1
|
Yadav A, Verma K, Singh K, Tyagi S, Kori L, Bharti PK. Analysis of diagnostic biomarkers for malaria: Prospects on rapid diagnostic test (RDT) development. Microb Pathog 2024; 196:106978. [PMID: 39321969 DOI: 10.1016/j.micpath.2024.106978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 06/20/2024] [Accepted: 09/22/2024] [Indexed: 09/27/2024]
Abstract
Accurate malaria diagnosis remains a formidable challenge in remote regions of malaria-endemic areas globally. Existing diagnostic methods predominantly rely on microscopy and rapid diagnostic tests (RDTs). While RDTs offer advantages such as rapid results and reduced dependence on highly skilled technicians compared to microscopy, persistent challenges emphasize the critical need to identify novel diagnostic biomarkers to further enhance RDT based malaria diagnosis. This comprehensive review presents a range of promising diagnostic targets. These targets could be useful in developing more robust, accurate, and effective diagnostic tools. Such tools are crucial for the detection of the Plasmodium falciparum (P.falcipaum) malaria parasite. The potential biomarkers discussed here significantly address the challenges posed by HRP2 gene deletion in P.falciparum. Researchers, RDT manufacturers, industrial and other stakeholders involved in malaria diagnosis can harness the crucial information described in this article, to drive the development of advanced RDTs as viable alternatives. By diversifying the available tools for diagnosis, we can attempt to enhance our ability to knock out malaria effectively and contribute to better health outcomes for people residing in malaria-endemic regions. This review serves as a valuable resource for advancing research and development in the field of malaria diagnostics, ultimately aiding to the global fight against this devastating ancient disease.
Collapse
Affiliation(s)
- Ankit Yadav
- Department of Molecular Epidemiology, LOT Testing Laboratory, ICMR-NIMR, Dwarka, Delhi, 110077, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus Sector-19, Ghaziabad, U.P, India
| | - Kanika Verma
- Department of Molecular Epidemiology, LOT Testing Laboratory, ICMR-NIMR, Dwarka, Delhi, 110077, India
| | - Kuldeep Singh
- Department of Molecular Epidemiology, LOT Testing Laboratory, ICMR-NIMR, Dwarka, Delhi, 110077, India
| | - Suchi Tyagi
- Department of Molecular Epidemiology, LOT Testing Laboratory, ICMR-NIMR, Dwarka, Delhi, 110077, India
| | - Lokesh Kori
- Department of Molecular Epidemiology, LOT Testing Laboratory, ICMR-NIMR, Dwarka, Delhi, 110077, India
| | - Praveen Kumar Bharti
- Department of Molecular Epidemiology, LOT Testing Laboratory, ICMR-NIMR, Dwarka, Delhi, 110077, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus Sector-19, Ghaziabad, U.P, India.
| |
Collapse
|
2
|
Yerlikaya S, Owusu EDA, Frimpong A, DeLisle RK, Ding XC. A Dual, Systematic Approach to Malaria Diagnostic Biomarker Discovery. Clin Infect Dis 2021; 74:40-51. [PMID: 34718455 PMCID: PMC8752250 DOI: 10.1093/cid/ciab251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Indexed: 11/15/2022] Open
Abstract
Background The emergence and spread of Plasmodium falciparum parasites that lack HRP2/3 proteins and the resulting decreased utility of HRP2-based malaria rapid diagnostic tests (RDTs) prompted the World Health Organization and other global health stakeholders to prioritize the discovery of novel diagnostic biomarkers for malaria. Methods To address this pressing need, we adopted a dual, systematic approach by conducting a systematic review of the literature for publications on diagnostic biomarkers for uncomplicated malaria and a systematic in silico analysis of P. falciparum proteomics data for Plasmodium proteins with favorable diagnostic features. Results Our complementary analyses led us to 2 novel malaria diagnostic biomarkers compatible for use in an RDT format: glyceraldehyde 3-phosphate dehydrogenase and dihydrofolate reductase-thymidylate synthase. Conclusions Overall, our results pave the way for the development of next-generation malaria RDTs based on new antigens by identifying 2 lead candidates with favorable diagnostic features and partially de-risked product development prospects.
Collapse
Affiliation(s)
- Seda Yerlikaya
- Foundation for Innovative New Diagnostics, Geneva, Switzerland
| | - Ewurama D A Owusu
- Foundation for Innovative New Diagnostics, Geneva, Switzerland.,Department of Medical Laboratory Sciences, School of Biomedical and Allied Health Sciences, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Augustina Frimpong
- West Africa Centre for Cell Biology of Infectious Pathogens (WACCBIP), Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Accra, Ghana.,Immunology Department, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana.,African Institute for Mathematical Sciences, Accra, Ghana
| | | | - Xavier C Ding
- Foundation for Innovative New Diagnostics, Geneva, Switzerland
| |
Collapse
|
3
|
Analyses of the expression, immunohistochemical properties and serodiagnostic potential of Schistosoma japonicum peroxiredoxin-4. Parasit Vectors 2020; 13:436. [PMID: 32867818 PMCID: PMC7460784 DOI: 10.1186/s13071-020-04313-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 08/24/2020] [Indexed: 12/31/2022] Open
Abstract
Background Schistosoma japonicum, which inhabits the mesenteric vein of the mammalian hosts for about 20 to 30 years, is subjected to the oxidative stresses from the host defense mechanism during their intra-mammalian stages. To counteract this host immune attack, the parasite utilizes their antioxidant system for survival inside the host. Peroxiredoxins (Prxs), thiol-specific antioxidant proteins, play an essential role for protecting the parasite against oxidative stress by reducing hydrogen peroxide to water. Only three types of 2-Cys Prxs have been previously characterized in S. japonicum whereas a fourth Prx has been identified for Schistosoma mansoni as Prx-4. A sequence coding homologous to this gene in the S. japonicum database was identified, characterized and expressed as recombinant SjPrx-4 protein (rSjPrx-4). Furthermore, rSjPrx-4 was evaluated in this study for its diagnostic potentials in detecting S. japonicum infection in humans. Results The gene found in the parasite genome contained 2 active-site cysteines with conserved sequences in the predicted amino acid (AA) sequence and showed 75% identity with that of the previously characterized Prx (TPx-1) of S. japonicum. The gene was expressed in different stages of schistosome life-cycle with highest transcription level in the adult male. The gene was cloned into a plasmid vector and then transfected into Escherichia coli for expression of rSjPrx-4. Anti-rSjPrx-4 mouse sera recognized native SjPrx-4 in egg and adult worm lysate by western blotting. The result of a mixed function oxidation assay in which rSjPrx-4 prevented the nicking of DNA from hydroxyl radicals confirmed its antioxidant activity. Subsequently, immunolocalization analysis showed the localization of SjPrx-4 inside the egg, on the tegument and in the parenchyma of the adult worm. Enzyme-linked immunosorbent assay results showed that rSjPrx-4 has 83.3% sensitivity and 87.8% specificity. Its diagnostic potential was further evaluated in combination with recombinant SjTPx-1 protein, yielding an improved sensitivity and specificity of 90% and 92.7%, respectively. Conclusions These results suggest that SjPrx-4 plays a role as an antioxidant dealing with oxidative stresses of S. japonicum, and its diagnostic potential improved by coupling it with SjTPx-1 is a proof for developing a serological test with better diagnostic performance for human schistosomiasis.![]()
Collapse
|
4
|
Zhang H, Wang Z, Huang J, Cao J, Zhou Y, Zhou J. A Novel Thioredoxin-Dependent Peroxiredoxin (TPx-Q) Plays an Important Role in Defense Against Oxidative Stress and Is a Possible Drug Target in Babesia microti. Front Vet Sci 2020; 7:76. [PMID: 32133382 PMCID: PMC7040034 DOI: 10.3389/fvets.2020.00076] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 01/29/2020] [Indexed: 01/03/2023] Open
Abstract
Thioredoxin peroxidases (TPxs) are ubiquitous cysteine-based peroxidases that reduce peroxides as part of antioxidant defenses and redox signaling and are essential for Babesia microti protection against adverse environment agents like reactive oxygen species (ROS) and reactive nitrogen species (RNS). To better systematically understand TPxs, we identified a novel 2-Cys peroxiredoxin-Q (BmTPx-Q) of B. microti. The full-length BmTPx-Q gene is 653 bp that consists of an intact open reading frame of 594 bp that encodes a 197-amino acid protein. The predicted protein has a molecular weight of 22.3 kDa and an isoelectric point of 9.18. Moreover, BmTPx-Q showed low identity at the amino acid level to other peroxiredoxins (Prxs) among the currently known subfamilies. The recombinant BmTPx-Q protein (rBmTPx-Q) was expressed in Escherichia coli and purified with beads. The native protein BmTPx-Q was detected using mouse anti-BmTPx-Q polyclonal serum with western blotting and indirect immunofluorescence assay (IFA). In addition, enzyme activity was observed using nicotinamide adenine dinucleotide phosphate (NADPH) as substrate and triggered the NADPH-dependent reduction of the Trx/TrxR system. It was also discovered that BmTPx-Q mainly exists as a monomer whether under its native or functional states. In addition, when incubated with Chloroquine diphosphate salt for 24 h in vitro, the expression of BmTPx-Q showed a marked downward trend with the increase of drug concentration. These results suggest that B. microti uses BmTPx-Q to reduce and detoxify hydrogen peroxides to survive and proliferate inside the host. Furthermore, BmTPx-Q showed the lowest identity with host enzymes and could be a potential drug target for the development of novel strategies to control B. microti infection.
Collapse
Affiliation(s)
- Houshuang Zhang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Zhonghua Wang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Jingwei Huang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Jie Cao
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Yongzhi Zhou
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Jinlin Zhou
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| |
Collapse
|
5
|
Production and characterization of monoclonal antibodies against Toxoplasma gondii ROP18 with strain-specific reactivity. Parasitology 2020; 147:940-948. [PMID: 32046796 DOI: 10.1017/s0031182020000177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The rhoptry kinase 18 of Toxoplasma gondii (TgROP18) has been identified as a key virulence factor that allows the parasite to escape from host immune defences and promotes its proliferation in host cells. Although much research is focused on the interaction between host cells and TgROP18, the development of monoclonal antibodies (mAbs) against TgROP18 has not been reported till date. To produce mAbs targeting TgROP18, two hybridomas secreting mAbs against TgROP18, designated as A1 and T2, were generated using cell fusion technology. The subtypes of the A1 and T2 mAbs were identified as IgG3 λ and IgM κ, and peptide scanning revealed that the core sequences of the antigenic epitopes were 180LRAQRRRSELVFE192 and 351NYFLLMMRAEADM363, respectively. The T2 mAb specifically reacted with both T. gondii type I and Chinese I, but not with T. gondii type II, Plasmodium falciparum or Schistosoma japonicum. Finally, the sequences of heavy chain and light chain complementarity-determining regions of T2 were amplified, cloned and characterized, making the modification of the mAb feasible in the future. The development of mAbs against TgROP18 would aid the investigation of the molecular mechanisms underlying the modulation of host cellular functions by TgROP18, and in the development of strategies to diagnose and treat Toxoplasmosis.
Collapse
|
6
|
Huang J, Xiong K, Zhang H, Zhao Y, Cao J, Zhou Y, Gong H, Zhou J. Babesia microti thioredoxin 3 is an effective antioxidant and involved in the response to antiprotozoal drugs. Ticks Tick Borne Dis 2018; 9:645-653. [PMID: 29472160 DOI: 10.1016/j.ttbdis.2018.01.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 12/22/2017] [Accepted: 01/31/2018] [Indexed: 12/13/2022]
Abstract
The intra-erythrocytic apicomplexan Babesia microti is the predominant pathogen that causes human babesiosis, an infectious disease that occurs worldwide. B. microti relies on the antioxidant including thioredoxin system to maintain the redox balance during the erythrocytic stage. In the present study, the full-length B. microti thioredoxin 3 (BmTrx3) gene was cloned, expressed in vitro, and its response to antiprotozoal drugs were tested. The full-length BmTrx3 was 663 bp and contained an intact open reading frame of 567 bp. The encoded polypeptide was 188 amino acids and the predicted molecular weight of the protein was 21.7 kDa. A conserved thioredoxin-like family domain was found in BmTrx3. The expression of BmTrx3 was upregulated on both the third and eighth day post-infection in mice, whereas expression was downregulated during the beginning and later stages. Western blot analysis showed that mouse anti-BmTrx3 serum could recognize the native BmTrx3 in parasite lysates and that the mouse anti-B. microti serum could recognize the recombinant BmTrx3 protein. Immunofluorescence microscopy showed that BmTrx3 localized in the cell cytoplasm of B. microti merozoites in B. microti-infected red blood cells. The results of bovine insulin reduction assay indicated the enzyme activity of the purified recombinant BmTrx3 protein. The anti-malaria drug chloroquine significantly inhibited the expression of BmTrx3, however, another anti-malaria drug qunine, and a known anti-babesiosis drug clindamycin, induced significantly higher upregulation of BmTrx3 mRNA. The results of the present study demonstrate that BmTrx3 is a functional enzyme with antioxidant activity and may be involved in the response of B. microti to anti-parasite drugs.
Collapse
Affiliation(s)
- Jingwei Huang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China.
| | - Kang Xiong
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China.
| | - Houshuang Zhang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China.
| | - Yanzhen Zhao
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China.
| | - Jie Cao
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China.
| | - Yongzhi Zhou
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China.
| | - Haiyan Gong
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China.
| | - Jinlin Zhou
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China.
| |
Collapse
|
7
|
Huang J, Xiong K, Zhang H, Zhao Y, Cao J, Gong H, Zhou Y, Zhou J. Molecular characterization of Babesia microti thioredoxin (BmTrx2) and its expression patterns induced by antiprotozoal drugs. Parasit Vectors 2018; 11:38. [PMID: 29335000 PMCID: PMC5769273 DOI: 10.1186/s13071-018-2619-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 01/02/2018] [Indexed: 11/10/2022] Open
Abstract
Background Human babesiosis is an infectious disease that is epidemic in various regions all over the world. The predominant causative pathogen of this disease is the intra-erythrocytic parasite Babesia microti. The thioredoxin system is one of the major weapons that is used in the resistance to the reactive oxygen species (ROS) and reactive nitrogen species (RNS) produced by host immune system. In other intra-erythrocytic apicomplexans like the malaria parasite Plasmodium falciparum, anti-oxidative proteins are promising targets for the development of anti-parasitic drugs. However, to date, the sequences and biological properties of thioredoxins and thioredoxin-like molecules of B. microti remain unknown. Understanding the molecular characterization and function of B. microti thioredoxins may help to develop anti-Babesia drugs and controlling babesiosis. Methods The full-length B. microti thioredoxin 2 (BmTrx2) gene was obtained using a rapid amplification of cDNA ends (RACE) method, and the deduced BmTrx2 amino acid sequence was analyzed using regular bioinformatics tools. Recombinant BmTrx2 protein was expressed in vitro and purified using His-tag protein affinity chromatography resins. Reverse transcription PCR, quantitative real-time PCR and Western blot were employed to detect the expression and native proteins of BmTrx2. Indirect immunofluorescence assay was used to localize BmTrx2 in B. microti. Bovine insulin reduction assays were used to determine the enzyme activity of the purified recombinant BmTrx2 protein. Results The full-length BmTrx2 was 564 bp with a 408 bp open reading frame encoding a protein of 135 amino acids. The predicted molecular weight of the protein was 15.5 kDa. A conserved thioredoxin-like family domain was found in BmTrx2. The expression of BmTrx2 was upregulated on both the third and eighth day post-infection in mice, whereas expression was downregulated during the beginning and later stages. The results of Western blot analysis showed the native BmTrx2 in parasite lysates could be detected by mouse anti-BmTrx2 serum and that the recombinant BmTrx2 protein could be recognized by serum of B. microti-infected mice. Immunofluorescence microscopy showed that BmTrx2 localized in the cell cytoplasm of B. microti merozoites in B. microti-infected red blood cells. The results of bovine insulin reduction assay indicated the purified recombinant BmTrx2 protein possesses antioxidant enzyme activity. Dihydroartemisinin and quinine, known anti-malaria drugs, and clindamycin, a known anti-babesiosis drug, induced significantly higher upregulation of BmTrx2 mRNA. Conclusions Our results indicate that BmTrx2 is a functional enzyme with antioxidant activity and may be involved in the response of B. microti to anti-parasite drugs. Electronic supplementary material The online version of this article (10.1186/s13071-018-2619-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jingwei Huang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Kang Xiong
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Houshuang Zhang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Yanzhen Zhao
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Jie Cao
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Haiyan Gong
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Yongzhi Zhou
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Jinlin Zhou
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China.
| |
Collapse
|
8
|
Macalanda AMC, Angeles JMM, Moendeg KJ, Dang AT, Higuchi L, Inoue N, Xuan X, Kirinoki M, Chigusa Y, Leonardo LR, Villacorte EA, Rivera PT, Goto Y, Kawazu SI. Evaluation of Schistosoma japonicum thioredoxin peroxidase-1 as a potential circulating antigen target for the diagnosis of Asian schistosomiasis. J Vet Med Sci 2017; 80:156-163. [PMID: 29187698 PMCID: PMC5797876 DOI: 10.1292/jvms.17-0579] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Asian schistosomiasis caused by Schistosoma japonicum is a serious zoonotic disease endemic in China, the Philippines and parts of Indonesia. Mass drug administration in endemic areas resulted to
decline in disease severity and intensity. The low intensity of infection limits the use of current parasitological methods for schistosomiasis diagnosis. Detection of parasite circulating antigens might provide more
informative result as it may indicate the true status of infection. In this study, S. japonicum thioredoxin peroxidase-1 (SjTPx-1) a 22 kDa secreted antioxidant enzyme expressed throughout the life
stages of the parasite was evaluated for its potential use as a biomarker for schistosomiasis japonica infection. Rabbit polyclonal antibody and mouse monoclonal antibodies (mAbs) were raised against the recombinant
SjTPx-1 (rSjTPx-1). The antibodies produced against the recombinant antigen was confirmed to detect the native SjTPx-1 in crude adult worm lysate. Likewise, the specific binding of mAbs to parasite TPx-1 and not to
mammalian peroxiredoxin-1 orthologues was also confirmed. The double antibody sandwich ELISA developed in this study was able to detect at least 1 ng/ml of rSjTPx-1. In addition, this
method was able to detect the antigen from all serum samples of experimentally infected rabbit and mice. The diagnostic potential of SjTPx-1 in human clinical samples was also evaluated, in which 4 out of 10
stool-confirmed serum samples had detectable levels of the antigen. The results suggest that SjTPx-1 can be a potential biomarker for Asian zoonotic schistosomiasis.
Collapse
Affiliation(s)
- Adrian Miki C Macalanda
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| | - Jose Ma M Angeles
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| | - Kharleezelle J Moendeg
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| | - Anh Tm Dang
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| | - Luna Higuchi
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| | - Noboru Inoue
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| | - Xuenan Xuan
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| | - Masashi Kirinoki
- Department of Tropical Medicine and Parasitology, Dokkyo Medical University, Mibu, Tochigi 321-0293, Japan
| | - Yuichi Chigusa
- Department of Tropical Medicine and Parasitology, Dokkyo Medical University, Mibu, Tochigi 321-0293, Japan
| | - Lydia R Leonardo
- Department of Parasitology, College of Public Health, University of the Philippines Manila, Philippines
| | - Elena A Villacorte
- Department of Parasitology, College of Public Health, University of the Philippines Manila, Philippines
| | - Pilarita T Rivera
- Department of Parasitology, College of Public Health, University of the Philippines Manila, Philippines
| | - Yasuyuki Goto
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Shin-Ichiro Kawazu
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| |
Collapse
|
9
|
Masatani T, Asada M, Hakimi H, Hayashi K, Yamagishi J, Kawazu SI, Xuan X. Identification and functional analysis of a novel mitochondria-localized 2-Cys peroxiredoxin, BbTPx-2, from Babesia bovis. Parasitol Res 2016; 115:3139-45. [PMID: 27095567 DOI: 10.1007/s00436-016-5071-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 04/14/2016] [Indexed: 11/25/2022]
Abstract
Cysteine-based peroxidases, known as peroxiredoxins (Prx) or thioredoxin peroxidases (TPx), are important antioxidant enzymes that prevent oxidative damage caused by reactive oxygen species (ROS). In this study, we identified a novel mitochondrial 2-Cys Prx, BbTPx-2, from a bovine Babesia parasite, B. bovis. BbTPx-2 complementary DNA (cDNA) encodes a polypeptide of 254 amino acid residues. This protein has a mitochondrial targeting peptide at the N-terminus and two conserved cysteine residues of the typical 2-Cys Prx. By using a thiol mixed-function oxidation assay, the antioxidant activity of recombinant BbTPx-2 was revealed, and its antioxidant activity was comparable to that of a cytosolic 2-Cys Prx from B. bovis, BbTPx-1. Notably, we confirmed that BbTPx-2 was expressed in the mitochondrion of B. bovis merozoites. Taken together, the results suggest that the mitochondrial BbTPx-2 is an antioxidative enzyme for scavenging ROS in B. bovis.
Collapse
Affiliation(s)
- Tatsunori Masatani
- Transboundary Animal Diseases Research Center, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima, 890-0065, Japan.
| | - Masahito Asada
- Department of Protozoology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Hassan Hakimi
- Department of Protozoology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Kei Hayashi
- Laboratory of Veterinary Parasitology, Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, 020-8550, Japan.,Department of Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Junya Yamagishi
- Research Center for Zoonosis Control, Hokkaido University, North 20, West 10 Kita-ku, Sapporo, 001-0020, Japan
| | - Shin-Ichiro Kawazu
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido, 080-8555, Japan
| | - Xuenan Xuan
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido, 080-8555, Japan.
| |
Collapse
|