1
|
Nyambura LW, Jarmalavicius S, Walden P. Impact of Leishmania donovani infection on the HLA I self peptide repertoire of human macrophages. PLoS One 2018; 13:e0200297. [PMID: 30001391 PMCID: PMC6042751 DOI: 10.1371/journal.pone.0200297] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 06/23/2018] [Indexed: 02/07/2023] Open
Abstract
Macrophages are specialized antigen-presenting cells that process and present self-antigens for induction of tolerance, and foreign antigens to initiate T cell-mediated immunity. Despite this, Leishmania donovani (LD) are able to parasitize the macrophages and persist. The impact of this parasitizing and persistence on antigen processing and presentation by macrophages remains poorly defined. To gain insight into this, we analyzed by liquid chromatography tandem mass spectrometry (LC-MS/MS) and compared the HLA-I self-peptidomes, proteasome compositions, HLA expression and activation states of non-infected and LD-infected THP1-derived macrophages. We found that, though both HLA-I peptidomes were dominated by nonapeptides, they were heterogeneous and individualized, with differences in HLA binding affinities and anchor residues. Non-infected and LD-infected THP1-derived macrophages were able to sample peptides from source proteins of almost all subcellular locations and involved in various cellular functions, but in different proportions. In the infected macrophages, there was increased sampling of plasma membrane and extracellular proteins, and those involved in immune responses, cell communication/signal transduction and metabolism/energy pathways, and decreased sampling of nuclear and cytoplasmic proteins and those involved in protein metabolism, RNA binding and cell growth and/or maintenance. Though the activation state of infected macrophages was unchanged, their proteasome composition was altered.
Collapse
Affiliation(s)
- Lydon Wainaina Nyambura
- Charité –Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Dermatology, Venerology and Allergology, Clinical Research Group 'Tumor Immunology', Berlin, Germany
- Humboldt Universität zu Berlin, Lebenswissenschaftliche Fakultät, Institut für Biologie, Berlin, Germany
| | - Saulius Jarmalavicius
- Charité –Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Dermatology, Venerology and Allergology, Clinical Research Group 'Tumor Immunology', Berlin, Germany
| | - Peter Walden
- Charité –Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Dermatology, Venerology and Allergology, Clinical Research Group 'Tumor Immunology', Berlin, Germany
- * E-mail:
| |
Collapse
|
2
|
Duran-Rehbein GA, Vargas-Zambrano JC, Cuéllar A, Puerta CJ, Gonzalez JM. Mammalian cellular culture models of Trypanosoma cruzi infection: a review of the published literature. ACTA ACUST UNITED AC 2014; 21:38. [PMID: 25083732 PMCID: PMC4118624 DOI: 10.1051/parasite/2014040] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 07/14/2014] [Indexed: 12/13/2022]
Abstract
Cellular culture infection with Trypanosoma cruzi is a tool used to dissect the biological mechanisms behind Chagas disease as well as to screen potential trypanocidal compounds. Data on these models are highly heterogeneous, which represents a challenge when attempting to compare different studies. The purpose of this review is to provide an overview of the cell culture infectivity assays performed to date. Scientific journal databases were searched for articles in which cultured cells were infected with any Trypanosoma cruzi strain or isolate regardless of the study’s goal. From these articles the cell type, parasite genotype, culture conditions and infectivity results were extracted. This review represents an initial step toward the unification of infectivity model data. Important differences were detected when comparing the pathophysiology of Chagas disease with the experimental conditions used in the analyzed studies. While Trypanosoma cruzi preferentially infects stromal cells in vivo, most of the assays employ epithelial cell lines. Furthermore, the most commonly used parasite strain (Tulahuen-TcVI) is associated with chagasic cardiomyopathy only in the Southern Cone of South America. Suggestions to overcome these discrepancies include the use of stromal cell lines and parasite genotypes associated with the known characteristics of the natural history of Chagas disease.
Collapse
Affiliation(s)
| | | | - Adriana Cuéllar
- Grupo de Inmunobiología y Biología Celular, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, DC, Colombia
| | - Concepción Judith Puerta
- Laboratorio de Parasitología Molecular, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá DC, Colombia
| | - John Mario Gonzalez
- Grupo de Ciencias Básicas Médicas, Facultad de Medicina, Universidad de los Andes, Bogotá, DC, Colombia
| |
Collapse
|
3
|
Camargo R, Faria LO, Kloss A, Favali CBF, Kuckelkorn U, Kloetzel PM, de Sá CM, Lima BD. Trypanosoma cruzi infection down-modulates the immunoproteasome biosynthesis and the MHC class I cell surface expression in HeLa cells. PLoS One 2014; 9:e95977. [PMID: 24752321 PMCID: PMC3994161 DOI: 10.1371/journal.pone.0095977] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 03/31/2014] [Indexed: 11/18/2022] Open
Abstract
Generally, Trypanosoma cruzi infection in human is persistent and tends to chronicity, suggesting that the parasite evade the immune surveillance by down regulating the intracellular antigen processing routes. Within the MHC class I pathway, the majority of antigenic peptides are generated by the proteasome. However, upon IFN-γ stimulation, the catalytic constitutive subunits of the proteasome are replaced by the subunits β1i/LMP2, β2i/MECL-1 and β5i/LMP7 to form the immunoproteasome. In this scenario, we analyzed whether the expression and activity of the constitutive and the immunoproteasome as well as the expression of other components of the MHC class I pathway are altered during the infection of HeLa cells with T. cruzi. By RT-PCR and two-dimensional gel electrophoresis analysis, we showed that the expression and composition of the constitutive proteasome is not affected by the parasite. In contrast, the biosynthesis of the β1i, β2i, β5i immunosubunits, PA28β, TAP1 and the MHC class I molecule as well as the proteasomal proteolytic activities were down-regulated in infected-IFN-γ-treated cell cultures. Taken together, our results provide evidence that the protozoan T. cruzi specifically modulates its infection through an unknown posttranscriptional mechanism that inhibits the expression of the MHC class I pathway components.
Collapse
Affiliation(s)
- Ricardo Camargo
- Departamento de Biologia Celular, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Brasília, Distrito Federal, Brazil
| | - Liliam O. Faria
- Departamento de Biologia Celular, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Brasília, Distrito Federal, Brazil
| | - Alexander Kloss
- Institute für Biochimie, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Cecília B. F. Favali
- Departamento de Biologia Celular, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Brasília, Distrito Federal, Brazil
| | - Ulrike Kuckelkorn
- Institute für Biochimie, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | | - Cezar Martins de Sá
- Departamento de Biologia Celular, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Brasília, Distrito Federal, Brazil
| | - Beatriz D. Lima
- Departamento de Biologia Celular, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Brasília, Distrito Federal, Brazil
- * E-mail:
| |
Collapse
|
4
|
Vargas-Zambrano JC, Lasso P, Cuellar A, Puerta CJ, González JM. A human astrocytoma cell line is highly susceptible to infection with Trypanosoma cruzi. Mem Inst Oswaldo Cruz 2014; 108:212-9. [PMID: 23579802 DOI: 10.1590/0074-0276108022013014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 12/18/2012] [Indexed: 01/25/2023] Open
Abstract
Astrocytes play a vital role in neuronal protection, homeostasis, vascular interchange and the local immune response. Some viruses and parasites can cross the blood-brain barrier and infect glia. Trypanosoma cruzi, the aetiological agent of Chagas disease, can seriously compromise the central nervous system, mainly in immune-suppressed individuals, but also during the acute phase of the infection. In this report, the infective capacity of T. cruzi in a human astrocyte tumour-derived cell line was studied. Astrocytes exposed to trypomastigotes (1:10 ratio) produced intracellular amastigotes and new trypomastigotes emerged by day 4 post-infection (p.i.). At day 6 p.i., 93% of the cells were infected. Using flow cytometry, changes were observed in both the expression of major histocompatibility complex class I and II molecules and the chemokine secretion pattern of astrocytes exposed to the parasite. Blocking the low-density lipoprotein receptor on astrocytes did not reduce parasite intracellular infection. Thus, T. cruzi can infect astrocytes and modulate the immune response during central nervous system infection.
Collapse
|
5
|
dos Santos SL, Freitas LM, Lobo FP, Rodrigues-Luiz GF, Mendes TADO, Oliveira ACS, Andrade LO, Chiari É, Gazzinelli RT, Teixeira SMR, Fujiwara RT, Bartholomeu DC. The MASP family of Trypanosoma cruzi: changes in gene expression and antigenic profile during the acute phase of experimental infection. PLoS Negl Trop Dis 2012; 6:e1779. [PMID: 22905275 PMCID: PMC3419193 DOI: 10.1371/journal.pntd.0001779] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Accepted: 07/02/2012] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Trypanosoma cruzi is the etiological agent of Chagas disease, a debilitating illness that affects millions of people in the Americas. A major finding of the T. cruzi genome project was the discovery of a novel multigene family composed of approximately 1,300 genes that encode mucin-associated surface proteins (MASPs). The high level of polymorphism of the MASP family associated with its localization at the surface of infective forms of the parasite suggests that MASP participates in host-parasite interactions. We speculate that the large repertoire of MASP sequences may contribute to the ability of T. cruzi to infect several host cell types and/or participate in host immune evasion mechanisms. METHODS By sequencing seven cDNA libraries, we analyzed the MASP expression profile in trypomastigotes derived from distinct host cells and after sequential passages in acutely infected mice. Additionally, to investigate the MASP antigenic profile, we performed B-cell epitope prediction on MASP proteins and designed a MASP-specific peptide array with 110 putative epitopes, which was screened with sera from acutely infected mice. FINDINGS AND CONCLUSIONS We observed differential expression of a few MASP genes between trypomastigotes derived from epithelial and myoblast cell lines. The more pronounced MASP expression changes were observed between bloodstream and tissue-culture trypomastigotes and between bloodstream forms from sequential passages in acutely infected mice. Moreover, we demonstrated that different MASP members were expressed during the acute T. cruzi infection and constitute parasite antigens that are recognized by IgG and IgM antibodies. We also found that distinct MASP peptides could trigger different antibody responses and that the antibody level against a given peptide may vary after sequential passages in mice. We speculate that changes in the large repertoire of MASP antigenic peptides during an infection may contribute to the evasion of host immune responses during the acute phase of Chagas disease.
Collapse
Affiliation(s)
- Sara Lopes dos Santos
- Departamento de Parasitologia, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
| | | | - Francisco Pereira Lobo
- Departamento de Parasitologia, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
| | | | | | | | | | - Égler Chiari
- Departamento de Parasitologia, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
| | | | | | | | | |
Collapse
|