1
|
Lye LF, Dobson DE, Beverley SM, Tung MC. RNA interference in protozoan parasites and its application. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2025; 58:281-287. [PMID: 39884870 DOI: 10.1016/j.jmii.2025.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/24/2024] [Accepted: 01/19/2025] [Indexed: 02/01/2025]
Abstract
RNA interference (RNAi) is a biological process in which RNA molecules are involved in sequence-specific suppression of gene expression, via small RNA triggers derived from double-stranded RNA that can target specific genes; it is a natural process that plays a role in both the regulation of protein synthesis and in immunity. Discovery of RNAi by Fire and Mello in 1998 had a profound impact on unraveling novel aspects of eukaryotic biology. RNA interference (RNAi) has proven to be an immensely useful tool for studying gene function and validation of potential drug targets in almost all organisms. A great advance in parasitic protozoa was achieved by the experimental demonstration of RNAi in Trypanosoma brucei, and in other protists such as Leishmania braziliensis, Entamoeba histolytica and Giardia lamblia/intestinalis. These organisms exhibit numerous differences beyond the core 'dicer' and 'slicer' activities, thereby expanding knowledge of the evolutionary diversification of this pathway in eukaryotes. When present, RNAi has led to new technologies for engineering powerful and facile knockdowns in gene expression, revolutionizing biomedical research and opening clinical potentialities. In this review, we discuss the distribution of RNAi pathways, their biological roles, and experimental applications in protozoan parasites.
Collapse
Affiliation(s)
- Lon-Fye Lye
- Department of Medical Research, Tungs' Taichung Metro Harbor Hospital, Taichung, Taiwan.
| | - Deborah E Dobson
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| | - Stephen M Beverley
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| | - Min-Che Tung
- Department of Urology, Tungs' Taichung Metro Harbor Hospital, Taichung, Taiwan.
| |
Collapse
|
2
|
Graves KJ, Reily C, Tiwari HK, Srinivasasainagendra V, Secor WE, Novak J, Muzny CA. Identification of Trichomonas vaginalis 5-Nitroimidazole Resistance Targets. Pathogens 2023; 12:pathogens12050692. [PMID: 37242362 DOI: 10.3390/pathogens12050692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/03/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
Trichomonas vaginalis is the most common non-viral sexually transmitted infection. 5-nitroimidazoles are the only FDA-approved medications for T. vaginalis treatment. However, 5-nitroimidazole resistance has been increasingly recognized and may occur in up to 10% of infections. We aimed to delineate mechanisms of T. vaginalis resistance using transcriptome profiling of metronidazole (MTZ)-resistant and sensitive T. vaginalis clinical isolates. In vitro, 5-nitroimidazole susceptibility testing was performed to determine minimum lethal concentrations (MLCs) for T. vaginalis isolates obtained from women who had failed treatment (n = 4) or were successfully cured (n = 4). RNA sequencing, bioinformatics, and biostatistical analyses were performed to identify differentially expressed genes (DEGs) in the MTZ-resistant vs. sensitive T. vaginalis isolates. RNA sequencing identified 304 DEGs, 134 upregulated genes and 170 downregulated genes in the resistant isolates. Future studies with more T. vaginalis isolates with a broad range of MLCs are needed to determine which genes may represent the best alternative targets in drug-resistant strains.
Collapse
Affiliation(s)
- Keonte J Graves
- Division of Infectious Diseases, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Colin Reily
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Hemant K Tiwari
- Department of Biostatistics, School of Public Health, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Vinodh Srinivasasainagendra
- Department of Biostatistics, School of Public Health, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - William Evan Secor
- Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Jan Novak
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Christina A Muzny
- Division of Infectious Diseases, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| |
Collapse
|
3
|
Abstract
Trichomonas vaginalis is an anaerobic/microaerophilic protist parasite which causes trichomoniasis, one of the most prevalent sexually transmitted diseases worldwide. T. vaginalis not only is important as a human pathogen but also is of great biological interest because of its peculiar cell biology and metabolism, in earlier times fostering the erroneous notion that this microorganism is at the root of eukaryotic evolution. This review summarizes the major advances in the last five years in the T. vaginalis field with regard to genetics, molecular biology, ecology, and pathogenicity of the parasite.
Collapse
Affiliation(s)
- David Leitsch
- Department of Specific Prophylaxis and Tropical Medicine, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
4
|
Azimi-Resketi M, Eskandarian A, Ganjalikhani-Hakemi M, Zohrabi T. Knocking down of the DHFR-TS gene in Toxoplasma gondii using siRNA and assessing the subsequences on toxoplasmosis in mice. Acta Trop 2020; 207:105488. [PMID: 32277926 DOI: 10.1016/j.actatropica.2020.105488] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 04/01/2020] [Accepted: 04/01/2020] [Indexed: 02/05/2023]
Abstract
Toxoplasma gondii (T. gondii), an obligatory intracellular parasite, is the etiologic agent of toxoplasmosis. Dihydrofolate reductase-thymidylate synthase (DHFR-TS) is one of the most important enzymes in toxoplasma folic acid cycle. Due to the emergence of resistance in RH strain of T. gondii against pyrimethamine that acts via DHFR-TS inhibition and also the crucial role of small interference RNA (siRNA) technology in gene silencing, we aimed to use siRNA to knock down DHFR-TS gene expression in T. gondii as a therapeutic target against toxoplasmosis in a mouse model. Based on the DHFR-TS gene sequence, siRNA was designed. The siRNAs were transfected into the parasites by electroporation. Total RNA was extracted using RNX-Plus kit. The viability of parasite was assessed by methylthiazole tetrazolium (MTT). The survival time of mice challenged with siRNA-treated T.gondii were compared to the control group infected with the same amount of wild-type tachyzoites. The viability of siRNA-embedded parasites was 70.7% (29.3% decreased) compared to the wild-type parasite as control (P = 0.0001). The transcription level of siRNA-transfected parasites was reduced to 17.4% (82.6% inhibition) (P = 0.016). The in vivo assessment showed that the mean survival time of the mice inoculated with modified parasites was increased about 2 days after the death of all mice in the control group. The designed siRNAs in the current study were able to silence the DHFR-TS gene efficiently. This silencing led to a decrease in viability of the parasites and an increase in the survival time of the parasites-treated mice.
Collapse
Affiliation(s)
- Mojtaba Azimi-Resketi
- Department of Medical Parasitology and Mycology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Abbasali Eskandarian
- Department of Medical Parasitology and Mycology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Mazdak Ganjalikhani-Hakemi
- Department of Medical Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| | | |
Collapse
|
5
|
Kumar S, Bains T, Won Kim AS, Tam C, Kim J, Cheng LW, Land KM, Debnath A, Kumar V. Highly Potent 1 H-1,2,3-Triazole-Tethered Isatin-Metronidazole Conjugates Against Anaerobic Foodborne, Waterborne, and Sexually-Transmitted Protozoal Parasites. Front Cell Infect Microbiol 2018; 8:380. [PMID: 30425970 PMCID: PMC6218680 DOI: 10.3389/fcimb.2018.00380] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 10/09/2018] [Indexed: 12/26/2022] Open
Abstract
Parasitic infections like amebiasis, trichomoniasis, and giardiasis are major health threats in tropical and subtropical regions of the world. Metronidazole (MTZ) is the current drug of choice for amebiasis, giardiasis, and trichomoniasis but it has several adverse effects and potential resistance is a concern. In order to develop alternative antimicrobials, a library of 1H-1,2,3-triazole-tethered metronidazole-isatin conjugates was synthesized using Huisgen's azide-alkyne cycloaddition reaction and evaluated for their amebicidal, anti-trichomonal, and anti-giardial potential. Most of the synthesized conjugates exhibited activities against Trichomonas vaginalis, Tritrichomonas foetus, Entamoeba histolytica, and Giardia lamblia. While activities against T. vaginalis and T. foetus were comparable to that of the standard drug MTZ, better activities were observed against E. histolytica and G. lamblia. Conjugates 9d and 10a were found to be 2–3-folds more potent than MTZ against E. histolytica and 8–16-folds more potent than MTZ against G. lamblia. Further analysis of these compounds on fungi and bacteria did not show inhibitory activity, demonstrating their specific anti-protozoal properties.
Collapse
Affiliation(s)
- Sumit Kumar
- Department of Chemistry, Guru Nanak Dev University, Amritsar, India
| | - Trpta Bains
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Ashley Sae Won Kim
- Department of Biological Sciences, University of the Pacific, Stockton, CA, United States
| | - Christina Tam
- Foodborne Toxin Detection and Prevention Research Unit, Agricultural Research Service, United States Department of Agriculture, Albany, CA, United States
| | - Jong Kim
- Foodborne Toxin Detection and Prevention Research Unit, Agricultural Research Service, United States Department of Agriculture, Albany, CA, United States
| | - Luisa W Cheng
- Foodborne Toxin Detection and Prevention Research Unit, Agricultural Research Service, United States Department of Agriculture, Albany, CA, United States
| | - Kirkwood M Land
- Department of Biological Sciences, University of the Pacific, Stockton, CA, United States
| | - Anjan Debnath
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Vipan Kumar
- Department of Chemistry, Guru Nanak Dev University, Amritsar, India
| |
Collapse
|
6
|
Singh A, Fong G, Liu J, Wu YH, Chang K, Park W, Kim J, Tam C, Cheng LW, Land KM, Kumar V. Synthesis and Preliminary Antimicrobial Analysis of Isatin-Ferrocene and Isatin-Ferrocenyl Chalcone Conjugates. ACS OMEGA 2018; 3:5808-5813. [PMID: 30023926 PMCID: PMC6045481 DOI: 10.1021/acsomega.8b00553] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 05/17/2018] [Indexed: 05/30/2023]
Abstract
In this study, we outline the synthesis of isatin-ferrocenyl chalcone and 1H-1,2,3-triazole-tethered isatin-ferrocene conjugates along with their antimicrobial evaluation against the human mucosal pathogen Trichomonas vaginalis. The introduction of a triazole ring among the synthesized conjugates improved the activity profiles with most of the compounds in the library, exhibiting 100% growth inhibition in a preliminary susceptibility screen at 100 μM. IC50 determination of the most potent compounds in the set revealed an inhibitory range between 2 and 13 μM. Normal flora microbiome are unaffected by these compounds, suggesting that these may be new chemical scaffolds for the discovery of new drugs against trichomonad infections.
Collapse
Affiliation(s)
- Amandeep Singh
- Department
of Chemistry, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Grant Fong
- Department
of Biological Sciences, University of the
Pacific, Stockton, California 95211, United States
| | - Jenny Liu
- Department
of Biological Sciences, University of the
Pacific, Stockton, California 95211, United States
| | - Yun-Hsuan Wu
- Department
of Biological Sciences, University of the
Pacific, Stockton, California 95211, United States
| | - Kevin Chang
- Department
of Biological Sciences, University of the
Pacific, Stockton, California 95211, United States
| | - William Park
- Department
of Biological Sciences, University of the
Pacific, Stockton, California 95211, United States
| | - Jihwan Kim
- Department
of Biological Sciences, University of the
Pacific, Stockton, California 95211, United States
| | - Christina Tam
- Foodborne
Toxin Detection and Prevention Research Unit, Agricultural Research
Service, United States Department of Agriculture, Albany, California 94710, United States
| | - Luisa W. Cheng
- Foodborne
Toxin Detection and Prevention Research Unit, Agricultural Research
Service, United States Department of Agriculture, Albany, California 94710, United States
| | - Kirkwood M. Land
- Department
of Biological Sciences, University of the
Pacific, Stockton, California 95211, United States
| | - Vipan Kumar
- Department
of Chemistry, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| |
Collapse
|
7
|
Janssen BD, Chen YP, Molgora BM, Wang SE, Simoes-Barbosa A, Johnson PJ. CRISPR/Cas9-mediated gene modification and gene knock out in the human-infective parasite Trichomonas vaginalis. Sci Rep 2018; 8:270. [PMID: 29321601 PMCID: PMC5762654 DOI: 10.1038/s41598-017-18442-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 12/11/2017] [Indexed: 12/20/2022] Open
Abstract
The sexually-transmitted parasite Trichomonas vaginalis infects ~1/4 billion people worldwide. Despite its prevalence and myriad adverse outcomes of infection, the mechanisms underlying T. vaginalis pathogenesis are poorly understood. Genetic manipulation of this single-celled eukaryote has been hindered by challenges presented by its complex, repetitive genome and inefficient methods for introducing DNA (i.e. transfection) into the parasite. Here, we have developed methods to increase transfection efficiency using nucleofection, with the goal of efficiently introducing multiple DNA elements into a single T. vaginalis cell. We then created DNA constructs required to express several components essential to drive CRISPR/Cas9-mediated DNA modification: guide RNA (gRNA), the Cas9 endonuclease, short oligonucleotides and large, linearized DNA templates. Using these technical advances, we have established CRISPR/Cas9-mediated repair of mutations in genes contained on circular DNA plasmids harbored by the parasite. We also engineered CRISPR/Cas9 directed homologous recombination to delete (i.e. knock out) two non-essential genes within the T. vaginalis genome. This first report of the use of the CRISPR/Cas9 system in T. vaginalis greatly expands the ability to manipulate the genome of this pathogen and sets the stage for testing of the role of specific genes in many biological processes.
Collapse
Affiliation(s)
- Brian D Janssen
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, California, USA
| | - Yi-Pei Chen
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, California, USA
- Molecular Biology Institute, University of California, Los Angeles, California, USA
| | - Brenda M Molgora
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, California, USA
- Molecular Biology Institute, University of California, Los Angeles, California, USA
| | - Shuqi E Wang
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | | | - Patricia J Johnson
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, California, USA.
- Molecular Biology Institute, University of California, Los Angeles, California, USA.
| |
Collapse
|