1
|
Shagieva E, Demnerova K, Michova H. Waterborne Isolates of Campylobacter jejuni Are Able to Develop Aerotolerance, Survive Exposure to Low Temperature, and Interact With Acanthamoeba polyphaga. Front Microbiol 2021; 12:730858. [PMID: 34777280 PMCID: PMC8578730 DOI: 10.3389/fmicb.2021.730858] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 09/28/2021] [Indexed: 12/20/2022] Open
Abstract
Campylobacter jejuni is regarded as the leading cause of bacterial gastroenteritis around the world. Even though it is generally considered to be a sensitive microaerobic pathogen, it is able to survive in the environment outside of the intestinal tract of the host. This study aimed to assess the impact of selected environmental parameters on the survival of 14 C. jejuni isolates of different origins, including 12 water isolates. The isolates were tested for their antibiotic resistance, their ability to survive at low temperature (7°C), develop aerotolerance, and to interact with the potential protozoan host Acanthamoeba polyphaga. The antibiotic susceptibility was determined by standard disk diffusion according to EUCAST. Out of the 14 isolates, 8 were resistant to ciprofloxacin (CIP) and 5 to tetracycline (TET), while only one isolate was resistant to erythromycin (ERY). Five isolates were resistant to two different antibiotic classes. Tetracycline resistance was only observed in isolates isolated from wastewater and a clinical sample. Further, the isolates were tested for their survival at 7°C under both aerobic and microaerobic conditions using standard culture methods. The results showed that under microaerobic conditions, all isolates maintained their cultivability for 4 weeks without a significant decrease in the numbers of bacteria and variation between the isolates. However, significant differences were observed under aerobic conditions (AC). The incubation led to a decrease in the number of cultivable cells, with complete loss of cultivability after 2 weeks (one water isolate), 3 weeks (7 isolates), or 4 weeks of incubation (6 isolates). Further, all isolates were studied for their ability to develop aerotolerance by repetitive subcultivation under microaerobic and subsequently AC. Surprisingly, all isolates were able to adapt and grow under AC. As the last step, 5 isolates were selected to evaluate a potential protective effect provided by A. polyphaga. The cocultivation of isolates with the amoeba resulted in the survival of about 40% of cells treated with an otherwise lethal dose of gentamicin. In summary, C. jejuni is able to adapt and survive in a potentially detrimental environment for a prolonged period of time, which emphasizes the role of the environmental transmission route in the spread of campylobacteriosis.
Collapse
Affiliation(s)
- Ekaterina Shagieva
- Laboratory of Food Microbiology, Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Czechia
| | - Katerina Demnerova
- Laboratory of Food Microbiology, Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Czechia
| | - Hana Michova
- Laboratory of Food Microbiology, Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Czechia
| |
Collapse
|
2
|
Reyes-Batlle M, Díaz FJ, Sifaoui I, Rodríguez-Expósito R, Rizo-Liendo A, Piñero JE, Lorenzo-Morales J. Free living amoebae isolation in irrigation waters and soils of an insular arid agroecosystem. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 753:141833. [PMID: 33207478 DOI: 10.1016/j.scitotenv.2020.141833] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 08/18/2020] [Accepted: 08/18/2020] [Indexed: 06/11/2023]
Abstract
The use of freshwater in agricultural systems represents a high percentage of total water consumption worldwide. Therefore, alternative sources of water for irrigation will need to be developed, particularly in arid and semi-arid areas, in order to meet the growing demand for food in the future. The use of recycled wastewater (RWW), brackish water (BW) or desalinated brackish water (DBW) are among the different non-conventional water resources proposed. However, it is necessary to evaluate the health risks for humans and animals associated with the microbiological load of these waters. Protozoa such as free-living amoebae (FLA) are considered an emerging group of opportunistic pathogens capable to cause several diseases in humans (e.g. cutaneous and ocular infections, lung, bone or adrenal gland conditions or fatal encephalitis). In the present study we evaluate FLA presence in three different irrigation water qualities (RWW, BW and DBW) and its survival in irrigated agricultural soils of an extremely arid insular ecosystem (Fuerteventura, Canary Islands, Spain). Samples were cultured on 2% Non-Nutrient Agar (NNA) plates covered with a thin layer of heat killed E. coli and checked daily for the presence of FLA. According to the prevalence of FLA, Vermamoeba vermiformis (53,8%), Acanthamoeba spp. (30,8%), Vahlkampfia avara (7,7%) and Naegleria australiensis (7,7%) were detected in the analysed water samples, while Acanthamoeba (83,3%), Cercozoa spp. (8,3%) and Vahlkampfia orchilla (8,3%) were isolated in irrigated soils. Only Acanthamoeba strains were isolated in no irrigated soils used as control, evidencing the capability of these protozoa to resist environmental harsh conditions. Additionally, all analysed water sources and the irrigated soils presented growth of several pathogenic bacteria. Therefore, the coexistence in water and soils of pathogenic bacteria and FLA, can mean an increased risk of infection in agroecosystems.
Collapse
Affiliation(s)
- María Reyes-Batlle
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Spain / Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología. Universidad De La Laguna, La Laguna, Tenerife, 38203 Islas Canarias, Spain; Red de Investigación Colaborativa en Enfermedades Tropicales (RICET), Spain.
| | - Francisco J Díaz
- Department of Animal Biology, Soil Science and Geology, University of La Laguna, Spain
| | - Ines Sifaoui
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Spain / Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología. Universidad De La Laguna, La Laguna, Tenerife, 38203 Islas Canarias, Spain; Red de Investigación Colaborativa en Enfermedades Tropicales (RICET), Spain
| | - Rubén Rodríguez-Expósito
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Spain / Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología. Universidad De La Laguna, La Laguna, Tenerife, 38203 Islas Canarias, Spain; Red de Investigación Colaborativa en Enfermedades Tropicales (RICET), Spain
| | - Aitor Rizo-Liendo
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Spain / Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología. Universidad De La Laguna, La Laguna, Tenerife, 38203 Islas Canarias, Spain; Red de Investigación Colaborativa en Enfermedades Tropicales (RICET), Spain
| | - José E Piñero
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Spain / Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología. Universidad De La Laguna, La Laguna, Tenerife, 38203 Islas Canarias, Spain; Red de Investigación Colaborativa en Enfermedades Tropicales (RICET), Spain
| | - Jacob Lorenzo-Morales
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Spain / Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología. Universidad De La Laguna, La Laguna, Tenerife, 38203 Islas Canarias, Spain; Red de Investigación Colaborativa en Enfermedades Tropicales (RICET), Spain
| |
Collapse
|
3
|
Reyes‐Batlle M, Gabriel MF, Rodríguez‐Expósito R, Felgueiras F, Sifaoui I, Mourão Z, de Oliveira Fernandes E, Piñero JE, Lorenzo‐Morales J. Evaluation of the occurrence of pathogenic free-living amoeba and bacteria in 20 public indoor swimming pool facilities. Microbiologyopen 2021; 10:e1159. [PMID: 33650798 PMCID: PMC7859502 DOI: 10.1002/mbo3.1159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/16/2020] [Accepted: 12/22/2020] [Indexed: 11/24/2022] Open
Abstract
Recently, indoor swimming pool activities have increased to promote health-enhancing physical activities, which require establishing suitable protocols for disinfection and water quality control. Normally, the assessment of the microbial quality of the water in the pools only considers the presence of different bacteria. However, other less frequent but more resistant pathogens, such as free-living amoebas (FLA), are not contemplated in both existing recommendation and research activities. FLA represent a relevant human health risk, not only due to their pathogenicity but also due to the ability to act as vehicles of other pathogens, such as bacteria. Therefore, this work aimed to study the physicochemical characteristics and the occurrence of potentially pathogenic FLA and bacteria in water samples from 20 public indoor swimming facilities in Northern Portugal. Our results showed that some swimming pools presented levels of pH, free chlorine, and conductivity out of the recommended limits. Pathogenic FLA species were detected in two of the facilities under study, where we also report the presence of both, FLA and pathogenic bacteria. Our findings evidence the need to assess the occurrence of FLA and their existence in the same environmental niche as pathogenic bacteria in swimming pool facilities worldwide and to establish recommendations to safeguard the health of the users.
Collapse
Affiliation(s)
- María Reyes‐Batlle
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de CanariasUniversidad de La LagunaTenerifeSpain
- Departamento de Obstetricia, Ginecología, Pediatría, Medicina Preventiva y Salud Pública, ToxicologíaMedicina Legal y Forense y ParasitologíaUniversidad De La LagunaTenerife, Islas CanariasSpain
- Red de Investigación Colaborativa en Enfermedades Tropicales (RICET)Spain
| | - Marta F. Gabriel
- INEGIInstitute of Science and Innovation in Mechanical and Industrial EngineeringPortoPortugal
| | - Rubén Rodríguez‐Expósito
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de CanariasUniversidad de La LagunaTenerifeSpain
- Departamento de Obstetricia, Ginecología, Pediatría, Medicina Preventiva y Salud Pública, ToxicologíaMedicina Legal y Forense y ParasitologíaUniversidad De La LagunaTenerife, Islas CanariasSpain
| | - Fátima Felgueiras
- INEGIInstitute of Science and Innovation in Mechanical and Industrial EngineeringPortoPortugal
| | - Ines Sifaoui
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de CanariasUniversidad de La LagunaTenerifeSpain
- Departamento de Obstetricia, Ginecología, Pediatría, Medicina Preventiva y Salud Pública, ToxicologíaMedicina Legal y Forense y ParasitologíaUniversidad De La LagunaTenerife, Islas CanariasSpain
- Red de Investigación Colaborativa en Enfermedades Tropicales (RICET)Spain
| | - Zenaida Mourão
- INEGIInstitute of Science and Innovation in Mechanical and Industrial EngineeringPortoPortugal
| | | | - José E. Piñero
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de CanariasUniversidad de La LagunaTenerifeSpain
- Departamento de Obstetricia, Ginecología, Pediatría, Medicina Preventiva y Salud Pública, ToxicologíaMedicina Legal y Forense y ParasitologíaUniversidad De La LagunaTenerife, Islas CanariasSpain
- Red de Investigación Colaborativa en Enfermedades Tropicales (RICET)Spain
| | - Jacob Lorenzo‐Morales
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de CanariasUniversidad de La LagunaTenerifeSpain
- Departamento de Obstetricia, Ginecología, Pediatría, Medicina Preventiva y Salud Pública, ToxicologíaMedicina Legal y Forense y ParasitologíaUniversidad De La LagunaTenerife, Islas CanariasSpain
- Red de Investigación Colaborativa en Enfermedades Tropicales (RICET)Spain
| |
Collapse
|
4
|
Guillonneau R, Baraquet C, Molmeret M. Marine Bacteria Display Different Escape Mechanisms When Facing Their Protozoan Predators. Microorganisms 2020; 8:microorganisms8121982. [PMID: 33322808 PMCID: PMC7763514 DOI: 10.3390/microorganisms8121982] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/24/2020] [Accepted: 12/10/2020] [Indexed: 12/20/2022] Open
Abstract
Free-living amoeba are members of microbial communities such as biofilms in terrestrial, fresh, and marine habitats. Although they are known to live in close association with bacteria in many ecosystems such as biofilms, they are considered to be major bacterial predators in many ecosystems. Little is known on the relationship between protozoa and marine bacteria in microbial communities, more precisely on how bacteria are able survive in environmental niches where these bacterial grazers also live. The objective of this work is to study the interaction between the axenized ubiquitous amoeba Acanthamoeba castellanii and four marine bacteria isolated from immersed biofilm, in order to evaluate if they would be all grazed upon by amoeba or if they would be able to survive in the presence of their predator. At a low bacteria-to-amoeba ratio, we show that each bacterium is phagocytized and follows a singular intracellular path within this host cell, which appears to delay or to prevent bacterial digestion. In particular, one of the bacteria was found in the amoeba nucleolar compartment whereas another strain was expelled from the amoeba in vesicles. We then looked at the fate of the bacteria grown in a higher bacteria-to-amoeba ratio, as a preformed mono- or multi-species biofilm in the presence of A. castellanii. We show that all biofilms were subjected to detachment from the surface in the presence of the amoeba or its supernatant. Overall, these results show that bacteria, when facing the same predator, exhibit a variety of escape mechanisms at the cellular and population level, when we could have expected a simple bacterial grazing. Therefore, this study unravels new insights into the survival of environmental bacteria when facing predators that they could encounter in the same microbial communities.
Collapse
Affiliation(s)
- Richard Guillonneau
- Laboratoire MAPIEM, EA4323, Université de Toulon, 83130 La Garde, France; (R.G.); (C.B.)
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Claudine Baraquet
- Laboratoire MAPIEM, EA4323, Université de Toulon, 83130 La Garde, France; (R.G.); (C.B.)
| | - Maëlle Molmeret
- Laboratoire MAPIEM, EA4323, Université de Toulon, 83130 La Garde, France; (R.G.); (C.B.)
- Correspondence:
| |
Collapse
|
5
|
Lim WG, Tong T, Chew J. Chryseobacterium indologenes and Chryseobacterium gleum interact and multiply intracellularly in Acanthamoeba castellanii. Exp Parasitol 2020; 211:107862. [PMID: 32087220 DOI: 10.1016/j.exppara.2020.107862] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 02/02/2020] [Accepted: 02/17/2020] [Indexed: 01/11/2023]
Abstract
Chryseobacterium indologenes and Chryseobacterium gleum are Gram negative environmental bacteria that have been frequently reported to implicate in fatal nosocomial infections, such as bacteraemia and ventilator-associated pneumonia in immunocompromised individuals in the past decades. The interaction between Chryseobacterium spp. and Acanthamoeba castellanii, a free-living amoeba ubiquitous in the environment, has not been explored previously. In this study, C. indologenes and C. gleum were co-cultured with A. castellanii trophozoites and their interactions were evaluated. Our results showed that when co-cultured with A. castellanii, bacterial numbers of C. indologenes and C. gleum increased significantly (p < 0.05), indicating growth-supporting role of A. castellanii. Specifically, our findings showed that C. indologenes and C. gleum were able to associate, invade and/or taken up by A. castellani trophozoites, and multiply intracellularly at similar rates (p > 0.05). Interestingly, the two Chryseobacterium spp. associated, invaded and/or taken up by A. castellanii at significantly higher rates than Escherichia coli K1, a neuropathogenic bacterial strain known to interact and replicate intracellularly in A. castellanii (p < 0.05). However, the ability of both Chryseobacterium spp. to multiply in A. castellanii was significantly weaker than E. coli K1 (p < 0.001). This is the first time that Chryseobacterium spp. and A. castellanii were shown to interact with each other. The ability to survive intracellularly in A. castellanii may confer protection to C. indologenes and C. gleum and assist in the survival and transmission of Chryseobacterium spp. to susceptible hosts within a hospital setting. Future studies will determine the ability of C. indologenes and C. gleum survival in A. castellanii cysts and the possible molecular mechanisms involved in such interactions.
Collapse
Affiliation(s)
- Wei-Gene Lim
- Department of Biological Sciences, Sunway University, Bandar Sunway, Selangor, 47500, Malaysia
| | - Tommy Tong
- Department of Biological Sciences, Sunway University, Bandar Sunway, Selangor, 47500, Malaysia
| | - Jactty Chew
- Department of Biological Sciences, Sunway University, Bandar Sunway, Selangor, 47500, Malaysia.
| |
Collapse
|