1
|
Willment JA. Fc-conjugated C-type lectin receptors: Tools for understanding host-pathogen interactions. Mol Microbiol 2021; 117:632-660. [PMID: 34709692 DOI: 10.1111/mmi.14837] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 10/25/2021] [Indexed: 12/24/2022]
Abstract
The use of soluble fusion proteins of pattern recognition receptors (PRRs) used in the detection of exogenous and endogenous ligands has helped resolve the roles of PRRs in the innate immune response to pathogens, how they shape the adaptive immune response, and function in maintaining homeostasis. Using the immunoglobulin (Ig) crystallizable fragment (Fc) domain as a fusion partner, the PRR fusion proteins are soluble, stable, easily purified, have increased affinity due to the Fc homodimerization properties, and consequently have been used in a wide range of applications such as flow cytometry, screening of protein and glycan arrays, and immunofluorescent microscopy. This review will predominantly focus on the recognition of pathogens by the cell membrane-expressed glycan-binding proteins of the C-type lectin receptor (CLR) subgroup of PRRs. PRRs bind to conserved pathogen-associated molecular patterns (PAMPs), such as glycans, usually located within or on the outer surface of the pathogen. Significantly, many glycans structures are identical on both host and pathogen (e.g. the Lewis (Le) X glycan), allowing the use of Fc CLR fusion proteins with known endogenous and/or exogenous ligands as tools to identify pathogen structures that are able to interact with the immune system. Screens of highly purified pathogen-derived cell wall components have enabled identification of many unique PAMP structures recognized by CLRs. This review highlights studies using Fc CLR fusion proteins, with emphasis on the PAMPs found in fungi, bacteria, viruses, and parasites. The structure and unique features of the different CLR families is presented using examples from a broad range of microbes whenever possible.
Collapse
Affiliation(s)
- Janet A Willment
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, UK
| |
Collapse
|
2
|
de Oliveira Nóbrega CG, do Nascimento WRC, Santos PDA, de Lorena VMB, Medeiros D, Costa VMA, Barbosa CCGS, Solé D, Sarinho ESC, de Souza VMO. Schistosoma mansoni infection is associated with decreased risk of respiratory allergy symptoms and low production of CCL2. Trop Med Int Health 2021; 26:1098-1109. [PMID: 34107115 DOI: 10.1111/tmi.13639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
OBJECTIVES We measured the production of cytokines, chemokines and antibodies involved in allergic responses and sCD23 levels during Schistosoma mansoni infection. METHODS Individuals (n = 164) were selected using the ISAAC questionnaire and parasitological exams. The subjects were divided as follows: those infected individuals with allergy-related symptoms (A-I), those with allergy-related symptoms only (A-NI); those only infected (NA-I); and those non-infected individuals without allergy-related symptoms (NA-NI). We used supernatants from cell culture (mitogenic stimulation) to measure cytokine and chemokine levels using cytometric bead arrays. Serum levels of anti-Ascaris lumbricoides (Asc) and anti-Blomia tropicalis IgE were measured using ImmunoCAP, and sCD23 was measured using ELISA. RESULTS Schistosoma mansoni infection was associated with a lower risk of allergy-related symptoms. In A-I, there were higher levels of TNF-α, IL-10, IL-6, IFN-γ and CXCL8 than in NA-NI group, with TNF-α and IL-6 also at higher levels compared to A-NI group. Levels of IL-6, CXCL8, total and anti-Asc IgE, as well as the numbers of eosinophils, were higher in NA-I than in NA-NI, and the antibodies were also lower in A-NI than in NA-I group. In AI and NA-I, there was less production of CCL2 than in NA-NI. There were no differences in the levels of IL-2, IL-4, IL-17, CCL5, sCD23 and anti-Blomia IgE. CONCLUSIONS Patients with allergy-related symptoms and infected (simultaneously) had higher levels of IL-10; due to the infection, there was increased production of IL-6 and CXCL8 and less CCL2. These data may characterize deviation to Th1 or attenuation of the Th2 response in allergy sufferers in areas endemic for schistosomiasis.
Collapse
Affiliation(s)
| | | | | | | | - Décio Medeiros
- Centro de Pesquisa em Alergia e Imunologia Clínica, Hospital das Clínicas, Universidade Federal de Pernambuco, Recife, Brasil
| | - Vláudia Maria Assis Costa
- Setor de Imunologia, Laboratório de Imunopatologia Keizo Asami, Universidade Federal de Pernambuco, Recife, Brasil.,Departamento de Medicina Tropical, Universidade Federal de Pernambuco, Recife, Brasil
| | | | - Dirceu Solé
- Divisão de Alergia, Imunologia Clínica e Reumatologia, Departamento de Pediatria da Universidade Federal de São Paulo, São Paulo, Brasil
| | | | - Valdênia Maria Oliveira de Souza
- Setor de Imunologia, Laboratório de Imunopatologia Keizo Asami, Universidade Federal de Pernambuco, Recife, Brasil.,Departamento de Ciências Farmacêuticas, Universidade Federal de Pernambuco, Recife, Brasil
| |
Collapse
|
3
|
Cleenewerk L, Garssen J, Hogenkamp A. Clinical Use of Schistosoma mansoni Antigens as Novel Immunotherapies for Autoimmune Disorders. Front Immunol 2020; 11:1821. [PMID: 32903582 PMCID: PMC7438586 DOI: 10.3389/fimmu.2020.01821] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/07/2020] [Indexed: 12/11/2022] Open
Abstract
The hygiene hypothesis states that improved hygiene and the resulting disappearance of once endemic diseases is at the origin of the enormous increase in immune related disorders such as autoimmune diseases seen in the industrialized world. Helminths, such as Schistosoma mansoni, are thought to provide protection against the development of autoimmune diseases by regulating the host's immune response. This modulation primarily involves induction of regulatory immune responses, such as generation of tolerogenic dendritic cells and alternatively activated macrophages. This points toward the potential of employing helminths or their products/metabolites as therapeutics for autoimmune diseases that are characterized by an excessive inflammatory state, such as multiple sclerosis (MS), type I diabetes (T1D) and inflammatory bowel disease (IBD). In this review, we examine the known mechanisms of immune modulation by S. mansoni, explore preclinical and clinical studies that investigated the use of an array helminthic products in these diseases, and propose that helminthic therapy opens opportunities in the treatment of chronic inflammatory disorders.
Collapse
Affiliation(s)
- L Cleenewerk
- Division of Pharmacology, Department of Pharmaceutical Sciences, Faculty of Beta Sciences, Utrecht University, Utrecht, Netherlands
| | - Johan Garssen
- Division of Pharmacology, Department of Pharmaceutical Sciences, Faculty of Beta Sciences, Utrecht University, Utrecht, Netherlands.,Division of Immunology, Danone Nutricia Research B.V., Utrecht, Netherlands
| | - Astrid Hogenkamp
- Division of Pharmacology, Department of Pharmaceutical Sciences, Faculty of Beta Sciences, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
4
|
Zakeri A, Hansen EP, Andersen SD, Williams AR, Nejsum P. Immunomodulation by Helminths: Intracellular Pathways and Extracellular Vesicles. Front Immunol 2018; 9:2349. [PMID: 30369927 PMCID: PMC6194161 DOI: 10.3389/fimmu.2018.02349] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Accepted: 09/21/2018] [Indexed: 12/13/2022] Open
Abstract
Helminth parasites are masters at manipulating host immune responses, using an array of sophisticated mechanisms. One of the major mechanisms enabling helminths to establish chronic infections is the targeting of pattern recognition receptors (PRRs) including toll-like receptors, C-type lectin receptors, and the inflammasome. Given the critical role of these receptors and their intracellular pathways in regulating innate inflammatory responses, and also directing adaptive immunity toward Th1 and Th2 responses, recognition of the pathways triggered and/or modulated by helminths and their products will provide detailed insights about how helminths are able to establish an immunoregulatory environment. However, helminths also target PRRs-independent mechanisms (and most likely other yet unknown mechanisms and pathways) underpinning the battery of different molecules helminths produce. Herein, the current knowledge on intracellular pathways in antigen presenting cells activated by helminth-derived biomolecules is reviewed. Furthermore, we discuss the importance of helminth-derived vesicles as a less-appreciated components released during infection, their role in activating these host intracellular pathways, and their implication in the development of new therapeutic approaches for inflammatory diseases and the possibility of designing a new generation of vaccines.
Collapse
Affiliation(s)
- Amin Zakeri
- Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Eline P. Hansen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Sidsel D. Andersen
- Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Andrew R. Williams
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Peter Nejsum
- Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| |
Collapse
|
5
|
Zhang W, Molehin AJ, Rojo JU, Sudduth J, Ganapathy PK, Kim E, Siddiqui AJ, Freeborn J, Sennoune SR, May J, Lazarus S, Nguyen C, Redman WK, Ahmad G, Torben W, Karmakar S, Le L, Kottapalli KR, Kottapalli P, Wolf RF, Papin JF, Carey D, Gray SA, Bergthold JD, Damian RT, Mayer BT, Marks F, Reed SG, Carter D, Siddiqui AA. Sm-p80-based schistosomiasis vaccine: double-blind preclinical trial in baboons demonstrates comprehensive prophylactic and parasite transmission-blocking efficacy. Ann N Y Acad Sci 2018; 1425:38-51. [PMID: 30133707 PMCID: PMC6110104 DOI: 10.1111/nyas.13942] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 07/06/2018] [Accepted: 07/10/2018] [Indexed: 01/01/2023]
Abstract
Schistosomiasis is of public health importance to an estimated one billion people in 79 countries. A vaccine is urgently needed. Here, we report the results of four independent, double-blind studies of an Sm-p80-based vaccine in baboons. The vaccine exhibited potent prophylactic efficacy against transmission of Schistosoma mansoni infection and was associated with significantly less egg-induced pathology, compared with unvaccinated control animals. Specifically, the vaccine resulted in a 93.45% reduction of pathology-producing female worms and significantly resolved the major clinical manifestations of hepatic/intestinal schistosomiasis by reducing the tissue egg-load by 89.95%. A 35-fold decrease in fecal egg excretion in vaccinated animals, combined with an 81.51% reduction in hatching of eggs into the snail-infective stage (miracidia), demonstrates the parasite transmission-blocking potential of the vaccine. Substantially higher Sm-p80 expression in female worms and Sm-p80-specific antibodies in vaccinated baboons appear to play an important role in vaccine-mediated protection. Preliminary analyses of RNA sequencing revealed distinct molecular signatures of vaccine-induced effects in baboon immune effector cells. This study provides comprehensive evidence for the effectiveness of an Sm-p80-based vaccine for schistosomiasis.
Collapse
Affiliation(s)
- Weidong Zhang
- Center for Tropical Medicine and Infectious Diseases, Texas Tech University Health Sciences Center, Lubbock, TX
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX
| | - Adebayo J. Molehin
- Center for Tropical Medicine and Infectious Diseases, Texas Tech University Health Sciences Center, Lubbock, TX
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX
| | - Juan U. Rojo
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH
| | - Justin Sudduth
- Center for Tropical Medicine and Infectious Diseases, Texas Tech University Health Sciences Center, Lubbock, TX
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX
| | - Pramodh K. Ganapathy
- Center for Tropical Medicine and Infectious Diseases, Texas Tech University Health Sciences Center, Lubbock, TX
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX
| | - Eunjee Kim
- Center for Tropical Medicine and Infectious Diseases, Texas Tech University Health Sciences Center, Lubbock, TX
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX
| | - Arif J. Siddiqui
- Center for Tropical Medicine and Infectious Diseases, Texas Tech University Health Sciences Center, Lubbock, TX
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX
| | - Jasmin Freeborn
- Center for Tropical Medicine and Infectious Diseases, Texas Tech University Health Sciences Center, Lubbock, TX
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX
| | - Souad R. Sennoune
- Center for Tropical Medicine and Infectious Diseases, Texas Tech University Health Sciences Center, Lubbock, TX
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX
| | - Jordan May
- Center for Tropical Medicine and Infectious Diseases, Texas Tech University Health Sciences Center, Lubbock, TX
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX
| | - Samra Lazarus
- Center for Tropical Medicine and Infectious Diseases, Texas Tech University Health Sciences Center, Lubbock, TX
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX
| | - Catherine Nguyen
- Center for Tropical Medicine and Infectious Diseases, Texas Tech University Health Sciences Center, Lubbock, TX
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX
| | - Whitni K. Redman
- Center for Tropical Medicine and Infectious Diseases, Texas Tech University Health Sciences Center, Lubbock, TX
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX
| | - Gul Ahmad
- Department of Natural Sciences, Peru State College, Peru, NE
| | | | - Souvik Karmakar
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Loc Le
- Biomedical Research Institute, Rockville, MD
| | | | | | - Roman F. Wolf
- Oklahoma City VA Health Care System, Oklahoma City, OK
| | - James F. Papin
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - David Carey
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | | | | | - Raymond T. Damian
- Department of Cellular Biology, University of Georgia, Athens, Georgia
| | - Bryan T. Mayer
- Vaccine Immunology Statistical Center, Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Florian Marks
- International Vaccine Institute SNU Research Park, Seoul, South Korea
- The Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | | | - Darrick Carter
- PAI Life Sciences, Seattle, Washington, WA
- Infectious Disease Research Institute, Seattle, WA
| | - Afzal A. Siddiqui
- Center for Tropical Medicine and Infectious Diseases, Texas Tech University Health Sciences Center, Lubbock, TX
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX
| |
Collapse
|
6
|
Goulart LR, da S. Ribeiro V, Costa-Cruz JM. Anti-parasitic Antibodies from Phage Display. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1053:155-171. [DOI: 10.1007/978-3-319-72077-7_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
7
|
Selb R, Eckl-Dorna J, Neunkirchner A, Schmetterer K, Marth K, Gamper J, Jahn-Schmid B, Pickl WF, Valenta R, Niederberger V. CD23 surface density on B cells is associated with IgE levels and determines IgE-facilitated allergen uptake, as well as activation of allergen-specific T cells. J Allergy Clin Immunol 2016; 139:290-299.e4. [PMID: 27372566 DOI: 10.1016/j.jaci.2016.03.042] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 02/17/2016] [Accepted: 03/02/2016] [Indexed: 11/19/2022]
Abstract
BACKGROUND Increasing evidence suggests that the low-affinity receptor for IgE, CD23, plays an important role in controlling the activity of allergen-specific T cells through IgE-facilitated allergen presentation. OBJECTIVE We sought to determine the number of CD23 molecules on immune cells in allergic patients and to investigate whether the number of CD23 molecules on antigen-presenting cells is associated with IgE levels and influences allergen uptake and allergen-specific T-cell activation. METHODS Numbers of CD23 molecules on immune cells of allergic patients were quantified by using flow cytometry with QuantiBRITE beads and compared with total and allergen-specific IgE levels, as well as with allergen-induced immediate skin reactivity. Allergen uptake and allergen-specific T-cell activation in relation to CD23 surface density were determined by using flow cytometry in combination with confocal microscopy and T cells transfected with the T-cell receptor specific for the birch pollen allergen Bet v 1, respectively. Defined IgE-allergen immune complexes were formed with human monoclonal allergen-specific IgE and Bet v 1. RESULTS In allergic patients the vast majority of CD23 molecules were expressed on naive IgD+ B cells. The density of CD23 molecules on B cells but not the number of CD23+ cells correlated with total IgE levels (RS = 0.53, P = .03) and allergen-induced skin reactions (RS = 0.63, P = .008). Uptake of allergen-IgE complexes into B cells and activation of allergen-specific T cells depended on IgE binding to CD23 and were associated with CD23 surface density. Addition of monoclonal IgE to cultured PBMCs significantly (P = .04) increased CD23 expression on B cells. CONCLUSION CD23 surface density on B cells of allergic patients is correlated with allergen-specific IgE levels and determines allergen uptake and subsequent activation of T cells.
Collapse
Affiliation(s)
- Regina Selb
- Department of Otorhinolaryngology, Medical University of Vienna, Vienna, Austria
| | - Julia Eckl-Dorna
- Department of Otorhinolaryngology, Medical University of Vienna, Vienna, Austria
| | - Alina Neunkirchner
- Christian Doppler Laboratory for Immunomodulation, Medical University of Vienna, Vienna, Austria; Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Klaus Schmetterer
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Katharina Marth
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Jutta Gamper
- Section for Medical Statistics, Center for Medical Statistics, Informatics, and Intelligent Systems, Medical University of Vienna, Vienna, Austria
| | - Beatrice Jahn-Schmid
- Division of Experimental Allergology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Winfried F Pickl
- Christian Doppler Laboratory for Immunomodulation, Medical University of Vienna, Vienna, Austria; Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Rudolf Valenta
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Verena Niederberger
- Department of Otorhinolaryngology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
8
|
Molehin AJ, Rojo JU, Siddiqui SZ, Gray SA, Carter D, Siddiqui AA. Development of a schistosomiasis vaccine. Expert Rev Vaccines 2016; 15:619-27. [PMID: 26651503 PMCID: PMC5070536 DOI: 10.1586/14760584.2016.1131127] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Schistosomiasis is a neglected tropical disease (NTD) of public health importance. Despite decades of implementation of mass praziquantel therapy programs and other control measures, schistosomiasis has not been contained and continues to spread to new geographic areas. A schistosomiasis vaccine could play an important role as part of a multifaceted control approach. With regards to vaccine development, many biological bottlenecks still exist: the lack of reliable surrogates of protection in humans; immune interactions in co-infections with other diseases in endemic areas; the potential risk of IgE responses to antigens in endemic populations; and paucity of appropriate vaccine efficacy studies in nonhuman primate models. Research is also needed on the role of modern adjuvants targeting specific parts of the innate immune system to tailor a potent and protective immune response for lead schistosome vaccine candidates with the long-term aim to achieve curative worm reduction. This review summarizes the current status of schistosomiasis vaccine development.
Collapse
Affiliation(s)
- Adebayo J. Molehin
- Department of Internal Medicine, Texas Tech University School of Medicine, Lubbock, Texas, USA
- Center of Tropical Medicine and Infectious Diseases, Texas Tech University School of Medicine, Lubbock, Texas, USA
| | - Juan U. Rojo
- Department of Internal Medicine, Texas Tech University School of Medicine, Lubbock, Texas, USA
- Center of Tropical Medicine and Infectious Diseases, Texas Tech University School of Medicine, Lubbock, Texas, USA
| | - Sabrina Z. Siddiqui
- Department of Internal Medicine, Texas Tech University School of Medicine, Lubbock, Texas, USA
- Center of Tropical Medicine and Infectious Diseases, Texas Tech University School of Medicine, Lubbock, Texas, USA
| | | | - Darrick Carter
- PAI Life Sciences, Washington, USA
- Infectious Disease Research Institute, Seattle, Washington, USA
| | - Afzal A. Siddiqui
- Department of Internal Medicine, Texas Tech University School of Medicine, Lubbock, Texas, USA
- Center of Tropical Medicine and Infectious Diseases, Texas Tech University School of Medicine, Lubbock, Texas, USA
| |
Collapse
|
9
|
Mo AX, Colley DG. Workshop report: Schistosomiasis vaccine clinical development and product characteristics. Vaccine 2015; 34:995-1001. [PMID: 26721329 DOI: 10.1016/j.vaccine.2015.12.032] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 12/10/2015] [Accepted: 12/11/2015] [Indexed: 11/30/2022]
Abstract
A schistosomiasis vaccine meeting was organized to evaluate the utility of a vaccine in public health programs, to discuss clinical development paths, and to define basic product characteristics for desirable vaccines to be used in the context of schistosomiasis control and elimination programs. It was concluded that clinical evaluation of a schistosomiasis vaccine is feasible with appropriate trial design and tools. Some basic Preferred Product Characteristics (PPC) for a human schistosomiasis vaccine and for a veterinary vaccine for bovine use were also proposed.
Collapse
Affiliation(s)
- Annie X Mo
- Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institute of Health, Bethesda, MD, USA.
| | - Daniel G Colley
- Center for Tropical and Emerging Global Diseases and the Department of Microbiology, University of Georgia, Athens, GA, USA
| |
Collapse
|