1
|
Bayona-Vásquez NJ, Sullivan AH, Beaudry MS, Khan A, Baptista RP, Petersen KN, Bhuiyan M, Brunelle B, Robinson G, Chalmers RM, Alves-Ferreira E, Grigg ME, AlvesFerreira Kissinger JC, Glenn TC. WHOLE GENOME TARGETED ENRICHMENT AND SEQUENCING OF HUMAN-INFECTING CRYPTOSPORIDIUM spp. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.29.586458. [PMID: 38585809 PMCID: PMC10996700 DOI: 10.1101/2024.03.29.586458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Cryptosporidium spp. are protozoan parasites that cause severe illness in vulnerable human populations. Obtaining pure Cryptosporidium DNA from clinical and environmental samples is challenging because the oocysts shed in contaminated feces are limited in quantity, difficult to purify efficiently, may derive from multiple species, and yield limited DNA (<40 fg/oocyst). Here, we develop and validate a set of 100,000 RNA baits (CryptoCap_100k) based on six human-infecting Cryptosporidium spp. ( C. cuniculus , C. hominis , C. meleagridis , C. parvum , C. tyzzeri , and C. viatorum ) to enrich Cryptosporidium spp. DNA from a wide array of samples. We demonstrate that CryptoCap_100k increases the percentage of reads mapping to target Cryptosporidium references in a wide variety of scenarios, increasing the depth and breadth of genome coverage, facilitating increased accuracy of detecting and analyzing species within a given sample, while simultaneously decreasing costs, thereby opening new opportunities to understand the complex biology of these important pathogens.
Collapse
|
2
|
Kryazhev AL, Novikov AS. Identification of the taxonomic affiliation of Cryptosporidium spp. in piglets in the conditions of the north-west of the Russian Federation using molecular genetic methods. RUSSIAN JOURNAL OF PARASITOLOGY 2023. [DOI: 10.31016/1998-8435-2023-17-1-84-90] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Abstract
The purpose of the research is to determine taxa of the genus Cryptosporidium species in pigs using molecular genetic methods in the north-west of the Russian Federation.Materials and methods. Fecal samples were taken from pigs of different age groups on farms of different types of incorporation that differ in climatic and geographical zones and animal keeping technologies in the Vologda Region. Microscopic research methods identified “positive” samples in which Cryptosporidium species were present; they were sorted out and deep-frozen. Then the samples were examined using the equipment of the resource center «Genomic Technologies, Proteomics and Cell Biology» of ARRIAM. The Cryptosporidium species in the fecal samples from farm animals were identified using high-throughput sequencing of 18S rRNA gene amplicon libraries obtained by a nested polymerase chain reaction (PCR) assay.Results and discussion. A primer system was designed for the nested PCR to amplify a potentially species-specific 393 bp fragment of the 18S rRNA gene. The sequence of the ILL_R2_ Zheng primer was modified with included degenerated positions to make the primer more versatile. As a result of sequencing of the libraries of 18S rRNA gene fragments obtained with the selected primers and subsequent taxonomic analysis of the nucleotide sequences, it was shown that all the studied samples included representatives of only one species, Cryptosporidium scrofarum.
Collapse
|
3
|
Ryan UM, Feng Y, Fayer R, Xiao L. Taxonomy and molecular epidemiology of Cryptosporidium and Giardia - a 50 year perspective (1971-2021). Int J Parasitol 2021; 51:1099-1119. [PMID: 34715087 DOI: 10.1016/j.ijpara.2021.08.007] [Citation(s) in RCA: 183] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/25/2021] [Accepted: 08/31/2021] [Indexed: 12/11/2022]
Abstract
The protozoan parasites Cryptosporidium and Giardia are significant causes of diarrhoea worldwide and are responsible for numerous waterborne and foodborne outbreaks of diseases. Over the last 50 years, the development of improved detection and typing tools has facilitated the expanding range of named species. Currently at least 44 Cryptosporidium spp. and >120 genotypes, and nine Giardia spp., are recognised. Many of these Cryptosporidium genotypes will likely be described as species in the future. The phylogenetic placement of Cryptosporidium at the genus level is still unclear and further research is required to better understand its evolutionary origins. Zoonotic transmission has long been known to play an important role in the epidemiology of cryptosporidiosis and giardiasis, and the development and application of next generation sequencing tools is providing evidence for this. Comparative whole genome sequencing is also providing key information on the genetic mechanisms for host specificity and human infectivity, and will enable One Health management of these zoonotic parasites in the future.
Collapse
Affiliation(s)
- Una M Ryan
- Harry Butler Institute, Murdoch University, Perth, Western Australia, Australia.
| | - Yaoyu Feng
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong, China
| | - Ronald Fayer
- Environmental Microbial and Food Safety Laboratory, Agricultural Research Service, United States Department of Agriculture, 10300 Baltimore Avenue, BARC-East, Building 173, Beltsville, MD 20705, USA
| | - Lihua Xiao
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong, China
| |
Collapse
|
4
|
Baptista RP, Cooper GW, Kissinger JC. Challenges for Cryptosporidium Population Studies. Genes (Basel) 2021; 12:894. [PMID: 34200631 PMCID: PMC8229070 DOI: 10.3390/genes12060894] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 05/28/2021] [Accepted: 06/04/2021] [Indexed: 12/31/2022] Open
Abstract
Cryptosporidiosis is ranked sixth in the list of the most important food-borne parasites globally, and it is an important contributor to mortality in infants and the immunosuppressed. Recently, the number of genome sequences available for this parasite has increased drastically. The majority of the sequences are derived from population studies of Cryptosporidium parvum and Cryptosporidium hominis, the most important species causing disease in humans. Work with this parasite is challenging since it lacks an optimal, prolonged, in vitro culture system, which accurately reproduces the in vivo life cycle. This obstacle makes the cloning of isolates nearly impossible. Thus, patient isolates that are sequenced represent a population or, at times, mixed infections. Oocysts, the lifecycle stage currently used for sequencing, must be considered a population even if the sequence is derived from single-cell sequencing of a single oocyst because each oocyst contains four haploid meiotic progeny (sporozoites). Additionally, the community does not yet have a set of universal markers for strain typing that are distributed across all chromosomes. These variables pose challenges for population studies and require careful analyses to avoid biased interpretation. This review presents an overview of existing population studies, challenges, and potential solutions to facilitate future population analyses.
Collapse
Affiliation(s)
- Rodrigo P. Baptista
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602, USA;
- Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA
| | - Garrett W. Cooper
- Department of Genetics, University of Georgia, Athens, GA 30602, USA;
| | - Jessica C. Kissinger
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602, USA;
- Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA
- Department of Genetics, University of Georgia, Athens, GA 30602, USA;
| |
Collapse
|
5
|
Hassan EM, Örmeci B, DeRosa MC, Dixon BR, Sattar SA, Iqbal A. A review of Cryptosporidium spp. and their detection in water. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2021; 83:1-25. [PMID: 33460403 DOI: 10.2166/wst.2020.515] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Cryptosporidium spp. are one of the most important waterborne pathogens worldwide and a leading cause of mortality from waterborne gastrointestinal diseases. Detection of Cryptosporidium spp. in water can be very challenging due to their low numbers and the complexity of the water matrix. This review describes the biology of Cryptosporidium spp. and current methods used in their detection with a focus on C. parvum and C. hominis. Among the methods discussed and compared are microscopy, immunology-based methods using monoclonal antibodies, molecular methods including PCR (polymerase chain reaction)-based assays, and emerging aptamer-based methods. These methods have different capabilities and limitations, but one common challenge is the need for better sensitivity and specificity, particularly in the presence of contaminants. The application of DNA aptamers in the detection of Cryptosporidium spp. oocysts shows promise in overcoming these challenges, and there will likely be significant developments in aptamer-based sensors in the near future.
Collapse
Affiliation(s)
- Eman M Hassan
- Department of Civil and Environmental Engineering, Carleton University, 1125 Colonel By Drive, Ottawa, K1S 5B6, Canada E-mail:
| | - Banu Örmeci
- Department of Civil and Environmental Engineering, Carleton University, 1125 Colonel By Drive, Ottawa, K1S 5B6, Canada E-mail:
| | - Maria C DeRosa
- Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, Canada, K1S 5B6
| | - Brent R Dixon
- Bureau of Microbial Hazards, Food Directorate, Health Canada, Ottawa, Canada, K1A 0K9
| | - Syed A Sattar
- Department of Civil and Environmental Engineering, Carleton University, 1125 Colonel By Drive, Ottawa, K1S 5B6, Canada E-mail: ; C.R.E.M. Co Labs, Units 1-2, 3403 American Drive, Mississauga, ON, Canada, L4V 1T4
| | - Asma Iqbal
- C.R.E.M. Co Labs, Units 1-2, 3403 American Drive, Mississauga, ON, Canada, L4V 1T4
| |
Collapse
|
6
|
Zahedi A, Ryan U. Cryptosporidium – An update with an emphasis on foodborne and waterborne transmission. Res Vet Sci 2020; 132:500-512. [DOI: 10.1016/j.rvsc.2020.08.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/24/2020] [Accepted: 08/03/2020] [Indexed: 12/15/2022]
|
7
|
El-Alfy ES, Nishikawa Y. Cryptosporidium species and cryptosporidiosis in Japan: a literature review and insights into the role played by animals in its transmission. J Vet Med Sci 2020; 82:1051-1067. [PMID: 32536636 PMCID: PMC7468066 DOI: 10.1292/jvms.20-0151] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Cryptosporidium species infect domestic animals, livestock, and humans.
These protozoan parasites are frequently reported as major environmental contaminants in
many countries despite their differing climatic, socioeconomic, and demographic factors.
This review focuses on the research findings that relate to
Cryptosporidium epidemiology, genetic diversity, and associated risk
factors relating to animals, contaminated water sources, and humans in Japan. Adequate
knowledge of these factors is essential for understanding the economic and public health
importance of cryptosporidiosis in Japan so that effective control strategies against it
are implemented. Cryptosporidium infections are highly prevalent in
animals in Japan. Among the different animal species, cattle infections stand out because
of their economic importance and zoonotic potential. Living circumstances in Japan
restrain Cryptosporidium transmission between humans, but there is
evidence to suggest that animals, especially those in close contact with humans, can be
potential sources of human infections. Water sampling studies have provided clues about
how environmental contamination with Cryptosporidium oocysts can cause
infections in livestock and wild animals. There is some evidence of person-to-person
transmission of cryptosporidiosis, but only occasionally and under certain circumstances.
By identifying the major role played by animals in Cryptosporidium
transmission to people in Japan, we highlight the urgent need for disease control against
this pathogen.
Collapse
Affiliation(s)
- El-Sayed El-Alfy
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan.,Department of Parasitology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Yoshifumi Nishikawa
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan
| |
Collapse
|
8
|
Hoeve-Bakker BJA, van der Giessen JWB, Franssen FFJ. Molecular identification targeting cox1 and 18S genes confirms the high prevalence of Sarcocystis spp. in cattle in the Netherlands. Int J Parasitol 2019; 49:859-866. [PMID: 31400377 DOI: 10.1016/j.ijpara.2019.05.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 05/23/2019] [Accepted: 05/26/2019] [Indexed: 11/30/2022]
Abstract
The reported prevalence of Sarcocystis infection in cattle in Europe ranges between 66 and 94%. Although in the Netherlands a prevalence of 100% was reported in 1993, this study aimed to develop a method for sensitive and specific molecular detection and species identification of Sarcocystis spp., in order to provide more recent data on the prevalence and identification of these protozoa in cattle meat intended for human consumption in the Netherlands. For this purpose, 104 cattle samples were obtained from Dutch slaughterhouses. Genomic DNA was extracted, and analysed by 18S and cox1 PCR. Magnetic capture was used to extract and amplify 18S-specific DNA. Sarcocystis DNA was detected in 82.7% of the samples. PCR amplicons of both targets were sequenced, and sequence identities of ≥97% were observed for Sarcocystis cruzi (65.4%), Sarcocystis hominis (12.5%), Sarcocystis bovifelis (8.7%), Sarcocystis hirsuta and Sarcocystis heydorni (both 1.0%). Mixed infections were observed in 17.3% of the samples. The magnetic capture was not significantly more sensitive compared with standard DNA extraction, but magnetic capture did add to the overall sensitivity. Using cox1 sequencing, all species are clearly distinguished, whereas for 18S the variation between species is limited, which particularly hampers reliable identification of thick walled Sarcocystis spp. Furthermore, the detection of 12.5% S. hominis and 1% S. heydorni points towards an established transmission route between cattle and humans in the Netherlands. The availability of four additional well-identified and well-referenced S. hominis cox1 sequences in public databases enables development of species-specific diagnostic PCRs targeting cox1, which in combination with magnetic capture could provide the means to determine the prevalence of human sarcocystosis.
Collapse
Affiliation(s)
- B J A Hoeve-Bakker
- Centre for Infectious Diseases Research, Diagnostics and Laboratory Surveillance, National Institute for Public Health and the Environment (RIVM) Bilthoven, The Netherlands; Centre for Zoonoses and Environmental Microbiology, National Institute for Public Health and the Environment (RIVM) Bilthoven, The Netherlands
| | - J W B van der Giessen
- Centre for Zoonoses and Environmental Microbiology, National Institute for Public Health and the Environment (RIVM) Bilthoven, The Netherlands
| | - F F J Franssen
- Centre for Zoonoses and Environmental Microbiology, National Institute for Public Health and the Environment (RIVM) Bilthoven, The Netherlands.
| |
Collapse
|
9
|
Cunha FS, Peralta RHS, Peralta JM. New insights into the detection and molecular characterization of Cryptosporidium with emphasis in Brazilian studies: a review. Rev Inst Med Trop Sao Paulo 2019; 61:e28. [PMID: 31241657 PMCID: PMC6592014 DOI: 10.1590/s1678-9946201961028] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 04/24/2019] [Indexed: 11/22/2022] Open
Abstract
Cryptosporidium spp. is a pathogenic protozoan present in the gastrointestinal tract of several hosts. This protozoan was originally classified as within the Coccidia Class and has recently been reclassified to gregarine based on studies that observed the evolutionary phases from the process of excision and sequencing of the 18S rRNA gene. Molecular biology techniques have become diagnostic tools and have also been used to understand the epidemiology of Cryptosporidium spp., since several species of this genus are very similar morphologically and morphometrically. Molecular techniques have been used in the identification of parasites, at the species and subtypes levels and to study disease transmission. The laboratory diagnosis of human cryptosporidiosis can be made by parasite detection methods, such as optical microscopy, antigens or genetic material detection, as well as serum antibodies raised to Cryptosporidium spp. Molecular methods were developed and allowed, not only an extensive revision of the taxonomy, but also an improvement in the laboratory diagnosis. In Brazil, there are few reports of Cryptosporidium spp. outbreaks in humans and all of them took place in nurseries. A few epidemiological studies developed in Brazil have used molecular methods for the detection of Cryptosporidium spp., as well as genotyping studies of their species and subtypes. The use of real-time PCR, together with microscopy and immunochromatography techniques, would result in a more precise diagnosis of cryptosporidiosis. The analysis of genotypes, subtypes and clonality of Cryptosporidium could be useful to understand and define the prognosis and severity of infections.
Collapse
Affiliation(s)
- Flavia Souza Cunha
- Universidade Federal Fluminense, Faculdade de Medicina, Departamento
de Patologia, Niterói, Rio de Janeiro, Brazil
| | | | - José Mauro Peralta
- Universidade Federal do Rio de Janeiro, Instituto de Microbiologia
Prof. Paulo de Góes, Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
10
|
Zheng S, Li D, Zhou C, Zhang S, Wu Y, Chang Y, Chen Y, Huang J, Ning C, Zhang G, Zhang L. Molecular identification and epidemiological comparison of Cryptosporidium spp. among different pig breeds in Tibet and Henan, China. BMC Vet Res 2019; 15:101. [PMID: 30922311 PMCID: PMC6438020 DOI: 10.1186/s12917-019-1847-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 03/18/2019] [Indexed: 02/04/2023] Open
Abstract
Background Cryptosporidium spp. are important zoonotic pathogens infecting a wide range of vertebrate hosts, and causing moderate to severe diarrhea in humans. Cryptosporidium infections are frequently reported in humans and animals worldwide, but little research has been done on local pig breeds such as Tibetan pigs and Yunan Black pigs and imported pig breeds such as Landrace pigs in China. Therefore, a total of 1089 pig fecal samples from four intensive farms in four areas of China, including Tibetan pigs from Gongbujiangda County (n = 180) and Mainling County (n = 434), Tibet, Yunan Black pigs from Sanmenxia, Henan Province (n = 246), and Landrace pigs from Kaifeng, Henan Province (n = 229), and were screened for the presence of Cryptosporidium with microscopy and nested PCR amplification of the small subunit rRNA gene. Results The total infection rate of Cryptosporidium in 1089 fecal samples of three different pig breeds was 2.11% (23/1089), and the infection rates of Tibetan pigs, Yunan Black pigs, and Landrace pigs were 0.49% (3/614), 0.41% (1/246), and 8.30% (19/229), respectively. The prevalence of Cryptosporidium infection was significantly higher in weaned piglets (1–2 months) (4.36%, 21/482) than in younger and older age groups (p < 0.01). Sequence analysis of positive samples revealed that there was no mixed infection in our study population, which included 12 cases of C. suis mono-infections (52.17%, 12/23) and 11 cases of C. scrofarum mono-infections (47.83%, 11/23). C. suis was identified in one pre-weaned piglet (< 1 month) and 11 weaned piglets (1–2 months), while C. scrofarum was only detected in 10 weaned piglets (1–2 months) and one finished pig (> 2 months). Conclusions This is the first report on the identification of Cryptosporidium spp. in Tibetan pigs, and our findings also elucidate the occurrence and distribution of Cryptosporidium in three different pig breeds in Tibet and Henan, China. More molecular epidemiological studies are required to better clarify the prevalence and public health significance of Cryptosporidium in different pigs.
Collapse
Affiliation(s)
- Shuangjian Zheng
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, People's Republic of China
| | - Dongfang Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, People's Republic of China
| | - Chunxiang Zhou
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, People's Republic of China.,College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Sumei Zhang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, People's Republic of China
| | - Yayun Wu
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, People's Republic of China
| | - Yankai Chang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, People's Republic of China
| | - Yuancai Chen
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, People's Republic of China
| | - Jianying Huang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, People's Republic of China
| | - Changshen Ning
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, People's Republic of China
| | - Gaiping Zhang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, People's Republic of China
| | - Longxian Zhang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, People's Republic of China.
| |
Collapse
|
11
|
Jiménez Martínez MÁ, Gasper DJ, Carmona Muciño MDC, Terio KA. Suidae and Tayassuidae. PATHOLOGY OF WILDLIFE AND ZOO ANIMALS 2018. [PMCID: PMC7150131 DOI: 10.1016/b978-0-12-805306-5.00008-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
The Suidae and Tayassuidae live on all continents except Antarctica. True wild boars were indigenous to Europe and Asia and are the ancestors to the domestic pig; with whom they share the same scientific name Sus scrofa. Wild boars have been introduced to the Americas and many islands. Because of the close genetic relationship, in many areas they have interbred with domestic pigs and formed considerable populations of feral suids that represent wild boar and feral pig crosses. Wild suid populations are relatively hardy and most disease research has been focused on their potential as a reservoir for diseases of concern for commercial pig production. The Togian Island babirusa, pygmy hog, Visayan warty pig, Javan warty pig, and Chacoan peccary are endangered. For all species, hunting, habitat loss, and hybridization are important threats to conservation.
Collapse
|