1
|
Li Y, Wu SY. Entomopathogenic nematodes in insect pest biocontrol: Diversity and function of excretory/secretory proteins. J Invertebr Pathol 2024; 207:108205. [PMID: 39313094 DOI: 10.1016/j.jip.2024.108205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/18/2024] [Accepted: 09/18/2024] [Indexed: 09/25/2024]
Abstract
Entomopathogenic nematodes (EPNs) are obligate parasitic "biopesticides" that play a vital role in pest management. A thorough understanding of their pathogenic mechanisms is essential for promoting their widespread use in agricultural pest control. The pathogenicity of EPNs arises from two key factors: the pathogenicity of their symbiotic bacteria and the nematodes' intrinsic pathogenic mechanisms. This review concentrates on the latter, offering an exploration of the excretory/secretory products of EPNs, along with their pathogenic mechanisms and key components. Particular attention is given to specific excretory/secretory proteins (ESPs) identified in various EPN species. The aim is to provide a foundational reference for comprehending the role of these ESPs in pest control. Furthermore, the review discusses the potential of these findings to advance the development of eco-friendly biopesticides, thereby supporting sustainable agricultural practices.
Collapse
Affiliation(s)
- Yixuan Li
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Sheng-Yen Wu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
2
|
Lefoulon E, McMullen JG, Stock SP. Transcriptomic Analysis of Steinernema Nematodes Highlights Metabolic Costs Associated to Xenorhabdus Endosymbiont Association and Rearing Conditions. Front Physiol 2022; 13:821845. [PMID: 35283769 PMCID: PMC8914265 DOI: 10.3389/fphys.2022.821845] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 02/01/2022] [Indexed: 12/13/2022] Open
Abstract
Entomopathogenic nematodes of the genus Steinernema have a mutualistic relationship with bacteria of the genus Xenorhabdus and together they form an antagonist partnership against their insect hosts. The nematodes (third-stage infective juveniles, or IJs) protect the bacteria from the external environmental stressors and vector them from one insect host to another. Xenorhabdus produce secondary metabolites and antimicrobial compounds inside the insect that protect the cadaver from soil saprobes and scavengers. The bacteria also become the nematodes’ food, allowing them to grow and reproduce. Despite these benefits, it is yet unclear what the potential metabolic costs for Steinernema IJs are relative to the maintenance and vectoring of Xenorhabdus. In this study, we performed a comparative dual RNA-seq analysis of IJs of two nematode-bacteria partnerships: Steinernema carpocapsae-Xenorhabdus nematophila and Steinernema. puntauvense-Xenorhbdus bovienii. For each association, three conditions were studied: (1) IJs reared in the insect (in vivo colonized), (2) colonized IJs reared on liver-kidney agar (in vitro colonized), and (3) IJs depleted by the bacteria reared on liver-kidney agar (in vitro aposymbiotic). Our study revealed the downregulation of numerous genes involved in metabolism pathways, such as carbohydrate, amino acid, and lipid metabolism when IJs were reared in vitro, both colonized and without the symbiont. This downregulation appears to impact the longevity pathway, with the involvement of glycogen and trehalose metabolism, as well as arginine metabolism. Additionally, a differential expression of the venom protein known to be secreted by the nematodes was observed when both Steinernema species were depleted of their symbiotic partners. These results suggest Steinernema IJs may have a mechanism to adapt their virulence in absence of their symbionts.
Collapse
Affiliation(s)
- Emilie Lefoulon
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, United States
| | - John G. McMullen
- Department of Biology, Indiana University, Bloomington, IN, United States
| | - S. Patricia Stock
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, United States
- College of Agriculture, California State University Chico, Chico, CA, United States
- *Correspondence: S. Patricia Stock,
| |
Collapse
|
3
|
Raymond B, Erdos Z. Passage and the evolution of virulence in invertebrate pathogens: Fundamental and applied perspectives. J Invertebr Pathol 2021; 187:107692. [PMID: 34798134 DOI: 10.1016/j.jip.2021.107692] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 11/11/2021] [Accepted: 11/12/2021] [Indexed: 01/05/2023]
Abstract
Understanding the ecological and genetic factors that determine the evolution of virulence has broad value for invertebrate pathology. In addition to helping us understand the fundamental biology of our study organisms this body of theory has important applications in microbial biocontrol. Experimental tests of virulence theory are often carried out in invertebrate models and yet theory rarely informs applied passage experiments that aim to increase or maintain virulence. This review summarizes recent progress in this field with a focus on work most relevant to biological control: the virulence of invertebrate pathogens that are 'obligate killers' and which require cadavers for the production of infectious propagules. We discuss recent theory and fundamental and applied experimental evolution with bacteria, fungi, baculoviruses and nematodes. While passage experiments using baculoviruses have a long history of producing isolates with increased virulence, studies with other pathogens have not been so successful. Recent passage experiments that have applied evolution of virulence frameworks based on cooperation (kin selection) have produced novel methods and promising mutants with increased killing power. Evolution of virulence theory can provide plausible explanations for the varied results of passage experiments as well as a predictive framework for improving artificial selection.
Collapse
Affiliation(s)
- Ben Raymond
- Centre for Ecology and Conservation, College of Life and Environmental Sciences, University of Exeter, Penryn, TR10 9FE, UK.
| | - Zoltan Erdos
- Centre for Ecology and Conservation, College of Life and Environmental Sciences, University of Exeter, Penryn, TR10 9FE, UK
| |
Collapse
|
4
|
Ozakman Y, Eleftherianos I. Nematode infection and antinematode immunity in Drosophila. Trends Parasitol 2021; 37:1002-1013. [PMID: 34154933 DOI: 10.1016/j.pt.2021.06.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/28/2021] [Accepted: 06/01/2021] [Indexed: 12/15/2022]
Abstract
The entomopathogenic nematodes Heterorhabditis and Steinernema form mutualistic complexes with Gram-negative bacteria. These insect parasites have emerged as excellent research tools for studying nematode pathogenicity and elucidating the features that allow them to persist and multiply within the host. A better understanding of the molecular mechanisms of nematode infection and host antinematode processes will lead to the development of novel means for parasitic nematode control. Recent work has demonstrated the power of using the Drosophila infection model to identify novel parasitic nematode infection factors and elucidate the genetic and functional bases of host antinematode defense. Here, we aim to highlight the recent advances and address their contribution to the development of novel means for parasitic nematode control.
Collapse
Affiliation(s)
- Yaprak Ozakman
- Infection and Innate Immunity Lab, Department of Biological Sciences, Institute for Biomedical Sciences, The George Washington University, Science and Engineering Hall, 800 22nd Street NW, Washington, DC 20052, USA
| | - Ioannis Eleftherianos
- Infection and Innate Immunity Lab, Department of Biological Sciences, Institute for Biomedical Sciences, The George Washington University, Science and Engineering Hall, 800 22nd Street NW, Washington, DC 20052, USA.
| |
Collapse
|
5
|
Eliáš S, Hurychová J, Toubarro D, Frias J, Kunc M, Dobeš P, Simões N, Hyršl P. Bioactive Excreted/Secreted Products of Entomopathogenic Nematode Heterorhabditis bacteriophora Inhibit the Phenoloxidase Activity during the Infection. INSECTS 2020; 11:insects11060353. [PMID: 32516962 PMCID: PMC7349556 DOI: 10.3390/insects11060353] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/27/2020] [Accepted: 06/03/2020] [Indexed: 12/11/2022]
Abstract
Entomopathogenic nematodes (EPNs) are efficient insect parasites, that are known for their mutualistic relationship with entomopathogenic bacteria and their use in biocontrol. EPNs produce bioactive molecules referred to as excreted/secreted products (ESPs), which have come to the forefront in recent years because of their role in the process of host invasion and the modulation of its immune response. In the present study, we confirmed the production of ESPs in the EPN Heterorhabditis bacteriophora, and investigated their role in the modulation of the phenoloxidase cascade, one of the key components of the insect immune system. ESPs were isolated from 14- and 21-day-old infective juveniles of H. bacteriophora, which were found to be more virulent than newly emerged nematodes, as was confirmed by mortality assays using Galleria mellonella larvae. The isolated ESPs were further purified and screened for the phenoloxidase-inhibiting activity. In these products, a 38 kDa fraction of peptides was identified as the main candidate source of phenoloxidase-inhibiting compounds. This fraction was further analyzed by mass spectrometry and the de novo sequencing approach. Six peptide sequences were identified in this active ESP fraction, including proteins involved in ubiquitination and the regulation of a Toll pathway, for which a role in the regulation of insect immune response has been proposed in previous studies.
Collapse
Affiliation(s)
- Sara Eliáš
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic; (S.E.); (J.H.); (M.K.)
| | - Jana Hurychová
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic; (S.E.); (J.H.); (M.K.)
| | - Duarte Toubarro
- CBA and Faculty of Sciences and Technology, University of Azores, Rua Mãe de Deus n° 13, 9500-321 Ponta Delgada, Portugal; (D.T.); (J.F.); (N.S.)
| | - Jorge Frias
- CBA and Faculty of Sciences and Technology, University of Azores, Rua Mãe de Deus n° 13, 9500-321 Ponta Delgada, Portugal; (D.T.); (J.F.); (N.S.)
| | - Martin Kunc
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic; (S.E.); (J.H.); (M.K.)
| | - Pavel Dobeš
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic; (S.E.); (J.H.); (M.K.)
- Correspondence: (P.D.); (P.H.); Tel.: +420-549-49-3419 (P.D.); +420-549-49-4510 (P.H.)
| | - Nelson Simões
- CBA and Faculty of Sciences and Technology, University of Azores, Rua Mãe de Deus n° 13, 9500-321 Ponta Delgada, Portugal; (D.T.); (J.F.); (N.S.)
| | - Pavel Hyršl
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic; (S.E.); (J.H.); (M.K.)
- Correspondence: (P.D.); (P.H.); Tel.: +420-549-49-3419 (P.D.); +420-549-49-4510 (P.H.)
| |
Collapse
|
6
|
Chang DZ, Serra L, Lu D, Mortazavi A, Dillman AR. A core set of venom proteins is released by entomopathogenic nematodes in the genus Steinernema. PLoS Pathog 2019; 15:e1007626. [PMID: 31042778 PMCID: PMC6513111 DOI: 10.1371/journal.ppat.1007626] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 05/13/2019] [Accepted: 02/07/2019] [Indexed: 11/26/2022] Open
Abstract
Parasitic helminths release molecular effectors into their hosts and these effectors can directly damage host tissue and modulate host immunity. Excreted/secreted proteins (ESPs) are one category of parasite molecular effectors that are critical to their success within the host. However, most studies of nematode ESPs rely on in vitro stimulation or culture conditions to collect the ESPs, operating under the assumption that in vitro conditions mimic actual in vivo infection. This assumption is rarely if ever validated. Entomopathogenic nematodes (EPNs) are lethal parasites of insects that produce and release toxins into their insect hosts and are a powerful model parasite system. We compared transcriptional profiles of individual Steinernema feltiae nematodes at different time points of activation under in vitro and in vivo conditions and found that some but not all time points during in vitro parasite activation have similar transcriptional profiles with nematodes from in vivo infections. These findings highlight the importance of experimental validation of ESP collection conditions. Additionally, we found that a suite of genes in the neuropeptide pathway were downregulated as nematodes activated and infection progressed in vivo, suggesting that these genes are involved in host-seeking behavior and are less important during active infection. We then characterized the ESPs of activated S. feltiae infective juveniles (IJs) using mass spectrometry and identified 266 proteins that are released by these nematodes. In comparing these ESPs with those previously identified in activated S. carpocapsae IJs, we identified a core set of 52 proteins that are conserved and present in the ESPs of activated IJs of both species. These core venom proteins include both tissue-damaging and immune-modulating proteins, suggesting that the ESPs of these parasites include both a core set of effectors as well as a specialized set, more adapted to the particular hosts they infect.
Collapse
Affiliation(s)
- Dennis Z. Chang
- Department of Nematology, University of California, Riverside, California, United States of America
| | - Lorrayne Serra
- Department of Developmental and Cell Biology, Center for Complex Biological Systems, University of California, Irvine, California, United States of America
| | - Dihong Lu
- Department of Nematology, University of California, Riverside, California, United States of America
| | - Ali Mortazavi
- Department of Developmental and Cell Biology, Center for Complex Biological Systems, University of California, Irvine, California, United States of America
| | - Adler R. Dillman
- Department of Nematology, University of California, Riverside, California, United States of America
| |
Collapse
|
7
|
Nematobacterial Complexes and Insect Hosts: Different Weapons for the Same War. INSECTS 2018; 9:insects9030117. [PMID: 30208626 PMCID: PMC6164499 DOI: 10.3390/insects9030117] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 08/22/2018] [Accepted: 09/06/2018] [Indexed: 12/12/2022]
Abstract
Entomopathogenic nematodes (EPNs) are widely used as biological control agents against insect pests, the efficacy of these organisms strongly depends on the balance between the parasitic strategies and the immune response of the host. This review summarizes roles and relationships between insect hosts and two well-known EPN species, Steinernema feltiae and Steinernema carpocapsae and outlines the main mechanisms of immune recognition and defense of insects. Analyzing information and findings about these EPNs, it is clear that these two species use shared immunosuppression strategies, mainly mediated by their symbiotic bacteria, but there are differences in both the mechanism of evasion and interference of the two nematodes with the insect host immune pathways. Based on published data, S. feltiae takes advantage of the cross reaction between its body surface and some host functional proteins, to inhibit defensive processes; otherwise, secretion/excretion products from S. carpocapsae seem to be the main nematode components responsible for the host immunosuppression.
Collapse
|
8
|
Host-Specific Activation of Entomopathogenic Nematode Infective Juveniles. INSECTS 2018; 9:insects9020059. [PMID: 29865224 PMCID: PMC6023527 DOI: 10.3390/insects9020059] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 05/28/2018] [Accepted: 06/01/2018] [Indexed: 01/09/2023]
Abstract
Entomopathogenic nematodes (EPNs) are potent insect parasites and have been used for pest control in agriculture. Despite the complexity of the EPN infection process, hosts are typically killed within 5 days of initial infection. When free-living infective juveniles (IJs) infect a host, they release their bacterial symbiont, secrete toxic products, and undergo notable morphological changes. Collectively, this process is referred to as “activation” and represents the point in a nematode’s life cycle when it becomes actively parasitic. The effect of different host tissues and IJ age on activation, and how activation itself is related to virulence, are not well understood. Here, we employed a recently developed bioassay, which quantifies IJ activation, as a tool to address these matters. Appreciating that activation is a key part of the EPN infection process, we hypothesized that activation would positively correlate to virulence. Using the EPNs Steinernema carpocapsae and S. feltiae we found that EPN activation is host-specific and influenced by infective juvenile age. Additionally, our data suggest that activation has a context-dependent influence on virulence and could be predictive of virulence in some cases such as when IJ activation is especially low.
Collapse
|
9
|
Ali SS, Morsy R, El-Zawawy NA, Fareed MF, Bedaiwy MY. Synthesized zinc peroxide nanoparticles (ZnO 2-NPs): a novel antimicrobial, anti-elastase, anti-keratinase, and anti-inflammatory approach toward polymicrobial burn wounds. Int J Nanomedicine 2017; 12:6059-6073. [PMID: 28860766 PMCID: PMC5573044 DOI: 10.2147/ijn.s141201] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Increasing of multidrug resistance (MDR) remains an intractable challenge for burn patients. Innovative nanomaterials are also in high demand for the development of new antimicrobial biomaterials that inevitably have opened new therapeutic horizons in medical approaches and lead to many efforts for synthesizing new metal oxide nanoparticles (NPs) for better control of the MDR associated with the polymicrobial burn wounds. Recently, it seems that metal oxides can truly be considered as highly efficient inorganic agents with antimicrobial properties. In this study, zinc peroxide NPs (ZnO2-NPs) were synthesized using the co-precipitation method. Synthesized ZnO2-NPs were characterized by X-ray diffraction, Fourier transformed infrared, transmission electron microscopy, thermogravimetric analysis, differential scanning calorimetry, and ultraviolet-visible spectroscopy. The characterization techniques revealed synthesis of the pure phase of non-agglomerated ZnO2-NPs having sizes in the range of 15–25 nm with a transition temperature of 211°C. Antimicrobial activity of ZnO2-NPs was determined against MDR Pseudomonas aeruginosa (PA) and Aspergillus niger (AN) strains isolated from burn wound infections. Both strains, PA6 and AN4, were found to be more susceptible strains to ZnO2-NPs. In addition, a significant decrease in elastase and keratinase activities was recorded with increased concentrations of ZnO2-NPs until 200 µg/mL. ZnO2-NPs revealed a significant anti-inflammatory activity against PA6 and AN4 strains as demonstrated by membrane stabilization, albumin denaturation, and proteinase inhibition. Moreover, the results of in vivo histopathology assessment confirmed the potential role of ZnO2-NPs in the improvement of skin wound healing in the experimental animal models. Clearly, the synthesized ZnO2-NPs have demonstrated a competitive capability as antimicrobial, anti-elastase, anti-keratinase, and anti-inflammatory candidates, suggesting that the ZnO2-NPs are promising metal oxides that are potentially valued for biomedical applications.
Collapse
Affiliation(s)
- Sameh Samir Ali
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China.,Botany Department, Faculty of Science, Tanta University, Tanta, Egypt
| | - Reda Morsy
- Physics Department, Faculty of Science, Tanta University, Tanta, Egypt.,Physics Department, Faculty of Dentistry, Al Baha University, Al Baha, Saudi Arabia
| | | | - Mervat F Fareed
- Department of Home Economic, Faculty of Specific Education, Tanta University, Tanta, Egypt.,Department of Biology, Faculty of Science, Taif University, Taif, Saudi Arabia
| | | |
Collapse
|
10
|
Lu D, Macchietto M, Chang D, Barros MM, Baldwin J, Mortazavi A, Dillman AR. Activated entomopathogenic nematode infective juveniles release lethal venom proteins. PLoS Pathog 2017; 13:e1006302. [PMID: 28426766 PMCID: PMC5398726 DOI: 10.1371/journal.ppat.1006302] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 03/20/2017] [Indexed: 12/20/2022] Open
Abstract
Entomopathogenic nematodes (EPNs) are unique parasites due to their symbiosis with entomopathogenic bacteria and their ability to kill insect hosts quickly after infection. It is widely believed that EPNs rely on their bacterial partners for killing hosts. Here we disproved this theory by demonstrating that the in vitro activated infective juveniles (IJs) of Steinernema carpocapsae (a well-studied EPN species) release venom proteins that are lethal to several insects including Drosophila melanogaster. We confirmed that the in vitro activation is a good approximation of the in vivo process by comparing the transcriptomes of individual in vitro and in vivo activated IJs. We further analyzed the transcriptomes of non-activated and activated IJs and revealed a dramatic shift in gene expression during IJ activation. We also analyzed the venom proteome using mass spectrometry. Among the 472 venom proteins, proteases and protease inhibitors are especially abundant, and toxin-related proteins such as Shk domain-containing proteins and fatty acid- and retinol-binding proteins are also detected, which are potential candidates for suppressing the host immune system. Many of the venom proteins have conserved orthologs in vertebrate-parasitic nematodes and are differentially expressed during IJ activation, suggesting conserved functions in nematode parasitism. In summary, our findings strongly support a new model that S. carpocapsae and likely other Steinernema EPNs have a more active role in contributing to the pathogenicity of the nematode-bacterium complex than simply relying on their symbiotic bacteria. Furthermore, we propose that EPNs are a good model system for investigating vertebrate- and human-parasitic nematodes, especially regarding the function of excretory/secretory products. Steinernema carpocapsae belongs to a special group of insect-parasitic nematodes known as entomopathogenic nematodes (EPNs). These differ from other insect parasites in at least two ways; first they kill their hosts quickly (within 2–3 days), and second they associate with bacteria to facilitate their parasitic lifestyle. The infective stage of these parasites, the infective juvenile (IJ) stage, is the only free-living stage and these IJs are developmentally arrested and only reinitiate development once they are inside a suitable host. Little is known about the early stages of parasitism and how these parasites initiate the parasitic phase of their life cycle and reinitiate development. Here we characterized the changes that occur to the nematodes' physical morphology, gene expression, and the release of protein molecules that accompany the transition from developmentally arrested IJ to active, developing parasite. We showed that contrary to long-held assumptions, the nematodes are not merely transporting pathogenic bacteria but that the nematodes contribute to parasitism by releasing toxic proteins into the host. Many of the S. carpocapsae toxins are also found in species of human-parasitic nematodes, and S. carpocapsae may serve as a valuable model for understanding the specific function of these toxins.
Collapse
Affiliation(s)
- Dihong Lu
- Department of Nematology, University of California, Riverside, California, United States of America
| | - Marissa Macchietto
- Department of Developmental and Cell Biology, Center for Complex Biological Systems, University of California, Irvine, California, United States of America
| | - Dennis Chang
- Department of Nematology, University of California, Riverside, California, United States of America
| | - Mirayana M. Barros
- Department of Nematology, University of California, Riverside, California, United States of America
| | - James Baldwin
- Department of Nematology, University of California, Riverside, California, United States of America
| | - Ali Mortazavi
- Department of Developmental and Cell Biology, Center for Complex Biological Systems, University of California, Irvine, California, United States of America
| | - Adler R. Dillman
- Department of Nematology, University of California, Riverside, California, United States of America
- * E-mail:
| |
Collapse
|
11
|
Insect Immunity to Entomopathogenic Nematodes and Their Mutualistic Bacteria. Curr Top Microbiol Immunol 2016; 402:123-156. [PMID: 27995342 DOI: 10.1007/82_2016_52] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Entomopathogenic nematodes are important organisms for the biological control of insect pests and excellent models for dissecting the molecular basis of the insect immune response against both the nematode parasites and their mutualistic bacteria. Previous research involving the use of various insects has found distinct differences in the number and nature of immune mechanisms that are activated in response to entomopathogenic nematode parasites containing or lacking their associated bacteria. Recent studies using model insects have started to reveal the identity of certain molecules with potential anti-nematode or antibacterial activity as well as the molecular components that nematodes and their bacteria employ to evade or defeat the insect immune system. Identification and characterization of the genes that regulate the insect immune response to nematode-bacteria complexes will contribute significantly to the development of improved practices to control insects of agricultural and medical importance, and potentially nematode parasites that infect mammals, perhaps even humans.
Collapse
|
12
|
Mastore M, Arizza V, Manachini B, Brivio MF. Modulation of immune responses of Rhynchophorus ferrugineus (Insecta: Coleoptera) induced by the entomopathogenic nematode Steinernema carpocapsae (Nematoda: Rhabditida). INSECT SCIENCE 2015; 22:748-760. [PMID: 24846780 DOI: 10.1111/1744-7917.12141] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/21/2014] [Indexed: 06/03/2023]
Abstract
Aim of this study was to investigate relationships between the red palm weevil (RPW) Rhynchophorus ferrugineus (Olivier) and the entomopathogenic nematode Steinernema carpocapsae (EPN); particularly, the work was focused on the immune response of the insect host in naive larvae and after infection with the EPN. Two main immunological processes have been addressed: the activity and modulation of host prophenoloxidase-phenoloxidase (proPO) system, involved in melanization of not-self and hemocytes recognition processes responsible for not-self encapsulation. Moreover, immune depressive and immune evasive strategies of the parasite have been investigated. Our results suggest that RPW possess an efficient immune system, however in the early phase of infection, S. carpocapsae induces a strong inhibition of the host proPO system. In addition, host cell-mediated mechanisms of encapsulation, are completely avoided by the parasite, the elusive strategies of S. carpocapsae seem to be related to the structure of its body-surface, since induced alterations of the parasite cuticle resulted in the loss of its mimetic properties. S. carpocapsae before the release of its symbiotic bacteria, depress and elude RPW immune defenses, with the aim to arrange a favorable environment for its bacteria responsible of the septicemic death of the insect target.
Collapse
Affiliation(s)
- Maristella Mastore
- Department of Theoretical and Applied Sciences, University of Insubria, Varese, Italy
| | - Vincenzo Arizza
- Department of Sciences and Biological, Chemical and Pharmaceutical Technologies, University of Palermo, Palermo, Italy
| | - Barbara Manachini
- Department of Sciences and Biological, Chemical and Pharmaceutical Technologies, University of Palermo, Palermo, Italy
| | - Maurizio F Brivio
- Department of Theoretical and Applied Sciences, University of Insubria, Varese, Italy
| |
Collapse
|
13
|
Yang Y, Wen YJ, Cai YN, Vallée I, Boireau P, Liu MY, Cheng SP. Serine proteases of parasitic helminths. THE KOREAN JOURNAL OF PARASITOLOGY 2015; 53:1-11. [PMID: 25748703 PMCID: PMC4384789 DOI: 10.3347/kjp.2015.53.1.1] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 09/15/2014] [Accepted: 10/23/2014] [Indexed: 12/04/2022]
Abstract
Serine proteases form one of the most important families of enzymes and perform significant functions in a broad range of biological processes, such as intra- and extracellular protein metabolism, digestion, blood coagulation, regulation of development, and fertilization. A number of serine proteases have been identified in parasitic helminths that have putative roles in parasite development and nutrition, host tissues and cell invasion, anticoagulation, and immune evasion. In this review, we described the serine proteases that have been identified in parasitic helminths, including nematodes (Trichinella spiralis, T. pseudospiralis, Trichuris muris, Anisakis simplex, Ascaris suum, Onchocerca volvulus, O. lienalis, Brugia malayi, Ancylostoma caninum, and Steinernema carpocapsae), cestodes (Spirometra mansoni, Echinococcus granulosus, and Schistocephalus solidus), and trematodes (Fasciola hepatica, F. gigantica, and Schistosoma mansoni). Moreover, the possible biological functions of these serine proteases in the endogenous biological phenomena of these parasites and in the host-parasite interaction were also discussed.
Collapse
Affiliation(s)
- Yong Yang
- State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Economic Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
- ANSES, ENVA, UPVM, PRES Paris Est, JRU BIPAR, Animal Health Laboratory, Maisons-Alfort, France
| | - Yun jun Wen
- State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Economic Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Ya Nan Cai
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Isabelle Vallée
- ANSES, ENVA, UPVM, PRES Paris Est, JRU BIPAR, Animal Health Laboratory, Maisons-Alfort, France
| | - Pascal Boireau
- ANSES, ENVA, UPVM, PRES Paris Est, JRU BIPAR, Animal Health Laboratory, Maisons-Alfort, France
| | - Ming Yuan Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Shi Peng Cheng
- State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Economic Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| |
Collapse
|
14
|
Balasubramanian N, Toubarro D, Nascimento G, Ferreira R, Simões N. Purification, molecular characterization and gene expression analysis of an aspartic protease (Sc-ASP113) from the nematode Steinernema carpocapsae during the parasitic stage. Mol Biochem Parasitol 2011; 182:37-44. [PMID: 22178695 DOI: 10.1016/j.molbiopara.2011.12.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Revised: 11/04/2011] [Accepted: 12/01/2011] [Indexed: 10/14/2022]
Abstract
Steinernema carpocapsae is an insect parasitic nematode associated with the bacterium Xenorhabdus nematophila. During invasion, this nematode is able to express many proteases, including aspartic proteases. Genes encoding these aspartic proteases have been identified in the EST, and aspartic protease has been found in excretory-secretory products. The total protease was shown to digest blood hemoglobin in a zymogram gel. When the protein was partially purified by pepstatin affinity chromatography, it was observed to have high activity against both hemoglobin and the synthetic substrate Phe-Ala-Ala-Phe-(4NO(2))-Phe-Val-Leu (4-pyridylmethyl) ester. The protein was confirmed by mass spectrometry and was found to be encoded by the gene sc-asp113. A cDNA encoding aspartic protease was cloned based on the EST fragment, which was constructed in our lab. The full-length cDNA of Sc-ASP113 consists of 1257 nucleotides encoding a protein with multiple domains, including a signal peptide (aa 1-15), a propeptide region (aa 16-45), and a typical catalytic aspartic domain (aa 68-416). The cleavage site of the signal peptide is predicted to be between Ala15 and Ala16. The putative 418 amino acid residues have a calculated molecular mass of 44,742Da and a theoretical pI of 5.14. BLAST analysis showed 33-56% amino acid sequence identity to aspartic proteases from parasitic and free living nematodes. Expression analysis showed that the sc-asp113 gene was up-regulated during the initial parasitic stage, especially during L3 inside the gut. In vitro, we showed that treatment with insect homogenate for 6h is sufficient to induce the expression of this protease in treated infective juveniles. Sequence comparison and evolutionary analysis revealed that Sc-ASP113 is a member of the aspartic protease family with the potential for tissue degradation. Phylogenetic analysis indicates that Sc-ASP113 branched between Haemonchus contortus and Steinernema feltiae proteases. Homology modeling showed that Sc-ASP113 adopts a typical aspartic protease structure. The up-regulation of Sc-ASP113 expression indicates that this protease could play a role in the parasitic process. To facilitate the exploration of this protease as a virulence factor, here we describe the purification of the protease and its molecular characterization in S. carpocapsae.
Collapse
Affiliation(s)
- Natesan Balasubramanian
- CIRN and Department of Biology, University of Azores, 9501-855 Ponta Delgada, Azores, Portugal.
| | | | | | | | | |
Collapse
|
15
|
Gerrish RS, Gill SR. Tailed pooled suppression subtractive hybridization (PSSH) adaptors do not alter efficiency. Antonie Van Leeuwenhoek 2010; 98:573-9. [DOI: 10.1007/s10482-010-9465-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Accepted: 05/26/2010] [Indexed: 11/28/2022]
|
16
|
Hao YJ, Montiel R, Abubucker S, Mitreva M, Simões N. Transcripts analysis of the entomopathogenic nematode Steinernema carpocapsae induced in vitro with insect haemolymph. Mol Biochem Parasitol 2009; 169:79-86. [PMID: 19836423 DOI: 10.1016/j.molbiopara.2009.10.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2009] [Revised: 08/31/2009] [Accepted: 10/07/2009] [Indexed: 01/24/2023]
Abstract
Steinernema carpocapsae is an insect parasitic nematode widely used in pest control programs. The efficacy of this nematode in controlling insects has been found to be related to the pathogenicity of the infective stage. In order to study the parasitic mechanisms exhibited by this parasite, a cDNA library of the induced S. carpocapsae parasitic phase was generated. A total of 2500 clones were sequenced and 2180 high-quality ESTs were obtained from this library. Cluster analysis generated a total of 1592 unique sequences including 1393 singletons. About 63% of the unique sequences had significant hits (e</=1e-05) to the non-redundant protein database. The remaining sequences most likely represent putative novel protein coding genes. Comparative analysis identified 377 homologs in C. elegans, 431 in C. briggsae and 75 in other nematodes. Classification of the predicted proteins revealed involvement in diverse cellular, metabolic and extracellular functions. One hundred and nineteen clusters were predicted to encode putative secreted proteins such as proteases, proteases inhibitors, lectins, saposin-like proteins, acetylcholinesterase, anti-oxidants, and heat-shock proteins, which can possibly have host interactions. This dataset provides a basis for genomic studies towards a better understanding of the events that occur in the parasitic process of this entomopathogenic nematode, including invasion of the insect haemocoelium, adaptations to insect innate immunity and stress responses, and production of virulence factors. The identification of key genes in the parasitic process provides useful tools for the improvement of S. carpocapsae as a biological agent.
Collapse
Affiliation(s)
- You-Jin Hao
- CIRN and Department of Biology, University of Azores, 9501-801 Ponta Delgada, Azores, Portugal.
| | | | | | | | | |
Collapse
|