1
|
Lotharius J, Gamo-Benito FJ, Angulo-Barturen I, Clark J, Connelly M, Ferrer-Bazaga S, Parkinson T, Viswanath P, Bandodkar B, Rautela N, Bharath S, Duffy S, Avery VM, Möhrle JJ, Guy RK, Wells T. Repositioning: the fast track to new anti-malarial medicines? Malar J 2014; 13:143. [PMID: 24731288 PMCID: PMC4021201 DOI: 10.1186/1475-2875-13-143] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 03/23/2014] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Repositioning of existing drugs has been suggested as a fast track for developing new anti-malarial agents. The compound libraries of GlaxoSmithKline (GSK), Pfizer and AstraZeneca (AZ) comprising drugs that have undergone clinical studies in other therapeutic areas, but not achieved approval, and a set of US Food and Drug Administration (FDA)-approved drugs and other bio-actives were tested against Plasmodium falciparum blood stages. METHODS Molecules were tested initially against erythrocytic co-cultures of P. falciparum to measure proliferation inhibition using one of the following methods: SYBR®I dye DNA staining assay (3D7, K1 or NF54 strains); [(3)H] hypoxanthine radioisotope incorporation assay (3D7 and 3D7A strain); or 4',6-diamidino-2-phenylindole (DAPI) DNA imaging assay (3D7 and Dd2 strains). After review of the available clinical pharmacokinetic and safety data, selected compounds with low μM activity and a suitable clinical profile were tested in vivo either in a Plasmodium berghei four-day test or in the P. falciparum Pf3D7(0087/N9) huSCID 'humanized' mouse model. RESULTS Of the compounds included in the GSK and Pfizer sets, 3.8% (9/238) had relevant in vitro anti-malarial activity while 6/100 compounds from the AZ candidate drug library were active. In comparison, around 0.6% (24/3,800) of the FDA-approved drugs and other bio-actives were active. After evaluation of available clinical data, four investigational drugs, active in vitro were tested in the P. falciparum humanized mouse model: UK-112,214 (PAF-H1 inhibitor), CEP-701 (protein kinase inhibitor), CEP-1347 (protein kinase inhibitor), and PSC-833 (p-glycoprotein inhibitor). Only UK-112,214 showed significant efficacy against P. falciparum in vivo, although at high doses (ED90 131.3 mg/kg [95% CI 112.3, 156.7]), and parasitaemia was still present 96 hours after treatment commencement. Of the six actives from the AZ library, two compounds (AZ-1 and AZ-3) were marginally efficacious in vivo in a P. berghei model. CONCLUSIONS Repositioning of existing therapeutics in malaria is an attractive proposal. Compounds active in vitro at μM concentrations were identified. However, therapeutic concentrations may not be effectively achieved in mice or humans because of poor bio-availability and/or safety concerns. Stringent safety requirements for anti-malarial drugs, given their widespread use in children, make this a challenging area in which to reposition therapy.
Collapse
Affiliation(s)
- Julie Lotharius
- Medicines for Malaria Venture (MMV), PO Box 1826, 20 rte de Pré-Bois, 1215, Geneva 15, Switzerland
| | | | - Iñigo Angulo-Barturen
- Diseases of the Developing World Medicines Development Campus, GlaxoSmithKline, Madrid, Tres Cantos, Spain
| | - Julie Clark
- Department of Chemical Biology and Therapeutics, St Jude Children’s Research Hospital, Memphis, TN, USA
| | - Michele Connelly
- Department of Chemical Biology and Therapeutics, St Jude Children’s Research Hospital, Memphis, TN, USA
| | - Santiago Ferrer-Bazaga
- Diseases of the Developing World Medicines Development Campus, GlaxoSmithKline, Madrid, Tres Cantos, Spain
| | | | | | | | - Nikhil Rautela
- AstraZeneca India Pvt Ltd, Bellary Road, Hebbal, Bangalore, India
| | - Sowmya Bharath
- AstraZeneca India Pvt Ltd, Bellary Road, Hebbal, Bangalore, India
| | - Sandra Duffy
- Discovery Biology, Eskitis Institute for Drug Discovery, Griffith University, Nathan, Australia
| | - Vicky M Avery
- Discovery Biology, Eskitis Institute for Drug Discovery, Griffith University, Nathan, Australia
| | - Jörg J Möhrle
- Medicines for Malaria Venture (MMV), PO Box 1826, 20 rte de Pré-Bois, 1215, Geneva 15, Switzerland
| | - R Kiplin Guy
- Department of Chemical Biology and Therapeutics, St Jude Children’s Research Hospital, Memphis, TN, USA
| | - Timothy Wells
- Medicines for Malaria Venture (MMV), PO Box 1826, 20 rte de Pré-Bois, 1215, Geneva 15, Switzerland
| |
Collapse
|
2
|
Ichagichu M, Ngotho M, Karanja SM, Kokwaro G, Kariuki T, Nzila A, Ozwara H. Preclinical drug evaluation system in the Plasmodium knowlesi baboon model of malaria: the methotrexate study. J Med Primatol 2013; 42:62-70. [PMID: 23294369 DOI: 10.1111/jmp.12034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/10/2012] [Indexed: 11/30/2022]
Abstract
BACKGROUND Drug resistance against first-line antimalarials warrants search for new lead compounds and repurposing of drugs such as methotrexate. Animal models are required for preclinical drug development before clinical testing. This study aimed to develop a preclinical drug development system in baboons infected with Plasmodium knowlesi. METHODS Protocols for drug administration, pharmacokinetics, clinical chemistry and haematology were developed in the baboon model. Baboons were infected with P. knowlesi and methotrexate administered orally for 5 days. Clinical signs, parasitaemia, gross and histopathology examinations were conducted to determine effect of methotrexate in baboons. RESULTS No major clinical chemistry, haematology and pathological changes attributable to methotrexate were observed. Parasitaemia suppression of 77.67% was achieved at a methotrexate dose of 3.0 mg/kg. CONCLUSIONS A protocol for preclinical drug development in the baboon was optimized. Methotrexate suppressed P. knowlesi malaria in baboons. These findings warrant further characterization of methotrexate for use in combination therapy.
Collapse
Affiliation(s)
- M Ichagichu
- Department of Tropical and Infectious Diseases, Institute of Primate Research, Karen, Nairobi, Kenya
| | | | | | | | | | | | | |
Collapse
|