1
|
Kaur S, Adhikari A, Welsh B, Gosse HN, Dos Santos IB, Liu W, Lawrence KS, Park SW. Cyclophilin 20-3 coordinates plant root hair growth and resistance against parasitic nematodes. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 354:112432. [PMID: 39984127 DOI: 10.1016/j.plantsci.2025.112432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 01/28/2025] [Accepted: 02/15/2025] [Indexed: 02/23/2025]
Abstract
Plant parasitic nematodes (PPN) are a major threat to agriculturally important crops, resulting in substantial yield losses and economic repercussions. However, the underlying modes of plant-PPN interactions remain largely elusive. Here, we describe a critical role of cyclophilin (CYP)20-3, a plastid dual enzyme [i.e., peptidyl-prolyl isomerase (PPIase) and reductase) in plant basal resistance against PPN attacks. Originally, in order to define a present working model of whether plant roots deploy hypersensitive response (HR) to restrict PPN infections, we co-imaged the 'real-time' interactions of a proposed HR system, cotton LONREN-1 vs. Rotylenchulus reniformis. The root imaginings, however, revealed no clear HR pattern, instead underpinning a negative relationship between PPN populations and extended root hair growth. The latter was then identified to couple with the spatial expression of PPIases, including homologs of CYP20-3, a known receptor of 12-oxophytodienoic acid (OPDA) signal. To elaborate these findings further, we employed a reverse generic approach using a model plant Arabidopsis, and illuminated that knockout cyp20-3 mutants i) abnormalize root hair formations and ii) enhance susceptibility to PPN, Meloidogyne hapla, challenges. Nevertheless, M. hapla infections did not induce OPDA synthesis and signaling marker gene expressions in Arabidopsis roots. In parallel, transgenic Arabidopsis plants overexpressing mutant CYP20-3s defective OPDA-binding/signaling (H140Q) or PPIase (F74L) could still improve plant PPN defenses, whereas the overexpression of CYP20-3C129S (-reductase) demonstrated WT-level galling formations. Thus, we conclude that OPDA-independent CYP20-3-reductase signaling plays a key role in the plant defense metabolic pathway, fortifying protective barriers and conferring innate resistance against PPN attacks.
Collapse
Affiliation(s)
- Simrandeep Kaur
- Depart. of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, USA
| | - Ashna Adhikari
- Depart. of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, USA
| | - Benjamin Welsh
- Depart. of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, USA
| | - Heather N Gosse
- Depart. of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, USA
| | | | - Wenshan Liu
- Depart. of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, USA
| | - Kathy S Lawrence
- Depart. of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, USA
| | - Sang-Wook Park
- Depart. of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, USA.
| |
Collapse
|
2
|
Belov T, Terenzhev D, Bushmeleva KN, Davydova L, Burkin K, Fitsev I, Gatiyatullina A, Egorova A, Nikitin E. Comparative Analysis of Chemical Profile and Biological Activity of Juniperus communis L. Berry Extracts. PLANTS (BASEL, SWITZERLAND) 2023; 12:3401. [PMID: 37836145 PMCID: PMC10574284 DOI: 10.3390/plants12193401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/09/2023] [Accepted: 09/15/2023] [Indexed: 10/15/2023]
Abstract
Researchers are looking for the most effective ways to extract the bioactive substances of Juniperus communis L. berries, which are capable of displaying the greatest range of biological activity, namely antimicrobial potential "against phytopathogens", antioxidant activity and nematocidal activity. This study provides detailed information on the chemical activity, group composition and biological activity of the extracts of juniper berries of 1- and 2-year maturity (JB1 and JB2), which were obtained by using different solvents (pentane, chloroform, acetone, methanol and 70% ethanol) under various extraction conditions (maceration and ultrasound-assisted maceration (US)). Seventy percent ethanol and acetone extracts of juniper berries were analyzed via gas chromatography-mass spectrometry, and they contained monoterpenes, sesquiterpenes, polysaccharides, steroids, fatty acid esters and bicyclic monoterpenes. The antimicrobial activity was higher in the berries of 1-year maturity, while the acetone extract obtained via ultrasound-assisted maceration was the most bioactive in relation to the phytopathogens. Depending on the extraction method and the choice of solvent, the antioxidant activity with the use of US decreased by 1.5-1.9 times compared to the extracts obtained via maceration. An analysis of the nematocidal activity showed that the sensitivity to the action of extracts in Caenorhabditis elegans was significantly higher than in Caenorhabditis briggsae, particularly for the acetone extract obtained from the juniper berries of 1-year maturity.
Collapse
Affiliation(s)
- Timur Belov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov Str. 8, 420088 Kazan, Russia; (D.T.); (K.N.B.); (L.D.); (E.N.)
| | - Dmitriy Terenzhev
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov Str. 8, 420088 Kazan, Russia; (D.T.); (K.N.B.); (L.D.); (E.N.)
| | - Kseniya Nikolaevna Bushmeleva
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov Str. 8, 420088 Kazan, Russia; (D.T.); (K.N.B.); (L.D.); (E.N.)
| | - Lilia Davydova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov Str. 8, 420088 Kazan, Russia; (D.T.); (K.N.B.); (L.D.); (E.N.)
| | - Konstantin Burkin
- Federal State Budgetary Scientific Institution, Federal Center for Toxicological, Radiation, and Biological Safety, Nauchny Gorodok-2, 420075 Kazan, Russia;
| | - Igor Fitsev
- A.M. Butlerov Chemical Institute, Kazan Federal University, Kremlevskaya Str. 18, 420008 Kazan, Russia;
| | - Alsu Gatiyatullina
- Research Institute for Problems of Ecology and Mineral Wealth Use of Tatarstan Academy of Sciences, IPEM TAS, Daurskaya Str. 28, 420087 Kazan, Russia; (A.G.); (A.E.)
| | - Anastasia Egorova
- Research Institute for Problems of Ecology and Mineral Wealth Use of Tatarstan Academy of Sciences, IPEM TAS, Daurskaya Str. 28, 420087 Kazan, Russia; (A.G.); (A.E.)
| | - Evgeniy Nikitin
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov Str. 8, 420088 Kazan, Russia; (D.T.); (K.N.B.); (L.D.); (E.N.)
| |
Collapse
|
3
|
Smith TR, Tay A, Koprivnikar J. Effects of insect host chemical secretions on the entomopathogenic nematode Steinernema carpocapsae. J Helminthol 2023; 97:e63. [PMID: 37522182 DOI: 10.1017/s0022149x23000469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
Given the threat presented by parasites and pathogens, insects employ various defences to protect themselves against infection, including chemical secretions. The red flour beetle Tribolium castaneum releases a secretion containing the benzoquinones methyl-1,4-benzoquinone (MBQ) and ethyl-1,4-benzoquinone (EBQ) into the environment. These compounds have known antimicrobial effects; however, their role in defence against macroparasites is not known. Entomopathogenic nematodes, such as Steinernema carpocapsae, present a serious threat to insects, with successful infection leading to death. Thus, quinone-containing secretions may also aid in host defence. We tested how exposure to the individual components of this quinone secretion, as well as a mix at naturally-occurring proportions, affected the survival and thrashing behaviour of S. carpocapsae, as well as their virulence to a model host (Galleria mellonella). Exposure to high concentrations of MBQ and EBQ, as well as the quinone mix, significantly increased nematode death but did not consistently reduce thrashing, which would otherwise be expected given their toxicity. Rather, quinones may act as a host cue to S. carpocapsae by triggering increased activity. We found that exposure to quinones for 24 or 72 hours did not reduce nematode virulence, and surviving nematodes remained infective after non-lethal exposure. Our results indicate that quinone secretions likely serve as a defence against multiple infection threats by reducing S. carpocapsae survival, but further research is required to contextualize their roles by testing against other nematodes, as well as other helminths using insects as hosts.
Collapse
Affiliation(s)
- T R Smith
- Department of Chemistry and Biology, Toronto Metropolitan University, 350 Victoria Street, Toronto, ON, M5B 2K3, Canada
| | - A Tay
- Department of Chemistry and Biology, Toronto Metropolitan University, 350 Victoria Street, Toronto, ON, M5B 2K3, Canada
| | - J Koprivnikar
- Department of Chemistry and Biology, Toronto Metropolitan University, 350 Victoria Street, Toronto, ON, M5B 2K3, Canada
| |
Collapse
|
4
|
Mazuecos L, Contreras M, Kasaija PD, Manandhar P, Grąźlewska W, Guisantes-Batan E, Gomez-Alonso S, Deulofeu K, Fernandez-Moratalla I, Rajbhandari RM, Sojka D, Grubhoffer L, Karmacharya D, Gortazar C, de la Fuente J. Natural Clerodendrum-derived tick repellent: learning from Nepali culture. EXPERIMENTAL & APPLIED ACAROLOGY 2023:10.1007/s10493-023-00804-4. [PMID: 37285111 PMCID: PMC10293375 DOI: 10.1007/s10493-023-00804-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 05/17/2023] [Indexed: 06/08/2023]
Abstract
Ticks attaching to ear canals of humans and animals are the cause of otoacariasis, common in rural areas of Nepal. The plant Clerodendrum viscosum is used in multiple indigenous systems of medicine by ethnic communities in the Indo-Nepali-Malaysian region. Visiting the Chitwan National Park, we learned that in indigenous medicine, flower extract of C. viscosum is utilized to treat digestive disorders and extracts from leaves as tick repellent to prevent ticks from invading or to remove them from the ear canal. The objective of our study was to provide support to indigenous medicine by characterizing the in vivo effect of leave extracts on ticks under laboratory conditions and its phytochemical composition. We collected plant parts of C. viscosum (leaves and flowers) and mango (Mangifera indica) leaves at the Chitwan National Park, previously associated with repellent activity to characterize their effect on Ixodes ricinus ticks by in vivo bioassays. A Q-ToF high-resolution analysis (HPLC-ESI-QToF) was conducted to elucidate phenolic compounds with potential repellent activity. Clerodendrum viscosum and M. indica leaf extracts had the highest tick repellent efficacy (%E = 80-100%) with significant differences when compared to C. viscosum flowers extracts (%E = 20-60%) and phosphate-buffered saline. Phytochemicals with tick repellent function as caffeic acid, fumaric acid and p-coumaric acid glucoside were identified in C. viscosum leaf extracts by HPLC-ESI-QToF, but not in non-repellent flower extracts. These results support the Nepali indigenous medicine application of C. viscosum leaf extracts to repel ticks. Additional research is needed for the development of natural and green repellent formulations to reduce the risks associated with ticks resistant to acaricides.
Collapse
Affiliation(s)
- Lorena Mazuecos
- Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, Ciudad Real, 13005, Spain.
| | - Marinela Contreras
- Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, Ciudad Real, 13005, Spain
| | - Paul D Kasaija
- Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, Ciudad Real, 13005, Spain
- National Livestock Resources Research Institute (NaLIRRI/NARO), Wakiso District, P.O. Box 5704, Wakiso, Uganda
| | - Prajwol Manandhar
- Center for Molecular Dynamics Nepal (CMDN), Thapathali Road 11, Kathmandu, 44600, Nepal
| | - Weronika Grąźlewska
- Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, Ciudad Real, 13005, Spain
- Department of Molecular Biotechnology and Microbiology, Faculty of Chemistry, Gdańsk University of Technology, Gdańsk, 80-233, Poland
| | - Eduardo Guisantes-Batan
- Instituto Regional de Investigación Científica Aplicada (IRICA), Universidad de Castilla-La Mancha, Ciudad Real, 13005, Spain
| | - Sergio Gomez-Alonso
- Instituto Regional de Investigación Científica Aplicada (IRICA), Universidad de Castilla-La Mancha, Ciudad Real, 13005, Spain
| | | | | | | | - Daniel Sojka
- Institute of Parasitology, Biology Centre, Academy of Sciences of the Czech Republic, Branišovská 1160/31, České Budějovice, 37005, Czech Republic
| | - Libor Grubhoffer
- Institute of Parasitology, Biology Centre, Academy of Sciences of the Czech Republic, Branišovská 1160/31, České Budějovice, 37005, Czech Republic
| | - Dibesh Karmacharya
- Center for Molecular Dynamics Nepal (CMDN), Thapathali Road 11, Kathmandu, 44600, Nepal
| | - Christian Gortazar
- Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, Ciudad Real, 13005, Spain
| | - José de la Fuente
- Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, Ciudad Real, 13005, Spain
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, 74078, USA
| |
Collapse
|
5
|
Zubkov FI, Kouznetsov VV. Traveling across Life Sciences with Acetophenone-A Simple Ketone That Has Special Multipurpose Missions. Molecules 2023; 28:370. [PMID: 36615564 PMCID: PMC9823374 DOI: 10.3390/molecules28010370] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/18/2022] [Accepted: 12/28/2022] [Indexed: 01/04/2023] Open
Abstract
Each metabolite, regardless of its molecular simplicity or complexity, has a mission or function in the organism biosynthesizing it. In this review, the biological, allelochemical, and chemical properties of acetophenone, as a metabolite involved in multiple interactions with various (mi-cro)organisms, are discussed. Further, the details of its biogenesis and chemical synthesis are provided, and the possibility of its application in different areas of life sciences, i.e., the status quo of acetophenone and its simple substituted analogs, is examined. In particular, natural and synthetic simple acetophenone derivatives are analyzed as promising agrochemicals and useful scaffolds for drug research and development.
Collapse
Affiliation(s)
- Fedor I. Zubkov
- Department of Organic Chemistry, Рeoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, 117198 Moscow, Russia
| | - Vladimir V. Kouznetsov
- Laboratorio de Química Orgánica y Biomolecular, Escuela de Química, Universidad Industrial de Santander, Cl. 9 # Cra 27, A.A., Bucaramanga 680006, Colombia
| |
Collapse
|
6
|
da Silva MPB, Fernandes MTM, Lucia GV, Nunes DOR, Bastos DL, Marques AS. The effect of Spondias mombin L. against Strongyloides venezuelensis: an in vitro approach. Acta Trop 2022; 234:106617. [DOI: 10.1016/j.actatropica.2022.106617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 03/10/2022] [Accepted: 07/23/2022] [Indexed: 12/01/2022]
|
7
|
Xiang L, Liu S, Ye S, Yang H, Song B, Qin F, Shen M, Tan C, Zeng G, Tan X. Potential hazards of biochar: The negative environmental impacts of biochar applications. JOURNAL OF HAZARDOUS MATERIALS 2021; 420:126611. [PMID: 34271443 DOI: 10.1016/j.jhazmat.2021.126611] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 06/13/2023]
Abstract
Biochar has been widely used as an environmentally friendly material for soil improvement and remediation, water pollution control, greenhouse gas emission reduction, and other purposes because of its characteristics such as a large surface area, porous structure, and abundant surface O-containing functional groups. However, some surface properties (i.e., (i) some surface properties (i.e., organic functional groups and inorganic components), (ii) changes in pH), and (iii) chemical reactions (e.g., aromatic C ring oxidation) that occur between biochar and the application environment may result in the release of harmful components. In this study, biochars with a potential risk to the environment were classified according to their harmful components, surface properties, structure, and particle size, and the potential negative environmental effects of these biochars and the mechanisms inducing these negative effects were reviewed. This article presents a comprehensive overview of the negative environmental impacts of biochar on soil, water, and atmospheric environments. It also summarizes various technical methods of environment-related risk detection and evaluation of biochar application, thereby providing a baseline reference and guiding significance for future biochar selection and toxicity detection, evaluation, and avoidance.
Collapse
Affiliation(s)
- Ling Xiang
- College of Environmental Science and Engineering, Hunan University, and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Shaoheng Liu
- College of Chemistry and Material Engineering, Hunan University of Arts and Science, Changde 415000, Hunan, PR China
| | - Shujing Ye
- College of Environmental Science and Engineering, Hunan University, and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Hailan Yang
- College of Environmental Science and Engineering, Hunan University, and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Biao Song
- College of Environmental Science and Engineering, Hunan University, and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Fanzhi Qin
- College of Environmental Science and Engineering, Hunan University, and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Maocai Shen
- College of Environmental Science and Engineering, Hunan University, and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Chang Tan
- College of Environmental Science and Engineering, Hunan University, and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Xiaofei Tan
- College of Environmental Science and Engineering, Hunan University, and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| |
Collapse
|
8
|
Jimenez-Lopez C, Fraga-Corral M, Carpena M, García-Oliveira P, Echave J, Pereira AG, Lourenço-Lopes C, Prieto MA, Simal-Gandara J. Agriculture waste valorisation as a source of antioxidant phenolic compounds within a circular and sustainable bioeconomy. Food Funct 2020; 11:4853-4877. [DOI: 10.1039/d0fo00937g] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Agro-food industrial waste is currently being accumulated, pushing scientists to find recovery strategies to obtain bioactive compounds within a circular bioeconomy. Target phenolic compounds have shown market potential by means of optimization extraction techniques.
Collapse
Affiliation(s)
- C. Jimenez-Lopez
- Nutrition and Bromatology Group
- Analytical and Food Chemistry Department
- Faculty of Food Science and Technology
- University of Vigo
- E-32004 Ourense
| | - M. Fraga-Corral
- Nutrition and Bromatology Group
- Analytical and Food Chemistry Department
- Faculty of Food Science and Technology
- University of Vigo
- E-32004 Ourense
| | - M. Carpena
- Nutrition and Bromatology Group
- Analytical and Food Chemistry Department
- Faculty of Food Science and Technology
- University of Vigo
- E-32004 Ourense
| | - P. García-Oliveira
- Nutrition and Bromatology Group
- Analytical and Food Chemistry Department
- Faculty of Food Science and Technology
- University of Vigo
- E-32004 Ourense
| | - J. Echave
- Nutrition and Bromatology Group
- Analytical and Food Chemistry Department
- Faculty of Food Science and Technology
- University of Vigo
- E-32004 Ourense
| | - A. G. Pereira
- Nutrition and Bromatology Group
- Analytical and Food Chemistry Department
- Faculty of Food Science and Technology
- University of Vigo
- E-32004 Ourense
| | - C. Lourenço-Lopes
- Nutrition and Bromatology Group
- Analytical and Food Chemistry Department
- Faculty of Food Science and Technology
- University of Vigo
- E-32004 Ourense
| | - M. A. Prieto
- Nutrition and Bromatology Group
- Analytical and Food Chemistry Department
- Faculty of Food Science and Technology
- University of Vigo
- E-32004 Ourense
| | - J. Simal-Gandara
- Nutrition and Bromatology Group
- Analytical and Food Chemistry Department
- Faculty of Food Science and Technology
- University of Vigo
- E-32004 Ourense
| |
Collapse
|