1
|
Nayeri T, Sarvi S, Fasihi-Ramandi M, Asgarian-Omran H, Ajami A, Hosseininejad Z, Dodangeh S, Daryani A. Structural Prediction and Antigenic Analysis of ROP18, MIC4, and SAG1 Proteins to Improve Vaccine Design against Toxoplasma gondii: An In silico Approach. Infect Disord Drug Targets 2025; 25:e18715265332103. [PMID: 39350555 DOI: 10.2174/0118715265332103240911113422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/07/2024] [Accepted: 08/16/2024] [Indexed: 04/05/2025]
Abstract
BACKGROUND Toxoplasmosis is a cosmopolitan infectious disease in warmblooded mammals that poses a serious worldwide threat due to the lack of effective medications and vaccines. AIMS The purpose of this study was to design a multi-epitope vaccine using several bioinformatics approaches against the antigens of Toxoplasma gondii (T. gondii). METHODS Three proteins of T. gondii, including ROP18, MIC4, and SAG1 were analyzed to predict the most dominant B- and T-cell epitopes. Finally, we designed a chimeric immunogen RMS (ROP18, MIC4, and SAG1) using some domains of ROP18 (N377-E546), MIC4 (D302-G471), and SAG1 (T130-L299) linked by rigid linker A (EAAAK) A. Physicochemical properties, secondary and tertiary structure, antigenicity, and allergenicity of RMS were predicted utilizing immunoinformatic tools and servers. RESULTS RMS protein had 545 amino acids with a molecular weight (MW) of 58,833.46 Da and a theoretical isoelectric point (IP) of 6.47. The secondary structure of RMS protein contained 21.28% alpha-helix, 24.59% extended strand, and 54.13% random coil. In addition, evaluation of antigenicity and allergenicity showed the protein to be an immunogen and nonallergen. The results of the Ramachandran plot indicated that 76.4%, 12.9%, and 10.7% of amino acid residues were incorporated in the favored, allowed, and outlier regions respectively. ΔG of the best-predicted mRNA secondary structure was -593.80 kcal/mol which indicates a stable loop is not formed at the 5' end. CONCLUSION Finally, the accuracy and precision of the in silico analysis must be confirmed by successful heterologous expression and experimental studies.
Collapse
Affiliation(s)
- Tooran Nayeri
- Infectious and Tropical Diseases Research Center, Dezful University of Medical Sciences, Dezful, Iran
| | - Shahabeddin Sarvi
- Department of Parasitology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- Toxoplasmosis Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mahdi Fasihi-Ramandi
- Molecular Biology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Hossein Asgarian-Omran
- Immunology Department, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Abolghasem Ajami
- Immunology Department, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Zahra Hosseininejad
- Department of Parasitology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- Toxoplasmosis Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Samira Dodangeh
- Department of Medical Parasitology and Mycology, Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Ahmad Daryani
- Department of Parasitology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- Toxoplasmosis Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
2
|
Nayeri T, Sarvi S, Fasihi-Ramandi M, Valadan R, Asgarian-Omran H, Ajami A, Khalilian A, Hosseininejad Z, Dodangeh S, Javidnia J, Daryani A. Enhancement of immune responses by vaccine potential of three antigens, including ROP18, MIC4, and SAG1 against acute toxoplasmosis in mice. Exp Parasitol 2022; 244:108427. [PMID: 36379272 DOI: 10.1016/j.exppara.2022.108427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/31/2022] [Accepted: 11/08/2022] [Indexed: 11/13/2022]
Abstract
Toxoplasma gondii (T. gondii) causes considerable financial losses in the livestock industry and can present serious threats to pregnant women, as well as immunocompromised patients. Therefore, it is required to design and produce an efficient vaccine for controlling toxoplasmosis. The present study aimed to evaluate the protective immunity induced by RMS protein (ROP18, MIC4, and SAG1) with Freund adjuvant, calcium phosphate nanoparticles (CaPNs), and chitosan nanoparticles (CNs) in BALB/c mice. The RMS protein was expressed in Escherichia coli (E. coli) and purified using a HisTrap HP column. Thereafter, cellular and humoral immunity was assessed by injecting RMS protein on days 0, 21, and 35 into four groups [RMS, RMS-chitosan nanoparticles (RMS-CNs), RMS-calcium phosphate nanoparticles (RMS-CaPNs), and RMS-Freund]. Phosphate buffered saline (PBS), CNs, CaPNs, and Freund served as the four control groups. The results displayed that vaccination with RMS protein and adjuvants significantly elicited the levels of specific IgG antibodies and cytokines against toxoplasmosis. There were high levels of total IgG, IgG2a, and IFN-γ in vaccinated mice, compared to those in the control groups, especially in the RMS-Freund, indicating a Th-1 type response. The vaccinated and control mice were challenged intraperitoneally with 1 × 103 tachyzoites of the T. gondii RH strain four weeks after the last injection, and in RMS-Freund and RMS-CaPNs groups, the highest increase in survival time was observed (15 days). The RMS can significantly increase Th1 and Th2 responses; moreover, multi-epitope vaccines with adjuvants can be a promising strategy for the production of a vaccine against toxoplasmosis.
Collapse
Affiliation(s)
- Tooran Nayeri
- Department of Parasitology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; Toxoplasmosis Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Shahabeddin Sarvi
- Department of Parasitology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; Toxoplasmosis Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mahdi Fasihi-Ramandi
- Molecular Biology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Reza Valadan
- Immunology Department, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hossein Asgarian-Omran
- Immunology Department, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Abolghasem Ajami
- Immunology Department, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; Antimicrobial Resistance Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Alireza Khalilian
- Department of Biostatistics and Community Medicine, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Zahra Hosseininejad
- Department of Parasitology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; Toxoplasmosis Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran; Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Samira Dodangeh
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Javad Javidnia
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran; Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ahmad Daryani
- Department of Parasitology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; Toxoplasmosis Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
3
|
Warner RC, Chapman RC, Davis BN, Davis PH. REVIEW OF DNA VACCINE APPROACHES AGAINST THE PARASITE TOXOPLASMA GONDII. J Parasitol 2021; 107:882-903. [PMID: 34852176 DOI: 10.1645/20-157] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Toxoplasma gondii is an apicomplexan parasite that affects both humans and livestock. Transmitted to humans through ingestion, it is the second-leading cause of foodborne illness-related death. Currently, there exists no approved vaccine for humans or most livestock against the parasite. DNA vaccines, a type of subunit vaccine which uses segments of the pathogen's DNA to generate immunity, have shown varying degrees of experimental efficacy against infection caused by the parasite. This review compiles DNA vaccine efforts against Toxoplasma gondii, segmenting the analysis by parasite antigen, as well as a review of concomitant adjuvant usage. No single antigenic group was consistently more effective within in vivo trials relative to others.
Collapse
Affiliation(s)
- Rosalie C Warner
- Department of Biology, University of Nebraska at Omaha, Omaha, Nebraska, 68182
| | - Ryan C Chapman
- Department of Biology, University of Nebraska at Omaha, Omaha, Nebraska, 68182
| | - Brianna N Davis
- Department of Biology, University of Nebraska at Omaha, Omaha, Nebraska, 68182
| | - Paul H Davis
- Department of Biology, University of Nebraska at Omaha, Omaha, Nebraska, 68182
| |
Collapse
|
4
|
Yektaeian N, Malekpour A, Atapour A, Davoodi T, Hatam G. Genetic immunization against toxoplasmosis: A review article. Microb Pathog 2021; 155:104888. [PMID: 33930415 DOI: 10.1016/j.micpath.2021.104888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/13/2021] [Accepted: 04/13/2021] [Indexed: 11/21/2022]
Abstract
Toxoplasma gondii is a protozoan coccidian parasite belonging to Phylum Apicomplexa and is the causative agent of toxoplasmosis as a zoonotic disease around the world. It is one of the most important protozoa which is transmitted via various routes and infects several warm-blooded animals. The seroprevalence of T. gondii infection is high worldwide and leads to clinical, psychological, and economic problems. At present, available drug therapy for toxoplasmosis has severe side effects, so the development of new anti-toxoplasma drugs or effective vaccines is mandatory. Therefore, different measures have been taken for the development of anti-toxoplasmosis vaccines, and various studies have shown that DNA vaccines could be one of the most successful approaches against the intracellular parasite, T. gondii. Many of these studies have evaluated the efficacy of immunogenicity and different aspects of the DNA vaccines for toxoplasmosis including single genes or multi-gene plasmids with or without adjuvants. Most of the literature confirms that DNA vaccines containing different antigens of the toxoplasma parasite can induce suitable immune response and protection in acute or chronic toxoplasmosis. Therefore, in this review article, we aimed to discuss the current status of DNA vaccines as a new immunization method against toxoplasmosis.
Collapse
Affiliation(s)
- Narjes Yektaeian
- Department of Parasitology and Mycology, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Amir Atapour
- Department of Medical Biotechnology, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Tahereh Davoodi
- Department of Parasitology and Mycology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Gholamreza Hatam
- Department of Parasitology and Mycology, Shiraz University of Medical Sciences, Shiraz, Iran; Basic Sciences in Infectious Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
5
|
Pagheh AS, Sarvi S, Sharif M, Rezaei F, Ahmadpour E, Dodangeh S, Omidian Z, Hassannia H, Mehrzadi S, Daryani A. Toxoplasma gondii surface antigen 1 (SAG1) as a potential candidate to develop vaccine against toxoplasmosis: A systematic review. Comp Immunol Microbiol Infect Dis 2020; 69:101414. [PMID: 31958746 DOI: 10.1016/j.cimid.2020.101414] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 12/30/2019] [Accepted: 12/31/2019] [Indexed: 12/13/2022]
Abstract
Toxoplasma gondii is an intracellular parasite that infects a broad range of animal species and humans. As the main surface antigen of the tachyzoite, SAG1 is involved in the process of recognition, adhesion and invasion of host cells. The aim of the current systematic review study is to clarify the latest status of studies in the literature regarding SAG1-associated recombinant proteins or SAG1-associated recombinant DNAs as potential vaccines against toxoplasmosis. Data were systematically collected from six databases including PubMed, Science Direct, Web of Science, Google Scholar, EBSCO and Scopus, up to 1st of January 2019. A total of 87 articles were eligible for inclusion criteria in the current systematic review. The most common antigens used for experimental cocktail vaccines together with SAG1 were ROP2 and SAG2. In addition, the most parasite strains used were RH and ME49. Freund's adjuvant and cholera toxin have been predominantly utilized. Furthermore, regarding the animal models, route and dose of vaccination, challenge methods, measurement of immune responses and cyst burden have been discussed in the text. Most of these experimental vaccines induce immune responses and have a high degree of protection against parasite infections, increase survival rates and duration and reduce cyst burdens. The data demonstrated that SAG1 antigen has a high potential for use as a vaccine and provided a promising approach for protecting humans and animals against toxoplasmosis.
Collapse
Affiliation(s)
- Abdol Sattar Pagheh
- Infectious Disease Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Shahabeddin Sarvi
- Toxoplasmosis Research Center, Department of Parasitology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mehdi Sharif
- Department of Parasitology, School of Medicine, Sari Branch, Islamic AZAD University, Sari, Iran
| | - Fatemeh Rezaei
- Toxoplasmosis Research Center, Department of Parasitology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ehsan Ahmadpour
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Parasitology and Mycology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Samira Dodangeh
- Toxoplasmosis Research Center, Department of Parasitology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Zahra Omidian
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States
| | - Hadi Hassannia
- Immunonogenetics Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Saeed Mehrzadi
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Ahmad Daryani
- Toxoplasmosis Research Center, Department of Parasitology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran..
| |
Collapse
|
6
|
Mavi SA, Modarressi MH, Mohebali M, Shojaee S, Zeraati H, Teimouri A, Keshavarz H. Assessment of the immunogenicity and protective efficiency of a novel dual-promoter DNA vaccine, harboring SAG1 and GRA7 genes, from RH strain of Toxoplasma gondii in BALB/c mice. Infect Drug Resist 2019; 12:2519-2530. [PMID: 31616167 PMCID: PMC6699518 DOI: 10.2147/idr.s209270] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 07/26/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Toxoplasmosis, a protozoan parasitic disease caused by Toxoplasma gondii, has been a serious human and veterinary medicine problem with global distribution. In the current study, we assessed immunogenicity and protective efficiency of a novel dual-promoter DNA vaccine, harboring SAG1 and GRA7 genes, from RH strain of Toxoplasma gondii (T. gondii) with or without CpG-ODN as adjuvant in a murine model. METHODS BALB/c mice were immunized intramuscularly with pVitro-SAG1-GRA7 alone and pVitro-SAG1-GRA7 with CpG-ODN three times at three-week intervals. Enzyme-linked immunosorbent assay (ELISA) was used to assess total IgG, IgG1 and IgG2a antibodies and gamma interferon (IFN-γ) and interleukin-10 (IL-10) cytokines in mice sera. Four weeks post final vaccination, MTT assay and lethal challenge-infection with 1×103 tachyzoites of T. gondii RH strain were carried out to assess stimulation index (SI) and mice survival time, respectively. RESULTS The IgG levels in mice immunized with multicomponent vaccines, including pVitro-SAG1-GRA7 alone and pVitro-SAG1-GRA7 with CpG-ODN, were significantly higher than those in control mice or single-gene DNA-vaccinated ones (P<0.05). Furthermore, level of IgG2a in mice receiving pVitro-SAG1-GRA7 with CpG-ODN was significantly higher than that in mice receiving pVitro-SAG1-GRA7 alone (P<0.05). The Toxoplasma lysate antigen (TLA)-stimulated lymphocytes from pVitro-SAG1-GRA7 with CpG-ODN group responded more dramatically than those from control groups or single-gene DNA-vaccinated groups (P<0.001). The pVitro-SAG1-GRA7 with CpG-ODN-vaccinated mice developed high levels of IgG2a and IFN-γ (P<0.001) and low levels of IgG1 and IL-10, compared to control groups, suggesting a modulated immune response type Th1. In addition, survival time of the mice immunized with pVitro-SAG1-GRA7 with CpG-ODN was significantly extended, compared to controls (P<0.05); however, all mice died. CONCLUSION The multivalent pVitro-SAG1-GRA7 DNA vaccine with CpG-ODN adjuvant is a promising vaccine candidate against toxoplasmosis.
Collapse
Affiliation(s)
- Sara Ayazian Mavi
- Department of Medical Parasitology and Mycology, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Mehdi Mohebali
- Department of Medical Parasitology and Mycology, Tehran University of Medical Sciences, Tehran, Iran
- Center for Research of Endemic Parasites of Iran, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeedeh Shojaee
- Department of Medical Parasitology and Mycology, Tehran University of Medical Sciences, Tehran, Iran
| | - Hojjat Zeraati
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Aref Teimouri
- Department of Medical Parasitology and Mycology, Tehran University of Medical Sciences, Tehran, Iran
- Students Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Keshavarz
- Department of Medical Parasitology and Mycology, Tehran University of Medical Sciences, Tehran, Iran
- Center for Research of Endemic Parasites of Iran, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Dodangeh S, Daryani A, Sharif M, Aghayan SA, Pagheh AS, Sarvi S, Rezaei F. A systematic review on efficiency of microneme proteins to induce protective immunity against Toxoplasma gondii. Eur J Clin Microbiol Infect Dis 2019; 38:617-629. [PMID: 30680553 DOI: 10.1007/s10096-018-03442-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 11/22/2018] [Indexed: 12/13/2022]
Abstract
Toxoplasma gondii is an intracellular parasite infecting almost all warm-blooded animals. Many studies on vaccination have been performed previously, and micronemal proteins (MICs) have crucial importance in this regard. The current review aims to reveal the efficiency of MICs as target antigen, adjuvants, animal models (species/strain), T. gondii strains for challenge infection, and routes of vaccine to prevent Toxoplasma infection. A comprehensive literature search was performed on April 18, 2018, in several known databases. Studies were included when evaluating vaccines based on MIC against T. gondii compared to that of a control group. Two independent researchers done the search process, study choice, and data extraction. A total of 28 articles published were selected for further analysis. Among them, 57.03% of the studies focused on MIC3 and its epitopes. SAG1 was further used in cocktail vaccines compared to other antigens. GM-CSF and Freund's complete were the predominant adjuvants used. BALB/c mice have been introduced as a proper model for lethal challenge. Virulent T. gondii (RH) was utilized more than other strains for challenge. Among MICs, the results of vaccination with MIC1-4, MIC6, and PLP1 demonstrated significantly strong humoral and cellular immunity, increased survival time, and reduced cyst burden in the mice. This review summarizes the latest results on MIC-based vaccines and presents that the most effective vaccination procedure is the administration of the cocktail vaccines. Our survey can serve as a basis for further studies to develop more efficient novel vaccines against T. gondii for animals and humans.
Collapse
MESH Headings
- Animals
- Antibodies, Protozoan/immunology
- Antigens, Protozoan/chemistry
- Antigens, Protozoan/immunology
- Disease Models, Animal
- Freund's Adjuvant/administration & dosage
- Granulocyte-Macrophage Colony-Stimulating Factor/administration & dosage
- Granulocyte-Macrophage Colony-Stimulating Factor/immunology
- Humans
- Immunity, Cellular
- Immunity, Humoral
- Mice, Inbred BALB C
- Protozoan Proteins/immunology
- Toxoplasma/immunology
- Toxoplasma/pathogenicity
- Toxoplasmosis/immunology
- Toxoplasmosis/prevention & control
- Vaccination
- Vaccines, DNA/administration & dosage
- Vaccines, DNA/immunology
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/immunology
Collapse
Affiliation(s)
- Samira Dodangeh
- Toxoplasmosis Research Center, Mazandaran University of Medical Sciences, Sari, Iran
- Student Research Committee, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ahmad Daryani
- Toxoplasmosis Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mehdi Sharif
- Toxoplasmosis Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Sargis A Aghayan
- Laboratory of Zoology, Research Institute of Biology, Yerevan State University, Yerevan, Republic of Armenia
| | - Abdol Satar Pagheh
- Toxoplasmosis Research Center, Mazandaran University of Medical Sciences, Sari, Iran
- Student Research Committee, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Shahabeddin Sarvi
- Toxoplasmosis Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
- Department of Medical Parasitology, School of Medicine, Mazandaran University of Medical Sciences, 18 km of Khazar Abad Road, PO Box 48175-1665, Sari, Iran.
| | - Fatemeh Rezaei
- Toxoplasmosis Research Center, Mazandaran University of Medical Sciences, Sari, Iran
- Student Research Committee, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
8
|
A systematic review of Toxoplasma gondii antigens to find the best vaccine candidates for immunization. Microb Pathog 2018; 126:172-184. [PMID: 30399440 DOI: 10.1016/j.micpath.2018.11.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 10/30/2018] [Accepted: 11/02/2018] [Indexed: 11/24/2022]
Abstract
At present, there is not any available accepted vaccine for prevention of Toxoplasma gondii (T. gondii) in human and animals. We conducted literature search through English (Google Scholar, PubMed, Science Direct, Scopus, EBSCO, ISI Web of Science) scientific paper databases to find the best vaccine candidates against toxoplasmosis among T. gondii antigens. Articles with information on infective stage, pathogenicity, immunogenicity and characterization of antigens were selected. We considered that the ideal and significant vaccines should include different antigens and been expressed in all infective stages of the parasite with a high pathogenicity and immunogenicity. Evaluation within this systematic review indicates that MIC 3, 4, 13, ROP 2, RON 5, GRA 1, 6, 8, 14 are expressed in all three infective stages and have pathogenicity and immunogenicity. MIC 5, ROM 4, GRA 2, 4, 15, ROP 5, 16, 17, 38, RON 4, MIC 1, GRA 10, 12, 16, SAG 3 are expressed in only tachyzoites and bradyzoites stages of T. gondii with pathogenicity/immunogenicity. Some antigens appeared to be expressed in a single stage (tachyzoites) but have high pathogenicity and induce immune response. They include enolase2 (ENO2), SAG 1, SAG5D, HSP 70, ROM 1, ROM 5, AMA 1, ROP 18, RON2 and GRA 24. In conclusion, current vaccination against T. gondii infection is not satisfactory, and with the increasing number of high-risk individuals, the development of an effective and safe specific vaccine is greatly valuable for toxoplasmosis prevention. This systematic review reveals prepare candidates for immunization studies.
Collapse
|
9
|
Foroutan M, Zaki L, Ghaffarifar F. Recent progress in microneme-based vaccines development against Toxoplasma gondii. Clin Exp Vaccine Res 2018; 7:93-103. [PMID: 30112348 PMCID: PMC6082678 DOI: 10.7774/cevr.2018.7.2.93] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 06/18/2018] [Accepted: 07/06/2018] [Indexed: 11/25/2022] Open
Abstract
Toxoplasmosis is a cosmopolitan zoonotic disease, which infect several warm-blooded mammals. More than one-third of the human population are seropositive worldwide. Due to the high seroprevalence of Toxoplasma gondii infection worldwide, the resulting clinical, mental, and economical complications, as well as incapability of current drugs in the elimination of parasites within tissue cysts, the development of a vaccine against T. gondii would be critical. In the past decades, valuable advances have been achieved in order to identification of vaccine candidates against T. gondii infection. Microneme proteins (MICs) secreted by the micronemes play a critical role in the initial stages of host cell invasion by parasites. In this review, we have summarized the recent progress for MIC-based vaccines development, such as DNA vaccines, recombinant protein vaccines, vaccines based on live-attenuated vectors, and prime-boost strategy in different mouse models. In conclusion, the use of live-attenuated vectors as vehicles to deliver and express the target gene and prime-boost regimens showed excellent outcomes in the development of vaccines against toxoplasmosis, which need more attention in the future studies.
Collapse
Affiliation(s)
- Masoud Foroutan
- Department of Parasitology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Leila Zaki
- Department of Parasitology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Fatemeh Ghaffarifar
- Department of Parasitology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
10
|
Ducournau C, Nguyen TT, Carpentier R, Lantier I, Germon S, Précausta F, Pisella PJ, Leroux H, Van Langendonck N, Betbeder D, Dimier-Poisson I. Synthetic parasites: a successful mucosal nanoparticle vaccine against Toxoplasma congenital infection in mice. Future Microbiol 2017; 12:393-405. [PMID: 28339296 DOI: 10.2217/fmb-2016-0146] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
AIM Development of protein vaccine to prevent congenital infection is a major public health priority. Our goal is the design of mucosal synthetic pathogen inducing protective immune responses against congenital toxoplasmosis. MATERIALS & METHODS Mice were immunized intranasally, establishing pregnancy and challenging orally. Placental immune response, congenital infection, pup growth, parasitic load rates were studied. RESULTS Pups born to vaccinated infected dams had significantly fewer brain cysts, no intraocular inflammation and normal growth. Protection was associated with a placental cellular Th1 response downregulated by IL-6 and correlated with persistence of vaccine for few hours in the nose before being totally eliminated. CONCLUSION Our vaccine conferred high protection against congenital toxoplasmosis. These results provide support for future studies of other congenital vaccine.
Collapse
Affiliation(s)
- Céline Ducournau
- Immunologie Parasitaire et Vaccinologie, Biothérapies Anti-Infectieuses, Université de Tours-INRA, UMR1282 Infectiologie et Santé Publique, UFR Pharmacie, F-37000 Tours, France
| | - Thi Tl Nguyen
- Immunologie Parasitaire et Vaccinologie, Biothérapies Anti-Infectieuses, Université de Tours-INRA, UMR1282 Infectiologie et Santé Publique, UFR Pharmacie, F-37000 Tours, France
| | - Rodolphe Carpentier
- Centre International de Recherche sur l'Inflammation de Lille LIRIC -UMR 995 Inserm/Université Lille 2/CHRU Lille. Innovation thérapeutique ciblant l'inflammation. Groupe Nanomédecine, Faculté de Médecine, F-59045 Lille Cedex, France.,Université d'Artois, rue du Temple, 62030 ARRAS, France
| | - Isabelle Lantier
- Laboratoire d'Expertise en Infection Animale, INRA-Université de Tours, UMR1282 Infectiologie et Santé Publique, F-37380 Nouzilly, France
| | - Stéphanie Germon
- Immunologie Parasitaire et Vaccinologie, Biothérapies Anti-Infectieuses, Université de Tours-INRA, UMR1282 Infectiologie et Santé Publique, UFR Pharmacie, F-37000 Tours, France
| | - Flavien Précausta
- Immunologie Parasitaire et Vaccinologie, Biothérapies Anti-Infectieuses, Université de Tours-INRA, UMR1282 Infectiologie et Santé Publique, UFR Pharmacie, F-37000 Tours, France
| | - Pierre-Jean Pisella
- Immunologie Parasitaire et Vaccinologie, Biothérapies Anti-Infectieuses, Université de Tours-INRA, UMR1282 Infectiologie et Santé Publique, UFR Pharmacie, F-37000 Tours, France
| | - Hervé Leroux
- Laboratoire d'Expertise en Infection Animale, INRA-Université de Tours, UMR1282 Infectiologie et Santé Publique, F-37380 Nouzilly, France
| | | | - Didier Betbeder
- Centre International de Recherche sur l'Inflammation de Lille LIRIC -UMR 995 Inserm/Université Lille 2/CHRU Lille. Innovation thérapeutique ciblant l'inflammation. Groupe Nanomédecine, Faculté de Médecine, F-59045 Lille Cedex, France.,Université d'Artois, rue du Temple, 62030 ARRAS, France
| | - Isabelle Dimier-Poisson
- Immunologie Parasitaire et Vaccinologie, Biothérapies Anti-Infectieuses, Université de Tours-INRA, UMR1282 Infectiologie et Santé Publique, UFR Pharmacie, F-37000 Tours, France
| |
Collapse
|
11
|
Wedrychowicz H. Antiparasitic DNA vaccines in 21st century. Acta Parasitol 2015; 60:179-89. [PMID: 26203983 PMCID: PMC7088677 DOI: 10.1515/ap-2015-0026] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Revised: 12/15/2014] [Accepted: 12/17/2014] [Indexed: 11/25/2022]
Abstract
Demands for effective vaccines to control parasitic diseases of humans and livestock have been recently exacerbated by the development of resistance of most pathogenic parasites to anti-parasitic drugs. Novel genomic and proteomic technologies have provided opportunities for the discovery and improvement of DNA vaccines which are relatively easy as well as cheap to fabricate and stable at room temperatures. However, their main limitation is rather poor immunogenicity, which makes it necessary to couple the antigens with adjuvant molecules. This paper review recent advances in the development of DNA vaccines to some pathogenic protozoa and helminths. Numerous studies were conducted over the past 14 years of 21st century, employing various administration techniques, adjuvants and new immunogenic antigens to increase efficacy of DNA vaccines. Unfortunately, the results have not been rewarding. Further research is necessary using more extensive combinations of antigens; alternate delivery systems and more efficient adjuvants based on knowledge of the immunomodulatory capacities of parasitic protozoa and helminths.
Collapse
MESH Headings
- Animals
- Disease Transmission, Infectious/prevention & control
- Drug Discovery/trends
- Helminthiasis/immunology
- Helminthiasis/prevention & control
- Helminthiasis/transmission
- Helminthiasis, Animal/immunology
- Helminthiasis, Animal/prevention & control
- Helminthiasis, Animal/transmission
- Humans
- Protozoan Infections/immunology
- Protozoan Infections/prevention & control
- Protozoan Infections/transmission
- Protozoan Infections, Animal/immunology
- Protozoan Infections, Animal/prevention & control
- Protozoan Infections, Animal/transmission
- Vaccines, DNA/administration & dosage
- Vaccines, DNA/immunology
- Vaccines, DNA/isolation & purification
Collapse
Affiliation(s)
- Halina Wedrychowicz
- Department of Molecular Biology, Laboratory of Molecular Parasitology, W. Stefański Institute Parasitology, Polish Academy of Sciences, 51/55 Twarda St., 00-818 Warsaw, Poland
| |
Collapse
|
12
|
Wang HL, Zhang TE, Yin LT, Pang M, Guan L, Liu HL, Zhang JH, Meng XL, Bai JZ, Zheng GP, Yin GR. Partial protective effect of intranasal immunization with recombinant Toxoplasma gondii rhoptry protein 17 against toxoplasmosis in mice. PLoS One 2014; 9:e108377. [PMID: 25255141 PMCID: PMC4177930 DOI: 10.1371/journal.pone.0108377] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 07/21/2014] [Indexed: 11/18/2022] Open
Abstract
Toxoplasma gondii (T. gondii) is an obligate intracellular protozoan parasite that infects a variety of mammals, including humans. An effective vaccine for this parasite is therefore needed. In this study, RH strain T. gondii rhoptry protein 17 was expressed in bacteria as a fusion with glutathione S-transferase (GST) and the recombinant proteins (rTgROP17) were purified via GST-affinity chromatography. BALB/c mice were nasally immunised with rTgROP17, and induction of immune responses and protection against chronic and lethal T. gondii infections were investigated. The results revealed that mice immunised with rTgROP17 produced high levels of specific anti-rTgROP17 IgGs and a mixed IgG1/IgG2a response of IgG2a predominance. The systemic immune response was associated with increased production of Th1 (IFN-γand IL-2) and Th2 (IL-4) cytokines, and enhanced lymphoproliferation (stimulation index, SI) in the mice immunised with rTgROP17. Strong mucosal immune responses with increased secretion of TgROP17-specific secretory IgA (SIgA) in nasal, vaginal and intestinal washes were also observed in these mice. The vaccinated mice displayed apparent protection against chronic RH strain infection as evidenced by their lower liver and brain parasite burdens (59.17% and 49.08%, respectively) than those of the controls. The vaccinated mice also exhibited significant protection against lethal infection of the virulent RH strain (survival increased by 50%) compared to the controls. Our data demonstrate that rTgROP17 can trigger strong systemic and mucosal immune responses against T. gondii and that ROP17 is a promising candidate vaccine for toxoplasmosis.
Collapse
Affiliation(s)
- Hai-Long Wang
- Research Institute of Medical Parasitology, Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Tie-E Zhang
- Research Institute of Medical Parasitology, Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Li-Tian Yin
- Department of Physiology, Key Laboratory of Cellular Physiology Co-constructed by Province and Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Min Pang
- Department of Respiratory, the First Affiliated Hospital, Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Li Guan
- Research Institute of Medical Parasitology, Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Hong-Li Liu
- Research Institute of Medical Parasitology, Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Jian-Hong Zhang
- Research Institute of Medical Parasitology, Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Xiao-Li Meng
- Research Institute of Medical Parasitology, Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Ji-Zhong Bai
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Guo-Ping Zheng
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Guo-Rong Yin
- Research Institute of Medical Parasitology, Shanxi Medical University, Taiyuan, Shanxi, PR China
| |
Collapse
|
13
|
Yin LT, Hao HX, Wang HL, Zhang JH, Meng XL, Yin GR. Intranasal immunisation with recombinant Toxoplasma gondii actin partly protects mice against toxoplasmosis. PLoS One 2013; 8:e82765. [PMID: 24386114 PMCID: PMC3873923 DOI: 10.1371/journal.pone.0082765] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 10/27/2013] [Indexed: 12/31/2022] Open
Abstract
Toxoplasma gondii is a ubiquitous protozoan intracellular parasite, the causative agent of toxoplasmosis, and a worldwide zoonosis for which an effective vaccine is needed. Actin is a highly conserved microfilament protein that plays an important role in the invasion of host cells by T. gondii. This study investigated the immune responses elicited by BALB/c mice after nasal immunisation with a recombinant T. gondii actin (rTgACT) and the subsequent protection against chronic and lethal T. gondii infections. We evaluated the systemic response by proliferation, cytokine and antibody measurements, and we assessed the mucosal response by examining the levels of TgACT-specific secretory IgA (SIgA) in nasal, vaginal and intestinal washes. Parasite load was assessed in the liver and brain, and the survival of mice challenged with a virulent strain was determined. The results showed that the mice immunised with rTgACT developed high levels of specific anti-rTgACT IgG titres and a mixed IgG1/IgG2a response with a predominance of IgG2a. The systemic immune response was associated with increased production of Th1 (IFN-γ and IL-2), Th2 (IL-4) and Treg (IL-10) cytokines, indicating that not only Th1-type response was induced, but also Th2- and Treg-types responses were induced, and the splenocyte stimulation index (SI) was increased in the mice immunised with rTgACT. Nasal immunisation with rTgACT led to strong mucosal immune responses, as seen by the increased secretion of SIgA in nasal, vaginal and intestinal washes. The vaccinated mice displayed significant protection against lethal infection with the virulent RH strain (survival increased by 50%), while the mice chronically infected with RH exhibited lower liver and brain parasite loads (60.05% and 49.75%, respectively) than the controls. Our data demonstrate, for the first time, that actin triggers a strong systemic and mucosal response against T. gondii. Therefore, actin may be a promising vaccine candidate against toxoplasmosis.
Collapse
Affiliation(s)
- Li-Tian Yin
- Department of physiology, Key Laboratory of Cellular Physiology Co-constructed by Province and Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Hai-Xia Hao
- Research Institute of Medical Parasitology, Shanxi Medical University, Taiyuan, Shanxi, PR China
- General Hospital of the Datong Coal Mine Co. Ltd., Datong, Shanxi, PR China
| | - Hai-Long Wang
- Research Institute of Medical Parasitology, Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Jian-Hong Zhang
- Research Institute of Medical Parasitology, Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Xiao-Li Meng
- Research Institute of Medical Parasitology, Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Guo-Rong Yin
- Research Institute of Medical Parasitology, Shanxi Medical University, Taiyuan, Shanxi, PR China
| |
Collapse
|
14
|
Zhang NZ, Chen J, Wang M, Petersen E, Zhu XQ. Vaccines against Toxoplasma gondii: new developments and perspectives. Expert Rev Vaccines 2013; 12:1287-99. [PMID: 24093877 DOI: 10.1586/14760584.2013.844652] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Toxoplasmosis caused by the protozoan Toxoplasma gondii is a major public health problem, infecting one-third of the world human beings, and leads to abortion in domestic animals. A vaccine strategy would be an ideal tool for improving disease control. Many efforts have been made to develop vaccines against T. gondii to reduce oocyst shedding in cats and tissue cyst formation in mammals over the last 20 years, but only a live-attenuated vaccine based on the S48 strain has been licensed for veterinary use. Here, the authors review the recent development of T. gondii vaccines in cats, food-producing animals and mice, and present its future perspectives. However, a single or only a few antigen candidates revealed by various experimental studies are limited by only eliciting partial protective immunity against T. gondii. Future studies of T. gondii vaccines should include as many CTL epitopes as the live attenuated vaccines.
Collapse
Affiliation(s)
- Nian-Zhang Zhang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, PR China
| | | | | | | | | |
Collapse
|
15
|
Tao Q, Fang R, Zhang W, Wang Y, Cheng J, Li Y, Fang K, Khan MK, Hu M, Zhou Y, Zhao J. Protective immunity induced by a DNA vaccine-encoding Toxoplasma gondii microneme protein 11 against acute toxoplasmosis in BALB/c mice. Parasitol Res 2013; 112:2871-7. [PMID: 23749087 DOI: 10.1007/s00436-013-3458-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 05/08/2013] [Indexed: 12/17/2022]
Abstract
Toxoplasma gondii is one of the most prevalent intracellular parasites and is threatening the health of both humans and animals, therefore causing incalculable economic losses worldwide. Vaccination is thought to be an efficient way of controlling toxoplasmosis. T. gondii microneme protein 11 (MIC11) is a soluble microneme protein which is presumably considered facilitating the early stage of cell invasion. To evaluate the protective efficacy of T. gondii MIC11, in the present study, a new DNA vaccine-encoding the α-chain of T. gondii MIC11 was constructed using the pcDNA3.1 vector. Expression of MIC11 from this vector was confirmed by indirect immunofluorescence assay following transfection into baby hamster kidney (BHK) cells. Intramuscular immunization of BALB/c mice with pcDNA/MIC11 was carried out to evaluate the immune responses by serum antibodies titers, lymphoproliferation assay, and cytokines assay. The protective efficacy was evaluated by survival rate in mice after challenging with highly virulent strain of T. gondii. The results demonstrated that this vaccination elicited significant humoral responses and T. gondii lysate antigen (TLA)-stimulated lymphoproliferation (p < 0.05). Compared to controls, the pcDNA/MIC11 immunized mice had high production of IFN-γ, IL-12, and IL-2 (p < 0.05), but not IL-4 (p > 0.05), indicating that a predominant Th1 type response was developed. The vaccination also increased the survival rate of immunized mice when they were challenged with a lethal dose of tachyzoites of T. gondii RH strain. These data suggest that T. gondii MIC11 is a reasonable vaccine candidate deserving further studies, and pcDNA/MIC11 is a potential strategy for the control of toxoplasmosis.
Collapse
Affiliation(s)
- Qing Tao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Evaluation of protective effect of multiantigenic DNA vaccine encoding MIC3 and ROP18 antigen segments of Toxoplasma gondii in mice. Parasitol Res 2013; 112:2593-9. [PMID: 23591483 DOI: 10.1007/s00436-013-3425-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 04/04/2013] [Indexed: 01/01/2023]
Abstract
The high incidence and severe damage caused by Toxoplasma gondii infection clearly indicates the need for the development of a vaccine. In this study, we evaluated the immune responses and protection against toxoplasmosis by immunizing ICR mice with a multiantigenic DNA vaccine. To develop the multiantigenic vaccine, two T. gondii antigens, MIC3 and ROP18, selected on the basis of previous studies were chosen. ICR mice were immunized subcutaneously with PBS, empty pcDNA3.1 vector, pMIC3, pROP18, and pROP18-MIC3, respectively. The results of lymphocyte proliferation assay, cytokine, and antibody determinations showed that mice immunized with pROP18-MIC3 elicited stronger humoral and Th1-type cellular immune responses than those immunized with single-gene plasmids, empty plasmid, or phosphate-buffered saline. After a lethal challenge with the highly virulent T. gondii RH strain, a prolonged survival time in pROP18-MIC3-immunized mice was observed in comparison to control groups. Our study indicates that the introduction of multiantigenic DNA vaccine is more powerful and efficient than single-gene vaccine, and deserves further evaluation and development.
Collapse
|
17
|
Dziadek B, Brzostek A. Recombinant ROP2, ROP4, GRA4 and SAG1 antigen-cocktails as possible tools for immunoprophylaxis of toxoplasmosis: what's next? Bioengineered 2012; 3:358-64. [PMID: 22892593 DOI: 10.4161/bioe.21541] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Toxoplasmosis is a globally distributed foodborne zoonosis caused by a protozoan parasite Toxoplasma gondii. Usually asymptomatic in immunocompetent humans, toxoplasmosis is a serious clinical and veterinary problem often leading to lethal damage in an infected host. In order to overcome the exceptionally strong clinical and socio-economic impact of Toxoplasma infection, the construction of an effective vaccine inducing full immunoprotection against the parasite is an urgent issue. In the last two decades many live attenuated, subunit and DNA-based vaccines against toxoplasmosis have been studied, however only partial protection conferred by vaccination against chronic as well as acute infection has been achieved. Among various immunization strategies, no viable subunit vaccines based on recombinant secretory (ROP2, ROP4 and GRA4) and surface (SAG1) T. gondii proteins have been found as attractive tools for further studies. This is due to their high, but still partial, protective efficacy correlated with the induction of cellular and humoral immune responses.
Collapse
Affiliation(s)
- Bozena Dziadek
- Department of Immunoparasitology; University of Lodz, Lodz, Poland.
| | | |
Collapse
|
18
|
Multicomponent DNA vaccine-encoding Toxoplasma gondii GRA1 and SAG1 primes: anti-Toxoplasma immune response in mice. Parasitol Res 2012; 111:2001-9. [PMID: 22837100 PMCID: PMC3480591 DOI: 10.1007/s00436-012-3047-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 07/10/2012] [Indexed: 12/20/2022]
Abstract
A multicomponent DNA vaccine, encoding Toxoplasma gondii GRA1 and SAG1, was constructed and tested for its ability to confer protection. BALB/c mice were challenged with tachyzoites of the virulent T. gondii RH strain at 4 weeks following the last immunization, and immune responses and survival times were observed. The results show that vaccination by the multicomponent vaccine prolonged survival of mice challenged with the T. gondii RH strain (from average 4.50 ± 0.22 to 7.60 ± 0.74 days); induced high levels of IgG antibody (from 0.252 ± 0.080 to 0.790 ± 0.083), IFN-gamma (from 598.74 ± 67.50 to 853.77 ± 66.74 pg/ml), and IL-2 (from 89.44 ± 10.66 to 192.24 ± 19.90 pg/ml); changed the CD4(+)/CD8(+) lymphocyte ratio (from 1.81 ± 0.14 to 1.09 ± 0.19); and stimulated NK cell-killing activity (from 46.81 ± 3.96 to 64.15 ± 7.71 %). These findings demonstrate that a multicomponent DNA vaccine, encoding GRA1 and SAG1, primes a strong humoral and cellular immune response and enhances protection against T. gondii challenge. The new, combined DNA vaccine provides another means to combat T. gondii infection.
Collapse
|
19
|
Fang R, Feng H, Hu M, Khan MK, Wang L, Zhou Y, Zhao J. Evaluation of immune responses induced by SAG1 and MIC3 vaccine cocktails against Toxoplasma gondii. Vet Parasitol 2012; 187:140-6. [DOI: 10.1016/j.vetpar.2011.12.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Revised: 12/06/2011] [Accepted: 12/13/2011] [Indexed: 10/14/2022]
|
20
|
Li J, Han Q, Gong P, Yang T, Ren B, Li S, Zhang X. Toxoplasma gondii rhomboid protein 1 (TgROM1) is a potential vaccine candidate against toxoplasmosis. Vet Parasitol 2012; 184:154-60. [DOI: 10.1016/j.vetpar.2011.08.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Revised: 08/04/2011] [Accepted: 08/09/2011] [Indexed: 11/28/2022]
|
21
|
Cui X, Lei T, Yang D, Hao P, Li B, Liu Q. Toxoplasma gondii immune mapped protein-1 (TgIMP1) is a novel vaccine candidate against toxoplasmosis. Vaccine 2012; 30:2282-7. [DOI: 10.1016/j.vaccine.2012.01.073] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Revised: 12/28/2011] [Accepted: 01/23/2012] [Indexed: 01/19/2023]
|
22
|
Nie H, Fang R, Xiong BQ, Wang LX, Hu M, Zhou YQ, Zhao JL. Immunogenicity and protective efficacy of two recombinant pseudorabies viruses expressing Toxoplasma gondii SAG1 and MIC3 proteins. Vet Parasitol 2011; 181:215-21. [DOI: 10.1016/j.vetpar.2011.04.039] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Revised: 04/22/2011] [Accepted: 04/27/2011] [Indexed: 10/18/2022]
|
23
|
Immune response and protective efficacy against homologous challenge in BALB/c mice vaccinated with DNA vaccine encoding Toxoplasma gondii actin depolymerizing factor gene. Vet Parasitol 2011; 179:1-6. [DOI: 10.1016/j.vetpar.2011.03.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Revised: 01/04/2011] [Accepted: 03/03/2011] [Indexed: 11/21/2022]
|
24
|
Carvalho JA, Rodgers J, Atouguia J, Prazeres DMF, Monteiro GA. DNA vaccines: a rational design against parasitic diseases. Expert Rev Vaccines 2010; 9:175-91. [PMID: 20109028 DOI: 10.1586/erv.09.158] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Parasitic diseases are one of the most devastating causes of morbidity and mortality worldwide. Although immunization against these infections would be an ideal solution, the development of effective vaccines has been hampered by specific challenges posed by parasitic pathogens. Plasmid-based DNA vaccines may prove to be promising immunization tools in this area because vectors can be designed to integrate several antigens from different stages of the parasite life cycle or different subspecies; vaccines, formulations and immunization protocols can be tuned to match the immune response that offers protective immunity; and DNA vaccination is an affordable platform for developing countries. Partial and full protective immunity have been reported following DNA vaccination against the most significant parasitic diseases in the world.
Collapse
Affiliation(s)
- Joana A Carvalho
- Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | | | | | | | | |
Collapse
|