of reactive oxygen species (ROS) has been extensively studied as one of the important mechanisms underlying TiO2 NPs toxicity. As the “gold standard” method to quantify and identify ROS, electron spin resonance (ESR) spectroscopy has been employed in many studies aimed at evaluating TiO2 NPs safety. This review aims to provide a thorough discussion of current studies using ESR as the primary method to unravel the mechanism of TiO2 NPs toxicity. ESR spin label oximetry and immune-spin trapping techniques are also briefly introduced, because the combination of spin trapping/labeling techniques offers a promising tool for studying the oxidative damage caused by TiO2 NPs.
Collapse
Affiliation(s)
- Meng Li
- Center for Food Safety and Applied Nutrition, US Food and Drug Administration, College Park, MD 20740, USA; Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742, USA
| | - Jun-Jie Yin
- Center for Food Safety and Applied Nutrition, US Food and Drug Administration, College Park, MD 20740, USA
| | - Wayne G Wamer
- Center for Food Safety and Applied Nutrition, US Food and Drug Administration, College Park, MD 20740, USA
| | - Y Martin Lo
- Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
21
|
Giardia duodenalis: Number and Fluorescence Reduction Caused by the Advanced Oxidation Process (H2O2/UV). INTERNATIONAL SCHOLARLY RESEARCH NOTICES 2014; 2014:525719. [PMID: 27379301 PMCID: PMC4897353 DOI: 10.1155/2014/525719] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 11/04/2014] [Indexed: 11/30/2022]
Abstract
This study evaluated the effect of peroxidation assisted by ultraviolet radiation (H2O2/UV), which is an advanced oxidation process (AOP), on Giardia duodenalis cysts. The cysts were inoculated in synthetic and surface water using a concentration of 12 g H2O2 L−1 and a UV dose (λ = 254 nm) of 5,480 mJcm−2. The aqueous solutions were concentrated using membrane filtration, and the organisms were observed using a direct immunofluorescence assay (IFA). The AOP was effective in reducing the number of G. duodenalis cysts in synthetic and surface water and was most effective in reducing the fluorescence of the cyst walls that were present in the surface water. The AOP showed a higher deleterious potential for G. duodenalis cysts than either peroxidation (H2O2) or photolysis (UV) processes alone.
Collapse
|
22
|
Zhang J, Liu Y, Li Q, Zhang X, Shang JK. Antifungal activity and mechanism of palladium-modified nitrogen-doped titanium oxide photocatalyst on agricultural pathogenic fungi Fusarium graminearum. ACS APPLIED MATERIALS & INTERFACES 2013; 5:10953-10959. [PMID: 24175751 DOI: 10.1021/am4031196] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Fusarium graminearum is the pathogen for Fusarium head blight (FHB) on wheat, which could significantly reduce grain quality/yield and produce a variety of mycotoxins posing a potential safety concern to human foods. As an environmentally friendly alternative to the commonly used chemical fugicides, a highly effective photocatalytic disinfection of F. graminearum macroconidia under visible light illumination was demonstrated on a visible-light-activated palladium-modified nitrogen-doped titanium oxide (TiON/PdO) nanoparticle photocatalyst. Because of the opposite surface charges of the TiON/PdO nanoparticles and the F. graminearum macroconidium, the nanoparticles were strongly adsorbed onto the macroconidium surface, which is beneficial to the photocatalytic disinfection of these macroconidia. The photocatalytic disinfection mechanism of TiON/PdO nanoparticles on these macroconidia could be attributed to their cell wall/membrane damage caused by the attack from reactive oxygen species (ROSs) as demonstrated by the fluorescence/phase contrast microscopy observations, while a breakage of their cell structure was not necessary for their loss of viability.
Collapse
Affiliation(s)
- Jingtao Zhang
- Environment Functional Materials Division, Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences , 72 Wenhua Road, Shenyang, Liaoning Province, 110016, P. R. China
| | | | | | | | | |
Collapse
|
23
|
Lipovsky A, Gedanken A, Lubart R. Visible Light-Induced Antibacterial Activity of Metaloxide Nanoparticles. Photomed Laser Surg 2013; 31:526-30. [DOI: 10.1089/pho.2012.3339] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Anat Lipovsky
- Department of Chemistry, Kanbar Laboratory for Nanomaterials, Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, Israel
| | - Aharon Gedanken
- Department of Chemistry, Kanbar Laboratory for Nanomaterials, Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, Israel
| | - Rachel Lubart
- Departments of Chemistry and Physics, Bar-Ilan University, Ramat-Gan, Israel
| |
Collapse
|
24
|
Makdoumi K, Bäckman A, Mortensen J, Magnuson A, Crafoord S. Comparison of UVA- and UVA/riboflavin-induced growth inhibition of Acanthamoeba castellanii. Graefes Arch Clin Exp Ophthalmol 2012; 251:509-14. [PMID: 23079692 DOI: 10.1007/s00417-012-2176-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Revised: 09/25/2012] [Accepted: 10/02/2012] [Indexed: 11/28/2022] Open
Abstract
PURPOSE To investigate whether ultraviolet light (UVA) at 365 nm can inhibit/eliminate Acanthamoeba growth and if riboflavin would potentiate such an association. METHODS Acanthamoeba castellanii in a fluid medium with a concentration of approximately 1.7 × 10(4) protozoa/ml were prepared with (0.01 %) and without riboflavin. Exposure of UVA (dose 5.475 J/cm(2)) took place twice, with each illumination period followed by culturing of 10 μl in peptone yeast-extract glucose (PYG) medium for 7 days. Every suspension prepared had a non-exposed control solution. Determination of Acanthamoeba was conducted daily, by count in Burker chamber days 4 through 7 after exposure. Statistical analysis was done by repeated-measurement ANOVA and post-hoc analysis for unpaired samples. RESULTS The exposure of ultraviolet light resulted in an inhibited growth of Acanthamoeba compared to the non-exposed solutions, with a statistically significant reduction over time (p = 0.0003). The addition of riboflavin did not amplify the effect, and there were no tendencies for an interaction effect between UVA and riboflavin. CONCLUSIONS The antiprotozoal effect of the UVA wavelength, utilized in CXL, is solely mediated by ultraviolet light, and riboflavin does not seem to amplify the antimicrobial efficacy.
Collapse
Affiliation(s)
- Karim Makdoumi
- Department of Ophthalmology, Örebro University Hospital, 701 85, Örebro, Sweden.
| | | | | | | | | |
Collapse
|
25
|
Holdich RG, Ipek IY, Lazrigh M, Shama G. Production and Evaluation of Floating Photocatalytic Composite Particles Formed Using Pickering Emulsions and Membrane Emulsification. Ind Eng Chem Res 2012. [DOI: 10.1021/ie3001748] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
26
|
Robertson PKJ, Robertson JMC, Bahnemann DW. Removal of microorganisms and their chemical metabolites from water using semiconductor photocatalysis. JOURNAL OF HAZARDOUS MATERIALS 2012; 211-212:161-171. [PMID: 22178373 DOI: 10.1016/j.jhazmat.2011.11.058] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Revised: 11/16/2011] [Accepted: 11/17/2011] [Indexed: 05/27/2023]
Abstract
Semiconductor photocatalysis has been applied to the remediation of an extensive range of chemical pollutants in water over the past 30 years. The application of this versatile technology for removal of micro-organisms and cyanotoxins has recently become an area that has also been the subject of extensive research particularly over the past decade. This paper considers recent research in the application of semiconductor photocatalysis for the treatment of water contaminated with pathogenic micro-organisms and cyanotoxins. The basic processes involved in photocatalysis are described and examples of recent research into the use of photocatalysis for the removal of a range of microorganisms are detailed. The paper concludes with a review of the key research on the application of this process for the removal of chemical metabolites generated from cyanobacteria.
Collapse
Affiliation(s)
- Peter K J Robertson
- IDeaS, Innovation, Design and Sustainability Research Institute, Robert Gordon University, Schoolhill, Aberdeen, AB10 1FR, UK.
| | | | | |
Collapse
|
27
|
Foster HA, Ditta IB, Varghese S, Steele A. Photocatalytic disinfection using titanium dioxide: spectrum and mechanism of antimicrobial activity. Appl Microbiol Biotechnol 2011; 90:1847-68. [PMID: 21523480 PMCID: PMC7079867 DOI: 10.1007/s00253-011-3213-7] [Citation(s) in RCA: 513] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Accepted: 02/12/2011] [Indexed: 11/30/2022]
Abstract
The photocatalytic properties of titanium dioxide are well known and have many applications including the removal of organic contaminants and production of self-cleaning glass. There is an increasing interest in the application of the photocatalytic properties of TiO(2) for disinfection of surfaces, air and water. Reviews of the applications of photocatalysis in disinfection (Gamage and Zhang 2010; Chong et al., Wat Res 44(10):2997-3027, 2010) and of modelling of TiO(2) action have recently been published (Dalrymple et al. , Appl Catal B 98(1-2):27-38, 2010). In this review, we give an overview of the effects of photoactivated TiO(2) on microorganisms. The activity has been shown to be capable of killing a wide range of Gram-negative and Gram-positive bacteria, filamentous and unicellular fungi, algae, protozoa, mammalian viruses and bacteriophage. Resting stages, particularly bacterial endospores, fungal spores and protozoan cysts, are generally more resistant than the vegetative forms, possibly due to the increased cell wall thickness. The killing mechanism involves degradation of the cell wall and cytoplasmic membrane due to the production of reactive oxygen species such as hydroxyl radicals and hydrogen peroxide. This initially leads to leakage of cellular contents then cell lysis and may be followed by complete mineralisation of the organism. Killing is most efficient when there is close contact between the organisms and the TiO(2) catalyst. The killing activity is enhanced by the presence of other antimicrobial agents such as Cu and Ag.
Collapse
Affiliation(s)
- Howard A Foster
- Centre for Parasitology and Disease Research, School of Environment and Life Sciences, University of Salford, The Crescent, Salford, Greater Manchester, UK.
| | | | | | | |
Collapse
|
28
|
Spontaneous adsorption of silver nanoparticles on Ti/TiO2 surfaces. Antibacterial effect on Pseudomonas aeruginosa. J Colloid Interface Sci 2010; 350:402-8. [DOI: 10.1016/j.jcis.2010.06.052] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Revised: 06/18/2010] [Accepted: 06/19/2010] [Indexed: 11/17/2022]
|
29
|
Veerapandian M, Lim SK, Nam HM, Kuppannan G, Yun KS. Glucosamine-functionalized silver glyconanoparticles: characterization and antibacterial activity. Anal Bioanal Chem 2010; 398:867-76. [DOI: 10.1007/s00216-010-3964-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Revised: 06/10/2010] [Accepted: 06/22/2010] [Indexed: 01/05/2023]
|
30
|
Willcox MD, Hume EB, Vijay AK, Petcavich R. Ability of silver-impregnated contact lenses to control microbial growth and colonisation. JOURNAL OF OPTOMETRY 2010; 3:143-148. [PMCID: PMC3974305 DOI: 10.1016/s1888-4296(10)70020-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Accepted: 04/25/2010] [Indexed: 05/28/2023]
Abstract
Purpose To examine the ability of silver nano-particles to prevent the growth of Pseudomonas aeruginosa and Staphylococcus aureus in solution or when adsorbed into contact lenses. To examine the ability of silver nano-particles to prevent the growth of Acanthamoeba castellanii. Methods Etafilcon A lenses were soaked in various concentrations of silver nano-particles. Bacterial cells were then exposed to these lenses, and numbers of viable cells on lens surface or in solution compared to etafilcon A lenses not soaked in silver. Acanthamoeba trophozoites were exposed to silver nano-particles and their ability to form tracks was examined. Results Silver nano-particle containing lenses reduced bacterial viability and adhesion. There was a dose-dependent response curve, with 10 ppm or 20 ppm silver showing > 5 log reduction in bacterial viability in solution or on the lens surface. For Acanthamoeba, 20 ppm silver reduced the ability to form tracks by approximately 1 log unit. Conclusions Silver nanoparticles are effective antimicrobial agents, and can reduce the ability of viable bacterial cells to colonise contact lenses once incorporated into the lens.
Collapse
Affiliation(s)
- Mark D.P. Willcox
- Institute for Eye Research, Sydney, Australia
- School of Optometry and Vision Science, University of New South Wales, Sydney, Australia
| | - Emma B.H. Hume
- Institute for Eye Research, Sydney, Australia
- School of Optometry and Vision Science, University of New South Wales, Sydney, Australia
| | | | | |
Collapse
|
31
|
Highly effective buoyant photocatalyst prepared with a novel layered-TiO2 configuration on polypropylene fabric and the degradation performance for methyl orange dye under UV–Vis and Vis lights. Sep Purif Technol 2010. [DOI: 10.1016/j.seppur.2010.03.017] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
32
|
Thomas V, McDonnell G, Denyer SP, Maillard JY. Free-living amoebae and their intracellular pathogenic microorganisms: risks for water quality. FEMS Microbiol Rev 2010; 34:231-59. [DOI: 10.1111/j.1574-6976.2009.00190.x] [Citation(s) in RCA: 208] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
33
|
Loret JF, Greub G. Free-living amoebae: Biological by-passes in water treatment. Int J Hyg Environ Health 2010; 213:167-75. [PMID: 20418158 DOI: 10.1016/j.ijheh.2010.03.004] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Revised: 03/24/2010] [Accepted: 03/24/2010] [Indexed: 11/30/2022]
Abstract
Free-living amoebae constitute reservoirs for many bacteria including not only well-known pathogens but also emerging pathogens responsible for respiratory diseases, and contribute to the protection, survival and dissemination of these bacteria in water systems, despite the application of disinfection or thermal treatments. In this article we review the available information on the presence of free-living amoebae and amoebae-resisting bacteria in drinking water systems, on the factors that contribute to their presence in the water and/or the biofilms, on the possible control measures and their effectiveness, and we identify some gaps in current knowledge needing further research.
Collapse
Affiliation(s)
- Jean-François Loret
- Suez Environnement, CIRSEE, 38 rue du Président Wilson, 78230 Le Pecq, France.
| | | |
Collapse
|
34
|
Sharma VK, Yngard RA, Lin Y. Silver nanoparticles: green synthesis and their antimicrobial activities. Adv Colloid Interface Sci 2009; 145:83-96. [PMID: 18945421 DOI: 10.1016/j.cis.2008.09.002] [Citation(s) in RCA: 1776] [Impact Index Per Article: 111.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2008] [Revised: 08/23/2008] [Accepted: 09/01/2008] [Indexed: 11/28/2022]
Abstract
This review presents an overview of silver nanoparticles (Ag NPs) preparation by green synthesis approaches that have advantages over conventional methods involving chemical agents associated with environmental toxicity. Green synthetic methods include mixed-valence polyoxometallates, polysaccharide, Tollens, irradiation, and biological. The mixed-valence polyoxometallates method was carried out in water, an environmentally-friendly solvent. Solutions of AgNO(3) containing glucose and starch in water gave starch-protected Ag NPs, which could be integrated into medical applications. Tollens process involves the reduction of Ag(NH(3))(2)(+) by saccharides forming Ag NP films with particle sizes from 50-200 nm, Ag hydrosols with particles in the order of 20-50 nm, and Ag colloid particles of different shapes. The reduction of Ag(NH(3))(2)(+) by HTAB (n-hexadecyltrimethylammonium bromide) gave Ag NPs of different morphologies: cubes, triangles, wires, and aligned wires. Ag NPs synthesis by irradiation of Ag(+) ions does not involve a reducing agent and is an appealing procedure. Eco-friendly bio-organisms in plant extracts contain proteins, which act as both reducing and capping agents forming stable and shape-controlled Ag NPs. The synthetic procedures of polymer-Ag and TiO(2)-Ag NPs are also given. Both Ag NPs and Ag NPs modified by surfactants or polymers showed high antimicrobial activity against gram-positive and gram-negative bacteria. The mechanism of the Ag NP bactericidal activity is discussed in terms of Ag NP interaction with the cell membranes of bacteria. Silver-containing filters are shown to have antibacterial properties in water and air purification. Finally, human and environmental implications of Ag NPs to the ecology of aquatic environment are briefly discussed.
Collapse
Affiliation(s)
- Virender K Sharma
- Chemistry Department, Florida Institute of Technology, 150 West University Boulevard, Melbourne, Florida 32901, USA.
| | | | | |
Collapse
|
35
|
Liu L, Barford J, Yeung KL. Non-UV germicidal activity of fresh TiO2 and Ag/TiO2. J Environ Sci (China) 2009; 21:700-6. [PMID: 20108675 PMCID: PMC7128095 DOI: 10.1016/s1001-0742(08)62327-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2008] [Revised: 09/03/2008] [Accepted: 09/09/2008] [Indexed: 05/07/2023]
Abstract
Fresh TiO2 was found to possess a strong germicidal activity even without UV irradiation. Live Yeast (Saccharomyces cerevisiae) cells in contact with fresh TiO2 were found deformed and dead after 15 min contact. The cause of germicidal activity was discussed from the observed cell deformation, lysis and increased absorption at 1680 cm(-1) in FT-IR spectra of the affected cells, which proved the oxidizing effect of fresh TiO2 to cells. The deformation caused by the stretching of cell wall and pressure built-up inside the cell, led to cell burst and release of intracellular materials. The degree of cell deformation was found positively related with the wetting property of TiO2. Cells are negatively charged, for Gram-negative cell (thinner cell wall), a higher germicidal effect was observed than Gram-positive cells. The germicidal effect of TiO2 gradually decreased after exposure to air at room temperature, as the wetting property decreased. This kind of germicidal activity was more effective compared to other germicidal process such as UVA/TiO2 or Ag+. This shed light on designing new germicidal material either maintained by visible light irradiation, or by oxidation effect generated by reactive oxygen species.
Collapse
Affiliation(s)
- Lifen Liu
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education of China, School of Environmental and Biological Science & Technology, Dalian University of Technology, Dalian 116024, China.
| | | | | |
Collapse
|
36
|
Fallah E, Nahavandi KH, Jamali R, Mahdavi B, Asgharzade M. Genetic Characterization of Giardia intestinalis Strains from Patients Having Sporadic Giardiasis by Using PCR Assay. JOURNAL OF MEDICAL SCIENCES 2008. [DOI: 10.3923/jms.2008.310.315] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|