1
|
Díaz E, Febres A, Giammarresi M, Silva A, Vanegas O, Gomes C, Ponte-Sucre A. G Protein-Coupled Receptors as Potential Intercellular Communication Mediators in Trypanosomatidae. Front Cell Infect Microbiol 2022; 12:812848. [PMID: 35651757 PMCID: PMC9149261 DOI: 10.3389/fcimb.2022.812848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 04/13/2022] [Indexed: 11/13/2022] Open
Abstract
Detection and transduction of environmental signals, constitute a prerequisite for successful parasite invasion; i.e., Leishmania transmission, survival, pathogenesis and disease manifestation and dissemination, with diverse molecules functioning as inter-cellular signaling ligands. Receptors [i.e., G protein-coupled receptors (GPCRs)] and their associated transduction mechanisms, well conserved through evolution, specialize in this function. However, canonical GPCR-related signal transduction systems have not been described in Leishmania, although orthologs, with reduced domains and function, have been identified in Trypanosomatidae. These inter-cellular communication means seem to be essential for multicellular and unicellular organism’s survival. GPCRs are flexible in their molecular architecture and may interact with the so-called receptor activity-modifying proteins (RAMPs), which modulate their function, changing GPCRs pharmacology, acting as chaperones and regulating signaling and/or trafficking in a receptor-dependent manner. In the skin, vasoactive- and neuro- peptides released in response to the noxious stimuli represented by the insect bite may trigger parasite physiological responses, for example, chemotaxis. For instance, in Leishmania (V.) braziliensis, sensory [Substance P, SP, chemoattractant] and autonomic [Vasoactive Intestinal Peptide, VIP, and Neuropeptide Y, NPY, chemorepellent] neuropeptides at physiological levels stimulate in vitro effects on parasite taxis. VIP and NPY chemotactic effects are impaired by their corresponding receptor antagonists, suggesting that the stimulated responses might be mediated by putative GPCRs (with essential conserved receptor domains); the effect of SP is blocked by [(D-Pro 2, D-Trp7,9]-Substance P (10-6 M)] suggesting that it might be mediated by neurokinin-1 transmembrane receptors. Additionally, vasoactive molecules like Calcitonin Gene-Related Peptide [CGRP] and Adrenomedullin [AM], exert a chemorepellent effect and increase the expression of a 24 kDa band recognized in western blot analysis by (human-)-RAMP-2 antibodies. In-silico search oriented towards GPCRs-like receptors and signaling cascades detected a RAMP-2-aligned sequence corresponding to Leishmania folylpolyglutamate synthase and a RAMP-3 aligned protein, a hypothetical Leishmania protein with yet unknown function, suggesting that in Leishmania, CGRP and AM activities may be modulated by RAMP- (-2) and (-3) homologs. The possible presence of proteins and molecules potentially involved in GPCRs cascades, i.e., RAMPs, signpost conservation of ancient signaling systems associated with responses, fundamental for cell survival, (i.e., taxis and migration) and may constitute an open field for description of pharmacophores against Leishmania parasites.
Collapse
Affiliation(s)
- Emilia Díaz
- Laboratory of Molecular Physiology, Institute of Experimental Medicine, School of Medicine Luis Razetti, Faculty of Medicine, Universidad Central de Venezuela, Caracas, Venezuela
| | - Anthony Febres
- Section of Infectious Diseases, Baylor College of Medicine, TX, United States
| | - Michelle Giammarresi
- Laboratory of Molecular Physiology, Institute of Experimental Medicine, School of Medicine Luis Razetti, Faculty of Medicine, Universidad Central de Venezuela, Caracas, Venezuela
| | - Adrian Silva
- Laboratory of Molecular Physiology, Institute of Experimental Medicine, School of Medicine Luis Razetti, Faculty of Medicine, Universidad Central de Venezuela, Caracas, Venezuela
| | - Oriana Vanegas
- Pediatric Gastroenterology, University of Iowa, Iowa City, IA, United States
| | - Carlos Gomes
- Royal Berkshire NHS, Foundation Trust, Light House Lab, Bracknell, United Kingdom
| | - Alicia Ponte-Sucre
- Laboratory of Molecular Physiology, Institute of Experimental Medicine, School of Medicine Luis Razetti, Faculty of Medicine, Universidad Central de Venezuela, Caracas, Venezuela
- Medical Mission Institute, Würzburg, Germany
- *Correspondence: Alicia Ponte-Sucre,
| |
Collapse
|
2
|
López ED, Díaz AR, Calderón OV, Lajkó E, Ponte-Sucre A, Kőhidai L. Chemotaxis in Leishmania (Viannia) braziliensis: Evaluation by the two-chamber capillary assay. MethodsX 2021; 8:101223. [PMID: 34434746 PMCID: PMC8374177 DOI: 10.1016/j.mex.2021.101223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 01/06/2021] [Indexed: 11/30/2022] Open
Abstract
Chemotactic responses play a significant role during Leishmania (V.) braziliensis differentiation through its life cycle and during infection. The aim of this description has been to portray the modified “two-chamber capillary chemotaxis assay” as a technique useful for quantitative in vitro evaluation of Leishmania chemotaxis after reviewing the methods described until now to assess chemotaxis in vitro in Leishmania sp. This valued simple and reproducible method convenient for parasite migration determination, was tested by the use of controlled changes in monosaccharide (D-glucose and D-fructose) concentrations as referent ligands. The validation of the method demonstrates that this technique is useful to evaluate the relationship existing between parasite migration towards the monosaccharides and sugar concentration. This means that within specific ranges, parasites attracted by the monosaccharide migrate towards more concentrated solutions and accumulate (higher number of parasites) at that spot. Interestingly, both the time course of the experiment and the osmolality of the solution influence parasite migration capacity. Our validation suggests that this improved methodology quantitatively evaluates taxis of Leishmania towards/against different substances. On the basis of our herein presented data, we conclude that this technique is a novel, rapid and reliable screening method to evaluate chemotaxis in Leishmania.The two-chamber capillary chemotaxis assay was standardized for Leishmania. The technique is useful to quantitatively evaluate in vitro chemotaxis in Leishmania. Parasite migration was characterized by monosaccharide chemical gradients. This assay is a novel, rapid and reliable screening method to evaluate chemotaxis.
Contain between 1 and 3 bullet points highlighting the customization rather than the steps of the procedure.
Collapse
Affiliation(s)
- Emilia Díaz López
- Laboratory of Molecular Physiology, Institute of Experimental Medicine, School of Medicine Luis Razetti, Faculty of Medicine, Universidad Central de Venezuela, Caracas, Venezuela
| | - Arturo Ríos Díaz
- Laboratory of Molecular Physiology, Institute of Experimental Medicine, School of Medicine Luis Razetti, Faculty of Medicine, Universidad Central de Venezuela, Caracas, Venezuela
| | - Oriana Vanegas Calderón
- Laboratory of Molecular Physiology, Institute of Experimental Medicine, School of Medicine Luis Razetti, Faculty of Medicine, Universidad Central de Venezuela, Caracas, Venezuela
| | - Eszter Lajkó
- Departament of Genetics, Cell and Immunobiology, Semmelweis University, Budapest. Hungary
| | - Alicia Ponte-Sucre
- Laboratory of Molecular Physiology, Institute of Experimental Medicine, School of Medicine Luis Razetti, Faculty of Medicine, Universidad Central de Venezuela, Caracas, Venezuela
| | - László Kőhidai
- Departament of Genetics, Cell and Immunobiology, Semmelweis University, Budapest. Hungary
| |
Collapse
|
3
|
Findlay RC, Osman M, Spence KA, Kaye PM, Walrad PB, Wilson LG. High-speed, three-dimensional imaging reveals chemotactic behaviour specific to human-infective Leishmania parasites. eLife 2021; 10:65051. [PMID: 34180835 PMCID: PMC8238501 DOI: 10.7554/elife.65051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 06/08/2021] [Indexed: 12/04/2022] Open
Abstract
Cellular motility is an ancient eukaryotic trait, ubiquitous across phyla with roles in predator avoidance, resource access, and competition. Flagellar motility is seen in various parasitic protozoans, and morphological changes in flagella during the parasite life cycle have been observed. We studied the impact of these changes on motility across life cycle stages, and how such changes might serve to facilitate human infection. We used holographic microscopy to image swimming cells of different Leishmania mexicana life cycle stages in three dimensions. We find that the human-infective (metacyclic promastigote) forms display ‘run and tumble’ behaviour in the absence of stimulus, reminiscent of bacterial motion, and that they specifically modify swimming direction and speed to target host immune cells in response to a macrophage-derived stimulus. Non-infective (procyclic promastigote) cells swim more slowly, along meandering helical paths. These findings demonstrate adaptation of swimming phenotype and chemotaxis towards human cells.
Collapse
Affiliation(s)
- Rachel C Findlay
- York Biomedical Research Institute, Department of Biology, University of York, York, United Kingdom.,Department of Physics, University of York, York, United Kingdom
| | - Mohamed Osman
- York Biomedical Research Institute, Hull York Medical School, University of York, York, United Kingdom
| | - Kirstin A Spence
- York Biomedical Research Institute, Department of Biology, University of York, York, United Kingdom
| | - Paul M Kaye
- York Biomedical Research Institute, Hull York Medical School, University of York, York, United Kingdom
| | - Pegine B Walrad
- York Biomedical Research Institute, Department of Biology, University of York, York, United Kingdom
| | | |
Collapse
|
5
|
Abstract
Infectious diseases caused by germs, parasites, fungi, virus and bacteria are one of the leading causes of death worldwide. Polymeric therapeutics are nanomedicines that offer several advantages making them useful for the treatment of infectious diseases such as targeted drug release mechanism, ability to maintain the drug concentration within a therapeutic window for a desired duration, biocompatibility with low immunogenicity and reduced drug toxicity resulting in enhanced therapeutic efficacy of the incorporated drug. Although polymeric therapeutics have been evaluated for the treatment of infectious diseases in vitro and in vivo with improved therapeutic efficacy, most treatments for infectious disease have not been evaluated using polymeric therapeutics. This review will focus on the applications of polymeric therapeutics for the treatment of infectious diseases (preclinical studies and clinical trials), with particular focus on parasitic and viral infections.
Collapse
|
6
|
Effect of aliphatic, monocarboxylic, dicarboxylic, heterocyclic and sulphur-containing amino acids on Leishmania spp. chemotaxis. Parasitology 2015; 142:1621-30. [PMID: 26396059 DOI: 10.1017/s003118201500116x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In the sand-fly mid gut, Leishmania promastigotes are exposed to acute changes in nutrients, e.g. amino acids (AAs). These metabolites are the main energy sources for the parasite, crucial for its differentiation and motility. We analysed the migratory behaviour and morphological changes produced by aliphatic, monocarboxylic, dicarboxylic, heterocyclic and sulphur-containing AAs in Leishmania amazonensis and Leishmania braziliensis and demonstrated that L-methionine (10-12 m), L-tryptophan (10-11 m), L-glutamine and L-glutamic acid (10-6 m), induced positive chemotactic responses, while L-alanine (10-7 m), L-methionine (10-11 and 10-7 m), L-tryptophan (10-11 m), L-glutamine (10-12 m) and L-glutamic acid (10-9 m) induced negative chemotactic responses. L-proline and L-cysteine did not change the migratory potential of Leishmania. The flagellum length of L. braziliensis, but not of L. amazonensis, decreased when incubated in hyperosmotic conditions. However, chemo-repellent concentrations of L-alanine (Hypo-/hyper-osmotic conditions) and L-glutamic acid (hypo-osmotic conditions) decreased L. braziliensis flagellum length and L-methionine (10-11 m, hypo-/hyper-osmotic conditions) decreased L. amazonensis flagellum length. This chemotactic responsiveness suggests that Leishmania discriminate between slight concentration differences of small and structurally closely related molecules and indicates that besides their metabolic effects, AAs play key roles linked to sensory mechanisms that might determine the parasite's behaviour.
Collapse
|