1
|
Sherafati J, Dayer MS, Ghaffarifar F, Akbarzadeh K, Pirestani M. Evaluating leishmanicidal effects of Lucilia sericata products in combination with Apis mellifera honey using an in vitro model. PLoS One 2023; 18:e0283355. [PMID: 37535629 PMCID: PMC10399734 DOI: 10.1371/journal.pone.0283355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 03/07/2023] [Indexed: 08/05/2023] Open
Abstract
Leishmaniasis is a zoonotic disease caused by an intracellular parasite from the genus Leishmania. Lack of safe and effective drugs has increasingly promoted researches into new drugs of natural origin to cure the disease. The study, therefore, aimed to investigate the anti-leishmanial effects of Lucilia sericata larval excretion/secretion (ES) in combination with Apis mellifera honey as a synergist on Leishmania major using an in vitro model. Various concentrations of honey and larval ES fractions were tested against promastigotes and intracellular amastigotes of L. major using macrophage J774A.1 cell line. The inhibitory effects and cytotoxicity of ES plus honey were evaluated using direct counting method and MTT assay. To assess the effects of larval ES plus honey on the amastigote form, the rate of macrophage infection and the number of amastigotes per infected macrophage cell were estimated. The 50% inhibitory concentration (IC50) values were 21.66 μg/ml, 43.25 60 μg/ml, 52.58 μg/ml, and 70.38 μg/ml for crude ES plus honey, ES >10 kDa plus honey, ES <10 kDa plus honey, and honey alone, respectively. The IC50 for positive control (glucantime) was 27.03 μg/ml. There was a significant difference between viability percentages of promastigotes exposed to different doses of applied treatments compared to the negative control (p≤ 0.0001). Microscopic examination of amastigote forms revealed that dosages applied at 150 to 300 μg/ml significantly reduced the rate of macrophage infection and the number of amastigotes per infected macrophage cell. Different doses of larval products plus honey did not show a significant toxic effect agaist macrophage J774 cells. The larval ES fractions of L. sericata in combination with A. mellifera honey acted synergistically against L. major.
Collapse
Affiliation(s)
- Jila Sherafati
- Faculty of Medical Sciences, Department of Parasitology and Medical Entomology, Tarbiat Modares University, Tehran, Iran
- Faculty of Medical Sciences, Student Research Committee, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Saaid Dayer
- Faculty of Medical Sciences, Department of Parasitology and Medical Entomology, Tarbiat Modares University, Tehran, Iran
| | - Fatemeh Ghaffarifar
- Faculty of Medical Sciences, Department of Parasitology and Medical Entomology, Tarbiat Modares University, Tehran, Iran
| | - Kamran Akbarzadeh
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Majid Pirestani
- Faculty of Medical Sciences, Department of Parasitology and Medical Entomology, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
2
|
Baghbani MR, Rashidi S, Naderi Shahabadi S, Ebrahimi S, Alipour S, Asgari Q, Motazedian MH. The in vitro and in vivo effects of Lucilia sericata larval secretions on Leishmania major. J Parasit Dis 2023; 47:363-368. [PMID: 37193496 PMCID: PMC10182202 DOI: 10.1007/s12639-023-01574-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 02/26/2023] [Indexed: 04/08/2023] Open
Abstract
The emerging of drug resistant against Leishmania parasites prompts scientists to seek for novel therapeutic strategies against theses infectious protozoan parasites. Among different strategies, the use of larvae secretions could be suggested as a possible therapy with low side effects. Accordingly, the current study evaluated the in vitro and in vivo effects of Lucilia sericata larval secretions on Leishmania major, the causative agent of cutaneous leishmaniasis (CL). After preparation of L. sericata larval stages (L2 and L3) secretions, the potential effects of secretions were evaluated against L. major promastigotes and amastigotes (in vitro) using MTT assay. The cytotoxicity effects of secretions were also checked on uninfected macrophages. In addition, in vivo experiments were also conducted to investigate the effects of larvae's secretions on the CL lesions induced in the BALB/c mice. Although the increased concentration of larvae secretions exhibited a direct effect on the promastigotes proliferation (viability), contrarily, L2 secretions at a concentration of 96 μg/ml represented the highest inhibitory effect on parasite (amastigotes) burden in infected macrophages. Interestingly, L3 secretions > 60 μg/ml induced inhibitory effects on amastigotes. The results relevant to the cytotoxicity effects of L2 and L3 secretions on uninfected-macrophages showed a dose dependent correlation. In vivo results were also significant, compared to the positive control group. This study suggested the plausible inhibitory effects of L. sericata larvae's secretions on the L. major amastigotes and CL lesions progression. It seems that the characterization of all effective components/proteins in the larvae secretions and their specific targets in parasite structure or in cell (macrophage) responses could further reveal more details regarding the anti-leishmanial properties of these compounds.
Collapse
Affiliation(s)
- Mohammad Reza Baghbani
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sajad Rashidi
- Department of Medical Laboratory Sciences, Khomein University of Medical Sciences, Khomein, Iran
- Molecular and Medicine Research Center, Khomein University of Medical Sciences, Khomein, Iran
| | - Shahrbanoo Naderi Shahabadi
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sepideh Ebrahimi
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saeideh Alipour
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Qasem Asgari
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Hossein Motazedian
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Basic Science in Infectious Diseases, Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
3
|
Siddiqui SA, Li C, Aidoo OF, Fernando I, Haddad MA, Pereira JA, Blinov A, Golik A, Câmara JS. Unravelling the potential of insects for medicinal purposes - A comprehensive review. Heliyon 2023; 9:e15938. [PMID: 37206028 PMCID: PMC10189416 DOI: 10.1016/j.heliyon.2023.e15938] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/20/2023] [Accepted: 04/27/2023] [Indexed: 05/21/2023] Open
Abstract
Entomotherapy, the use of insects for medicinal purposes, has been practised for centuries in many countries around the world. More than 2100 edible insect species are eaten by humans, but little is known about the possibility of using these insects as a promising alternative to traditional pharmaceuticals for treating diseases. This review offers a fundamental understanding of the therapeutic applications of insects and how they might be used in medicine. In this review, 235 insect species from 15 orders are reported to be used as medicine. Hymenoptera contains the largest medicinal insect species, followed by Coleoptera, Orthoptera, Lepidoptera, and Blattodea. Scientists have examined and validated the potential uses of insects along with their products and by-products in treating various diseases, and records show that they are primarily used to treat digestive and skin disorders. Insects are known to be rich sources of bioactive compounds, explaining their therapeutic features such as anti-inflammatory, antimicrobial, antiviral, and so on. Challenges associated with the consumption of insects (entomophagy) and their therapeutic uses include regulation barriers and consumer acceptance. Moreover, the overexploitation of medicinal insects in their natural habitat has led to a population crisis, thus necessitating the investigation and development of their mass-rearing procedure. Lastly, this review suggests potential directions for developing insects used in medicine and offers advice for scientists interested in entomotherapy. In future, entomotherapy may become a sustainable and cost-effective solution for treating various ailments and has the potential to revolutionize modern medicine.
Collapse
Affiliation(s)
- Shahida Anusha Siddiqui
- Technical University of Munich Campus Straubing for Biotechnology and Sustainability, Essigberg 3, 94315 Straubing, Germany
- German Institute of Food Technologies (DIL e.V.), Prof.-von-Klitzing Str. 7, 49610 D-Quakenbrück, Germany
- Corresponding author. Technical University of Munich Campus Straubing for Biotechnology and Sustainability, Essigberg 3, 94315 Straubing, Germany.
| | - Chujun Li
- Guangzhou Unique Biotechnology Co., Ltd, 510663, Guangzhou, China
- State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou, 510006, China
| | - Owusu Fordjour Aidoo
- Department of Biological, Physical and Mathematical Sciences, University of Environment and Sustainable Development, 00233, Somanya, Ghana
| | - Ito Fernando
- Department of Plant Pest and Diseases, Faculty of Agriculture, Universitas Brawijaya, Malang, 65145, East Java, Indonesia
| | - Moawiya A. Haddad
- Department of Nutrition and Food Processing, Faculty of Agricultural Technology, Al-Balqa Applied University, 19117, Al-Salt, Jordan
| | - Jorge A.M. Pereira
- CQM – Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| | - Andrey Blinov
- North Caucasus Federal University, Pushkina Street 1, 355009, Stavropol, Russia
| | - Andrey Golik
- North Caucasus Federal University, Pushkina Street 1, 355009, Stavropol, Russia
| | - José S. Câmara
- CQM – Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
- Departamento de Química, Faculdade de Ciências Exatas e Engenharia, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
- Corresponding author. CQM – Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal.
| |
Collapse
|
4
|
Rahimi S, Rafinejad J, Akhavan AA, Ahmadkhaniha R, Bakhtiyari M, Khamesipour A, Akbarzadeh K. The therapeutic effect of larval saliva and hemolymph of Lucilia sericata on the treatment of Leishmania major lesion in BALB/c mice946. Parasit Vectors 2023; 16:72. [PMID: 36797798 PMCID: PMC9936726 DOI: 10.1186/s13071-023-05660-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 01/10/2023] [Indexed: 02/18/2023] Open
Abstract
BACKGROUND Treatment of cutaneous leishmaniasis (CL) remains a major challenge for the public health and medical community. It has been claimed that natural compounds derived from fly larvae have anti-leishmania properties against some species of Leishmania. The present study aimed at assessing the in vitro effects of larval products of Lucilia sericata against the promastigote and intracellular amastigote forms of Leishmania major. Also, the therapeutic effect of larval products on lesions induced by L. major infection was evaluated in BALB/c mice models. METHODS Parasite specimens and macrophage cells were exposed to varying concentrations of larval products for 24-120 h. Lesion progression and parasite load were investigated in the models to assess the therapeutic effects of the products. RESULTS The larval products displayed more potent cytotoxicity against L. major promastigotes. The IC50 values for larval saliva and hemolymph were 100.6 and 37.96 ug/ml, respectively. The IC50 of glucantime was 9.480 ug/ml. Also, the saliva and hemolymph of L. sericata exhibited higher cytotoxicity against the promastigotes of L. major but were less toxic to the macrophage cells. Treatment with leishmanicidal agents derived from larvae of L. sericata decreased the infection rate and the number of amastigotes per infected host cell at all concentrations. Lesion size was significantly (F (7, 38) = 8.54, P < 0.0001) smaller in the treated mice compared with the untreated control group. The average parasite burden in the treated mice groups (1.81 ± 0.74, 1.03 ± 0.45 and 3.37 ± 0.41) was similar to the group treated with a daily injection of glucantime (1.77 ± 0.99) and significantly lower (F (7, 16) = 66.39, P < 0.0001) than in the untreated control group (6.72 ± 2.37). CONCLUSIONS The results suggest that the larval products of L. sericata were effective against L. major parasites both in vivo and in vitro. However, more clinical trial studies are recommended to evaluate the effects of these larval products on human subjects.
Collapse
Affiliation(s)
- Sara Rahimi
- Medicinal Plants Research Center, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Javad Rafinejad
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Ahmad Akhavan
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Ahmadkhaniha
- Pharmaceutical Chemistry, Department of Human Ecology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmood Bakhtiyari
- Department of Community Medicine and Epidemiology, School of Medicine Non-Communicable Diseases Research Center Alborz University of Medical Sciences, Karaj, Iran
| | - Ali Khamesipour
- Center for Research and Training in Skin Diseases and Leprosy, Tehran University of Medical Sciences, Tehran, Iran
| | - Kamran Akbarzadeh
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Istanbullu H, Bayraktar G, Karakaya G, Akbaba H, Perk NE, Cavus I, Podlipnik C, Yereli K, Ozbilgin A, Debelec Butuner B, Alptuzun V. Design, synthesis, in vitro - In vivo biological evaluation of novel thiazolopyrimidine compounds as antileishmanial agent with PTR1 inhibition. Eur J Med Chem 2023; 247:115049. [PMID: 36577215 DOI: 10.1016/j.ejmech.2022.115049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/15/2022] [Accepted: 12/21/2022] [Indexed: 12/25/2022]
Abstract
The leishmaniasis are a group of vector-borne diseases caused by a protozoan parasite from the genus Leishmania. In this study, a series of thiazolopyrimidine derivatives were designed and synthesized as novel antileishmanial agents with LmPTR1 inhibitory activity. The final compounds were evaluated for their in vitro antipromastigote activity, LmPTR1 and hDHFR enzyme inhibitory activities, and cytotoxicity on RAW264.7 and L929 cell lines. Based on the bioactivity results, three compounds, namely L24f, L24h and L25c, were selected for evaluation of their in vivo efficacy on CL and VL models in BALB/c mice. Among them, two promising compounds, L24h and L25c, showed in vitro antipromastigote activity against L. tropica with the IC50 values of 0.04 μg/ml and 6.68 μg/ml; against L. infantum with the IC50 values of 0.042 μg/ml and 6.77 μg/ml, respectively. Moreover, the title compounds were found to have low in vitro cytotoxicity on L929 and RAW264.7 cell lines with the IC50 14.08 μg/ml and 21.03 μg/ml, and IC50 15.02 μg/ml and 8.75 μg/ml, respectively. LmPTR1 enzyme inhibitory activity of these compounds was determined as 257.40 μg/ml and 59.12 μg/ml and their selectivity index (SI) over hDHFR was reported as 42.62 and 7.02, respectively. In vivo studies presented that L24h and L25c have a significant antileishmanial activity against footpad lesion development of CL and at weight measurement of VL group in comparison to the reference compound, Glucantime®. Also, docking studies were carried out with selected compounds and other potential Leishmania targets to detect the putative targets of the title compounds. Taken together, all these findings provide an important novel lead structure for the antileishmanial drug development.
Collapse
Affiliation(s)
- Huseyin Istanbullu
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Izmir Katip Celebi University, Cigli, Izmir, Turkey.
| | - Gulsah Bayraktar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ege University, Bornova, Izmir, Turkey
| | - Gulsah Karakaya
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Izmir Katip Celebi University, Cigli, Izmir, Turkey
| | - Hasan Akbaba
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Ege University, Bornova, Izmir, Turkey
| | - Nami Ege Perk
- Department of Parasitology, Faculty of Medicine, Manisa Celal Bayar University, Manisa, Turkey
| | - Ibrahim Cavus
- Department of Parasitology, Faculty of Medicine, Manisa Celal Bayar University, Manisa, Turkey
| | - Crtomir Podlipnik
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, SI-1000, Ljubljana, Slovenia
| | - Kor Yereli
- Department of Parasitology, Faculty of Medicine, Manisa Celal Bayar University, Manisa, Turkey
| | - Ahmet Ozbilgin
- Department of Parasitology, Faculty of Medicine, Manisa Celal Bayar University, Manisa, Turkey
| | - Bilge Debelec Butuner
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Ege University, Bornova, Izmir, Turkey
| | - Vildan Alptuzun
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ege University, Bornova, Izmir, Turkey
| |
Collapse
|
6
|
Gopu B, Kour P, Pandian R, Singh K. Insights into the drug screening approaches in leishmaniasis. Int Immunopharmacol 2023; 114:109591. [PMID: 36700771 DOI: 10.1016/j.intimp.2022.109591] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/25/2022] [Accepted: 12/10/2022] [Indexed: 12/24/2022]
Abstract
Leishmaniasis, a tropically neglected disease, is responsible for the high mortality and morbidity ratio in poverty-stricken areas. Currently, no vaccine is available for the complete cure of the disease. Current chemotherapeutic regimens face the limitations of drug resistance and toxicity concerns indicating a great need to develop better chemotherapeutic leads that are orally administrable, potent, non-toxic, and cost-effective. The anti-leishmanial drug discovery process accelerated the desire for large-scale drug screening assays and high-throughput screening (HTS) technology to identify new chemo-types that can be used as potential drug molecules to control infection. Using the HTS approach, about one million compounds can be screened daily within the shortest possible time for biological activity using automation tools, miniaturized assay formats, and large-scale data analysis. Classical and modern in vitro screening assays have led to the progression of active compounds further to ex vivo and in vivo studies. In the present review, we emphasized on the HTS approaches employed in the leishmanial drug discovery program. Recent in vitro screening assays are widely explored to discover new chemical scaffolds. Developing appropriate experimental animal models and their related techniques is necessary to understand the pathophysiological processes and disease host responses, paving the way for unraveling novel therapies against leishmaniasis.
Collapse
Affiliation(s)
- Boobalan Gopu
- Animal House Facility, Pharmacology Division, CSIR- Indian Institute of Integrative Medicine, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Parampreet Kour
- Infectious Diseases Division, CSIR- Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Ramajayan Pandian
- Animal House Facility, Pharmacology Division, CSIR- Indian Institute of Integrative Medicine, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Kuljit Singh
- Infectious Diseases Division, CSIR- Indian Institute of Integrative Medicine, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
7
|
Sherafati J, Dayer MS, Ghaffarifar F. Therapeutic effects of Lucilia sericata larval excretion/secretion products on Leishmania major under in vitro and in vivo conditions. Parasit Vectors 2022; 15:212. [PMID: 35710519 PMCID: PMC9204886 DOI: 10.1186/s13071-022-05322-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 05/13/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Leishmaniasis is a neglected infectious disease caused by protozoa of the genus Leishmania. The disease generally manifests as characteristic skin lesions which require lengthy treatment with antimonial drugs that are often associated with adverse side effects. Therefore, a number of studies have focused on natural compounds as promising drugs for its treatment. This study aimed to evaluate the effects of larval excretion/secretion products (ES) of Lucilia sericata in crude and fractionated forms on Leishmania major, by using in vitro and in vivo models. METHODS The in vitro experiments involved evaluation of ES on both promastigotes and macrophage-engulfed amastigotes, whereas the in vivo experiments included comparative treatments of skin lesions in L. major-infected mice with Eucerin-formulated ES and Glucantime. RESULTS The half maximal inhibitory concentrations of the crude ES, > 10-kDa ES fraction, < 10-kDa ES fraction, and Glucantime were 38.7 μg/ml, 47.6 μg/ml, 63.3 μg/ml, and 29.1 μg/ml, respectively. Significant differences were observed between percentage viabilities of promastigotes treated with the crude ES and its fractions compared with the negative control (P < 0.0001). The crude ES was more effective on amastigotes than the two ES fractions at 300 μg/ml. The macroscopic measurements revealed that the reduction of lesion size in mice treated with the crude ES followed quicker cascades of healing than that of mice treated with Glucantime and the ES fractions. CONCLUSIONS The present study showed that the larval ES of L. sericata in both crude and fractionated forms are effective for both intracellular and extracellular forms of L. major. Also, the ES exert both topical and systemic effects on mice experimentally infected with L. major.
Collapse
Affiliation(s)
- Jila Sherafati
- Department of Parasitology and Medical Entomology, Faculty of Medical Sciences, Tarbiat Modares University, Jalal AleAhmad Highway, Nasr, P.O. Box 14115-111, Tehran, Islamic Republic of Iran
| | - Mohammad Saaid Dayer
- Department of Parasitology and Medical Entomology, Faculty of Medical Sciences, Tarbiat Modares University, Jalal AleAhmad Highway, Nasr, P.O. Box 14115-111, Tehran, Islamic Republic of Iran
| | - Fatemeh Ghaffarifar
- Department of Parasitology and Medical Entomology, Faculty of Medical Sciences, Tarbiat Modares University, Jalal AleAhmad Highway, Nasr, P.O. Box 14115-111, Tehran, Islamic Republic of Iran
| |
Collapse
|
8
|
Rodrigues ACJ, Bortoleti BTDS, Carloto ACM, Silva TF, Concato VM, Gonçalves MD, Tomiotto-Pelissier F, Detoni MB, Diaz-Roa A, Júnior PIDS, Costa IN, Conchon-Costa I, Bidoia DL, Miranda-Sapla MM, Pavanelli WR. Larval excretion/secretion of dipters of Lucilia cuprina species induces death in promastigote and amastigote forms of Leishmania amazonensis. Pathog Dis 2021; 79:6339274. [PMID: 34347083 DOI: 10.1093/femspd/ftab040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 08/02/2021] [Indexed: 11/14/2022] Open
Abstract
Leishmaniasis is a neglected tropical disease that affects millions of people around the world. Larval excretion/secretion (ES) of the larvae of flies of the Calliphoridae family has microbicidal activity against Gram-positive and Gram-negative bacteria, in addition to some species of Leishmania. Our study aimed at assessing the in vitro efficacy of Lucilia cuprina larval ES against the promastigote and amastigote forms of Leishmania amazonensis, elucidating possible microbicidal mechanisms and routes of death involved. Larval ES was able to inhibit the viability of L. amazonensis at all concentrations, induce morphological and ultrastructural changes in the parasite, retraction of the cell body, roughness of the cytoplasmic membrane, leakage of intracellular content, ROS production increase, induction of membrane depolarization, and mitochondrial swelling, the formation of cytoplasmic lipid droplets and phosphatidylserine exposure, thus indicating the possibility of apoptosis-like death. To verify the efficacy of larval ES on amastigote forms, we performed a phagocytic assay, measurement of total ROS, and NO. Treatment using larval ES reduced the percentage of infection and the number of amastigotes per macrophage of lineage J774A.1 at all concentrations, increasing the production of ROS and TNF-α, thus indicating possible pro-inflammatory immunomodulation and oxidative damage. Therefore, treatment using larval ES is effective at inducing the death of promastigotes and amastigotes of L. amazonensis even at low concentrations.
Collapse
Affiliation(s)
- Ana Carolina Jacob Rodrigues
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer, Department of Pathological Sciences, Center for Biological Sciences State University of Londrina, PR, Brazil
| | | | - Amanda Cristina Machado Carloto
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer, Department of Pathological Sciences, Center for Biological Sciences State University of Londrina, PR, Brazil
| | - Taylon Felipe Silva
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer, Department of Pathological Sciences, Center for Biological Sciences State University of Londrina, PR, Brazil
| | - Virgínia Márcia Concato
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer, Department of Pathological Sciences, Center for Biological Sciences State University of Londrina, PR, Brazil
| | - Manoela Daiele Gonçalves
- Biotransformation and Phytochemistry Laboratory, Department of Chemistry, Center for Exact Sciences, State University of Londrina, PR, Brazil
| | - Fernanda Tomiotto-Pelissier
- Biosciences and Biotechnology Postgraduate Program, Carlos Chagas Institute, (ICC/Fiocruz/PR), Curitiba, PR, Brazil
| | - Mariana Barbosa Detoni
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer, Department of Pathological Sciences, Center for Biological Sciences State University of Londrina, PR, Brazil
| | - Andrea Diaz-Roa
- Special Laboratory for Applied Toxicology, Instituto Butantan, SP, Brazil
| | | | - Idessania Nazareth Costa
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer, Department of Pathological Sciences, Center for Biological Sciences State University of Londrina, PR, Brazil
| | - Ivete Conchon-Costa
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer, Department of Pathological Sciences, Center for Biological Sciences State University of Londrina, PR, Brazil
| | - Danielle Lazarin Bidoia
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer, Department of Pathological Sciences, Center for Biological Sciences State University of Londrina, PR, Brazil
| | - Milena Menegazzo Miranda-Sapla
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer, Department of Pathological Sciences, Center for Biological Sciences State University of Londrina, PR, Brazil
| | - Wander Rogério Pavanelli
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer, Department of Pathological Sciences, Center for Biological Sciences State University of Londrina, PR, Brazil
| |
Collapse
|
9
|
Rahimi S, Khamesipour A, Akhavan AA, Rafinejad J, Ahmadkhaniha R, Bakhtiyari M, Veysi A, Akbarzadeh K. The leishmanicidal effect of Lucilia sericata larval saliva and hemolymph on in vitro Leishmania tropica. Parasit Vectors 2021; 14:40. [PMID: 33430900 PMCID: PMC7798311 DOI: 10.1186/s13071-020-04543-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 12/11/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Leishmaniasis is a major parasitic disease worldwide, except in Australia and Antarctica, and it poses a significant public health problem. Due to the absence of safe and effective vaccines and drugs, researchers have begun an extensive search for new drugs. The aim of the current study was to investigate the in vitro leishmanicidal activity of larval saliva and hemolymph of Lucilia sericata on Leishmania tropica. METHODS The effects of different concentrations of larval products on promastigotes and intracellular amastigotes of L. tropica were investigated using the mouse cell line J774A.1 and peritoneal macrophages as host cells. The 3-(4.5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and direct observation and counting method were used to assess the inhibitory effects and cell cytotoxicity of the larval products. The effects of larval products on the amastigote form of L. tropica were quantitatively estimated by calculating the rate of macrophage infection, number of amastigotes per infected macrophage cell, parasite load and survival index. RESULTS The 50% cytotoxicity concentration (CC50) value of both larval saliva and hemolymph was 750 µg/ml, and the 50% inhibitory concentration (IC50) values were 134 µg/ml and 60 µg/ml for larval saliva and larval hemolymph, respectively. The IC50 for Glucantime, used a positive control, was (11.65 µg/ml). Statistically significant differences in viability percentages of promastigotes were observed for different doses of both larval saliva and hemolymph when compared with the negative control (p ≤ 0.0001). Microscopic evaluation of the amastigote forms revealed that treatment with 150 µg/ml larval hemolymph and 450 µg/ml larval saliva significantly decreased the rate of macrophage infection and the number of amastigotes per infected macrophage cell. CONCLUSION Larval saliva and hemolymph of L. sericata have acceptable leishmanicidal properties against L. tropica.
Collapse
Affiliation(s)
- Sara Rahimi
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Khamesipour
- Center for Research and Training in Skin Diseases and Leprosy, Tehran University of Medical Sciences, Tehran, Iran.
| | - Amir Ahmad Akhavan
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Javad Rafinejad
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Ahmadkhaniha
- Pharmaceutical Chemistry, Department of Human Ecology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmood Bakhtiyari
- Department of Community Medicine and Epidemiology, School of Medicine Non-communicable Diseases Research Center Alborz, University of Medical Sciences, Karaj, Iran
| | - Arshad Veysi
- Zoonoses Research Center, Research Institute for Health Development, Kurdistan University of Medical sciences, Sanandaj, Iran
| | - Kamran Akbarzadeh
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
10
|
Istanbullu H, Bayraktar G, Akbaba H, Cavus I, Coban G, Debelec Butuner B, Kilimcioglu AA, Ozbilgin A, Alptuzun V, Erciyas E. Design, synthesis, and in vitro biological evaluation of novel thiazolopyrimidine derivatives as antileishmanial compounds. Arch Pharm (Weinheim) 2020; 353:e1900325. [DOI: 10.1002/ardp.201900325] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 04/21/2020] [Accepted: 05/11/2020] [Indexed: 11/06/2022]
Affiliation(s)
- Huseyin Istanbullu
- Department of Pharmaceutical Chemistry, Faculty of PharmacyIzmir Katip Celebi University Cigli Izmir Turkey
| | - Gulsah Bayraktar
- Department of Pharmaceutical Chemistry, Faculty of PharmacyEge University Bornova Izmir Turkey
| | - Hasan Akbaba
- Department of Pharmaceutical Biotechnology, Faculty of PharmacyEge University Bornova Izmir Turkey
| | - Ibrahim Cavus
- Department of ParasitologyManisa Celal Bayar University Manisa Turkey
| | - Gunes Coban
- Department of Pharmaceutical Chemistry, Faculty of PharmacyEge University Bornova Izmir Turkey
| | - Bilge Debelec Butuner
- Department of Pharmaceutical Biotechnology, Faculty of PharmacyEge University Bornova Izmir Turkey
| | | | - Ahmet Ozbilgin
- Department of ParasitologyManisa Celal Bayar University Manisa Turkey
| | - Vildan Alptuzun
- Department of Pharmaceutical Chemistry, Faculty of PharmacyEge University Bornova Izmir Turkey
| | - Ercin Erciyas
- Department of Pharmaceutical Chemistry, Faculty of PharmacyEge University Bornova Izmir Turkey
| |
Collapse
|
11
|
Tahmasebi M, Soleimanifard S, Sanei A, Karimy A, Abtahi SM. A Survey on Inhibitory Effect of Whole-Body Extraction and Secretions of Lucilia sericata's Larvae on Leishmania major In vitro. Adv Biomed Res 2020; 9:12. [PMID: 32318361 PMCID: PMC7147512 DOI: 10.4103/abr.abr_56_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 05/26/2019] [Accepted: 11/03/2019] [Indexed: 11/25/2022] Open
Abstract
Background: Leishmaniasis is a skin disease caused by Leishmania parasite. Despite being self-limiting, must be treated. Available drugs have side effects and drug resistance has also been seen. Materials and Methods: Maggot debridement therapy (MDT) is using sterile fly larvae (maggots) of blow flies (Lucilia sericata) for the treatment of different types of tissue wounds. Larvae have excreted and secreted substances that have been proved to have antimicrobial effects, in addition to the some other specifications. Results: In this study, the anti-leishmanial effects of extracts and secretions of sterile second- and third-instar larvae of L. sericata on the growth of Leishmania major promastigotes and amastigotes in the J774 macrophages have been evaluated in vitro. Conclusion: The results showed that extracts and secretions had almost the same leishmaniocidal effect on promastigotes and intracellular amastigotes without cytotoxic effect on macrophages.
Collapse
Affiliation(s)
- Maryam Tahmasebi
- Department of Medical Parasitology and Mycology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Simindokht Soleimanifard
- Department of Medical Parasitology and Mycology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Alireza Sanei
- Department of Medical Entomology, School of Health, Hormozgan University of Medical Sciences, Bandar-Abbas, Iran
| | - Azadeh Karimy
- Department of Entomology, Zist Eltiam Sepanta Company, Azad University of Khorasgan, Technology Incubator, Center of Medicinal Plant and Traditional Medicine, Isfahan, Iran
| | - Seyed Mohammad Abtahi
- Department of Medical Parasitology and Mycology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
12
|
Maleki-Ravasan N, Ahmadi N, Soroushzadeh Z, Raz AA, Zakeri S, Dinparast Djadid N. New Insights Into Culturable and Unculturable Bacteria Across the Life History of Medicinal Maggots Lucilia sericata (Meigen) (Diptera: Calliphoridae). Front Microbiol 2020; 11:505. [PMID: 32322242 PMCID: PMC7156559 DOI: 10.3389/fmicb.2020.00505] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 03/09/2020] [Indexed: 12/31/2022] Open
Abstract
Because of the nutritional ecology of dung- and carrion-feeding, bacteria are the integral part of Lucilia sericata life cycle. Nevertheless, the disinfected larvae of the blowfly are applied to treat human chronic wounds in a biosurgery named maggot debridement therapy (MDT). To realize the effects of location/diet on the gut bacteria, to infer the role of bacteria in the blowfly ecology plus in the MDT process, and to disclose bacteria circulating horizontally in and vertically between generations, bacterial communities associated with L. sericata specimens from various sources were investigated using culture-based and culture-independent methods. In total, 265 bacteria, including 20 families, 28 genera, and 40 species, were identified in many sources of the L. sericata. Culture-dependent method identified a number of 144 bacterial isolates, including 21 species, in flies reared in an insectary; specimens were collected from the field, and third-instar larvae retrieved from chronic wounds of patients. Metagenetic approach exposed the occurrences of 121 operational taxonomic units comprising of 32 bacterial species from immature and adult stages of L. sericata. Gammaproteobacteria was distinguished as the dominant class of bacteria by both methods. Bacteria came into the life cycle of L. sericata over the foods and transovarially infected eggs. Enterococcus faecalis, Myroides phaeus, Proteus species, Providencia vermicola, and Serratia marcescens were exchanged among individuals via transstadial transmission. Factors, including diets, feeding status, identification tool, gut compartment, and life stage, governed the bacteria species. Herein, we reemphasized that L. sericata is thoroughly connected to the bacteria both in numerous gut compartments and in different life stages. Among all, transstadially transmitted bacteria are underlined, indicating the lack of antagonistic effect of the larval excretions/secretions on these resident bacteria. While the culture-dependent method generated useful data on the viable aerobic gut bacteria, metagenomic method enabled us to identify bacteria directly from the tissues without any need for cultivation and to facilitate the identification of anaerobic and unculturable bacteria. These findings are planned to pave the way for further research to determine the role of each bacterial species/strain in the insect ecology, as well as in antimicrobial, antibiofilm, anti-inflammatory, and wound healing activities.
Collapse
Affiliation(s)
- Naseh Maleki-Ravasan
- Malaria and Vector Research Group, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.,Department of Parasitology, Pasteur Institute of Iran, Tehran, Iran
| | - Nahid Ahmadi
- Malaria and Vector Research Group, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.,Department of Biotechnology, Faculty of Advanced Sciences and Technology, Pharmaceutical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Zahra Soroushzadeh
- Malaria and Vector Research Group, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.,Department of Biotechnology, Faculty of Advanced Sciences and Technology, Pharmaceutical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Abbas Ali Raz
- Malaria and Vector Research Group, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Sedigheh Zakeri
- Malaria and Vector Research Group, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Navid Dinparast Djadid
- Malaria and Vector Research Group, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
13
|
Reyes Parrado AE, Arrivillaga-Henríquez J, Oviedo Araújo MJ, Scorza Dagert JV, Ron Garrido L. Terapia Larval con Musca Domestica en el Tratamiento de la úlcera Leishmánicaen un Modelo Murino. ACTA BIOLÓGICA COLOMBIANA 2020. [DOI: 10.15446/abc.v25n1.77177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
La leishmaniosis es una enfermedad con gran impacto en salud pública dado a las características de las lesiones tegumentarias. El tratamiento experimental con terapia larval (TL) ha mostrado su uso potencial para la cura de la leishmaniosis, sin embargo, se han utilizado especies de moscas para TL en heridas causadas por Leishmania que no son de fácil colecta y cultivo bajo condiciones de laboratorio como Lucilia sericata o Calliphora vicina. El objetivo del presente trabajo fue usar una especie de mosca de fácil colecta, y de alta fecundidad como la Musca domestica para aplicarlas en TL de úlceras leishmánicas. Se realizó un estudio cuali-cuantitativo, de tipo descriptivo, mediante un diseño experimental empleado un modelo animal (Mesocricetus auratus), infectado con Leishmania amazonensis para evaluar el efecto terapéutico de la TL y comparar los resultados con el tratamiento químico antimonial de la droga experimental “Ulamina”. Se evidencia cicatrización y cura de la úlcera leishmánica en el 66,66 % de los animales tratados con TL en aplicación simple y del 100 % en TL combinada con Ulamina. El uso combinado de TL+Ulamina, muestra un efecto potenciador de la cura clínica de las úlceras, pero con persistente inflamación. Se observó una efectividad óptima de la TL con M. domestica, sobre las úlceras, aunque no se evidenció un efecto sobre L. amazonensis dado a la presencia de amastigotes en los frotis y a los amplicones obtenidos de 480 bp desde las improntas de los animales.
Collapse
|
14
|
Abdel-Samad MRK. Antiviral and virucidal activities of Lucilia cuprina maggots' excretion/secretion (Diptera: Calliphoridae): first work. Heliyon 2019; 5:e02791. [PMID: 31844722 PMCID: PMC6895714 DOI: 10.1016/j.heliyon.2019.e02791] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 09/27/2019] [Accepted: 10/31/2019] [Indexed: 01/23/2023] Open
Abstract
Maggots of Lucilia sericata and L. cuprina are a backbone of the maggot debridement therapy. Further, the excretion/secretion (E/S) of these maggots has antibacterial and antifungal activities, nevertheless the antiviral activity of E/S for these maggots still out the focus. This study aimed to evaluate the E/S of L. cuprina maggots against the Rift Valley Fever (RVF) and Coxsackie B4 (CB4) viruses for first time. After collection of the E/S, its cytotoxicity on Vero cells was evaluated and the safe concentration was determined which used to investigate the antiviral and virucidal effect of E/S on the selected viruses. The E/S decreased the titers of the tested viruses compared with that of untreated viruses. The outcome data refer to that the E/S of L. cuprina consider as a promising antiviral and virucidal agent.
Collapse
|
15
|
Sığ AK. Biosurgery: utility in chronic wound. JOURNAL OF HEALTH SCIENCES AND MEDICINE 2018. [DOI: 10.32322/jhsm.396256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
16
|
Laverde-Paz MJ, Echeverry MC, Patarroyo MA, Bello FJ. Evaluating the anti-leishmania activity of Lucilia sericata and Sarconesiopsis magellanica blowfly larval excretions/secretions in an in vitro model. Acta Trop 2018; 177:44-50. [PMID: 28982577 DOI: 10.1016/j.actatropica.2017.09.033] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 09/29/2017] [Accepted: 09/30/2017] [Indexed: 11/29/2022]
Abstract
Leishmaniasis is a vector-borne disease caused by infection by parasites from the genus Leishmania. Clinical manifestations can be visceral or cutaneous, the latter mainly being chronic ulcers. This work was aimed at evaluating Calliphoridae Lucilia sericata- and Sarconesiopsis magellanica-derived larval excretions and secretions' (ES) in vitro anti-leishmanial activity against Leishmania panamensis. Different larval-ES concentrations from both blowfly species were tested against either L. panamensis promastigotes or intracellular amastigotes using U937-macrophages as host cells. The Alamar Blue method was used for assessing parasite half maximal inhibitory concentration (IC50) and macrophage cytotoxicity (LC50). The effect of larval-ES on L. panamensis intracellular parasite forms was evaluated by calculating the percentage of infected macrophages, parasite load and toxicity. L. sericata-derived larval-ES L. panamensis macrophage LC50 was 72.57μg/mL (65.35-80.58μg/mL) and promastigote IC50 was 41.44μg/mL (38.57-44.52μg/mL), compared to 34.93μg/mL (31.65-38.55μg/mL) LC50 and 23.42μg/mL (22.48-24.39μg/mL) IC50 for S. magellanica. Microscope evaluation of intracellular parasite forms showed that treatment with 10μg/mL L. sericata ES and 5μg/mL S. magellanica ES led to a decrease in the percentage of infected macrophages and the amount of intracellular amastigotes. This study produced in vitro evidence of the antileishmanial activity of larval ES from both blowfly species on different parasitic stages and showed that the parasite was more susceptible to the ES than it's host cells. The antileishmanial effect on L. panamensis was more evident from S. magellanica ES.
Collapse
Affiliation(s)
- Mayra Juliana Laverde-Paz
- Medical and Forensic Entomology Research Group, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá DC, Colombia; Public Health Department, Medicine Faculty, Universidad Nacional de Colombia, Bogotá DC, Colombia.
| | - María Clara Echeverry
- Public Health Department, Medicine Faculty, Universidad Nacional de Colombia, Bogotá DC, Colombia.
| | - Manuel Alfonso Patarroyo
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá DC, Colombia; Basic Sciences Department, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá DC, Colombia.
| | - Felio Jesús Bello
- Medical and Forensic Entomology Research Group, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá DC, Colombia; Medicine Faculty, Universidad Antonio Nariño, Bogotá DC, Colombia; Faculty of Agricultural and Livestock Sciences, Universidad de La Salle, Bogotá DC, Colombia.
| |
Collapse
|
17
|
Tombulturk FK, Kasap M, Tuncdemir M, Polat E, Sirekbasan S, Kanli A, Kanigur-Sultuybek G. Effects of Lucilia sericata on wound healing in streptozotocin-induced diabetic rats and analysis of its secretome at the proteome level. Hum Exp Toxicol 2017. [DOI: 10.1177/0960327117714041] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The use of Lucilia sericata larvae on the healing of wounds in diabetics has been reported. However, the role of the excretion/secretion (ES) products of the larvae in treatment of diabetic wounds remains unknown. This study investigated whether application of the ES products of L. sericata on the wound surface could improve the impaired wound healing in streptozotocin-induced diabetic rats. Additional analysis was performed to understand proteome content of L. sericata secretome to understand ES contribution at the molecular level. For this purpose, full-thickness skin wounds were created on the backs of diabetic and control rats. A study was conducted to assess the levels of the ES-induced collagen I/III expression and to assay nuclear factor κB (NF-κB) (p65) activity in wound biopsies and ES-treated wounds of diabetic rat skin in comparison to the controls. The expression levels of collagen I/III and NF-κB (p65) activity were determined at days 3, 7, and 14 after wounding using immunohistological analyses and enzyme-linked immunosorbent assay technique. The results indicated that treatment with the ES extract increased collagen I expressions of the wound control and diabetic tissue. But the increase in collagen I expression in the controls was higher than the one in the diabetics. NF-κB (p65) activity was also increased in diabetic wounds compared to the controls, whereas it was decreased in third and seventh days upon ES treatment. The results indicated that ES products of L. sericata may enhance the process of wound healing by influencing phases such as inflammation, NF-κB (p65) activity, collagen synthesis, and wound contraction. These findings may provide new insights into understanding of therapeutic potential of ES in wound healing in diabetics.
Collapse
Affiliation(s)
- FK Tombulturk
- Department of Medical Biology, Cerrahpasa Medical Faculty, Istanbul University, Istanbul, Turkey
- Medical Laboratory Techniques, Vocational School of Health Services, Istinye University, Istanbul, Turkey
| | - M Kasap
- Department of Medical Biology/Proteomics Laboratory, Kocaeli University Medical Faculty, Kocaeli, Turkey
| | - M Tuncdemir
- Department of Medical Biology, Cerrahpasa Medical Faculty, Istanbul University, Istanbul, Turkey
| | - E Polat
- Department of Medical Microbiology, Cerrahpasa Medical Faculty, Istanbul University, Istanbul, Turkey
| | - S Sirekbasan
- Department of Medical Microbiology, Cerrahpasa Medical Faculty, Istanbul University, Istanbul, Turkey
- Department of Biotherapy Research and Development Laboratory, Istanbul University, Istanbul, Turkey
| | - A Kanli
- Department of Medical Biology/Proteomics Laboratory, Kocaeli University Medical Faculty, Kocaeli, Turkey
| | - G Kanigur-Sultuybek
- Department of Medical Biology, Cerrahpasa Medical Faculty, Istanbul University, Istanbul, Turkey
| |
Collapse
|
18
|
The effect of Lucilia sericata- and Sarconesiopsis magellanica-derived larval therapy on Leishmania panamensis. Acta Trop 2016; 164:280-289. [PMID: 27686957 DOI: 10.1016/j.actatropica.2016.09.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Revised: 06/28/2016] [Accepted: 09/24/2016] [Indexed: 11/21/2022]
Abstract
This study's main objective was to evaluate the action of larval therapy derived from Lucilia sericata and Sarconesiopsis magellanica (blowflies) regarding Leishmania panamensis using an in vivo model. Eighteen golden hamsters (Mesocricetus auratus) were used; they were divided into 6 groups. The first three groups consisted of 4 animals each; these, in turn, were internally distributed into subgroups consisting of 2 hamsters to be used separately in treatments derived from each blowfly species. Group 1 was used in treating leishmanial lesions with larval therapy (LT), whilst the other two groups were used for evaluating the used of larval excretions and secretions (ES) after the ulcers had formed (group 2) and before they appeared (group 3). The three remaining groups (4, 5 and 6), consisting of two animals, were used as controls in the experiments. Biopsies were taken for histopathological and molecular analysis before, during and after the treatments; biopsies and smears were taken for assessing parasite presence and bacterial co-infection. LT and larval ES proved effective in treating the ulcers caused by the parasite. There were no statistically significant differences between the blowfly species regarding the ulcer cicatrisation parameters. There were granulomas in samples taken from lesions at the end of the treatments. The antibacterial action of larval treatment regarding co-infection in lesions caused by the parasite was also verified. These results potentially validate effective LT treatment against cutaneous leishmaniasis aimed at using it with humans in the future.
Collapse
|
19
|
Sanei-Dehkordi A, Khamesipour A, Akbarzadeh K, Akhavan AA, Mir Amin Mohammadi A, Mohammadi Y, Rassi Y, Oshaghi MA, Alebrahim Z, Eskandari SE, Rafinejad J. Anti Leishmania activity of Lucilia sericata and Calliphora vicina maggots in laboratory models. Exp Parasitol 2016; 170:59-65. [DOI: 10.1016/j.exppara.2016.08.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 07/07/2016] [Accepted: 08/22/2016] [Indexed: 10/21/2022]
|
20
|
Sherman RA. Mechanisms of maggot-induced wound healing: what do we know, and where do we go from here? EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2014; 2014:592419. [PMID: 24744812 PMCID: PMC3976885 DOI: 10.1155/2014/592419] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 01/15/2014] [Indexed: 12/18/2022]
Abstract
MEDICINAL MAGGOTS ARE BELIEVED TO HAVE THREE MAJOR MECHANISMS OF ACTION ON WOUNDS, BROUGHT ABOUT CHEMICALLY AND THROUGH PHYSICAL CONTACT: debridement (cleaning of debris), disinfection, and hastened wound healing. Until recently, most of the evidence for these claims was anecdotal; but the past 25 years have seen an increase in the use and study of maggot therapy. Controlled clinical studies are now available, along with laboratory investigations that examine the interaction of maggot and host on a cellular and molecular level. This review was undertaken to extract the salient data, make sense, where possible, of seemingly conflicting evidence, and reexamine our paradigm for maggot-induced wound healing. Clinical and laboratory data strongly support claims of effective and efficient debridement. Clinical evidence for hastened wound healing is meager, but laboratory studies and some small, replicated clinical studies strongly suggest that maggots do promote tissue growth and wound healing, though it is likely only during and shortly after the period when they are present on the wound. The best way to evaluate-and indeed realize-maggot-induced wound healing may be to use medicinal maggots as a "maintenance debridement" modality, applying them beyond the point of gross debridement.
Collapse
Affiliation(s)
- Ronald A. Sherman
- BioTherapeutics, Education & Research (BTER) Foundation, 36 Urey Court, Irvine, CA 92617, USA
| |
Collapse
|
21
|
Inceboz T, Lambrecht FY, Eren MŞ, Girginkardeşler N, Bekiş R, Yilmaz O, Er Ö, Özbilgin A. Evaluation of131I-Pentamidine for scintigraphy of experimentallyLeishmania tropica-infected hamsters. J Drug Target 2014; 22:416-20. [DOI: 10.3109/1061186x.2013.878943] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|