1
|
Singh VK, Tiwari R, Rajneesh, Kumar A, Chauhan SB, Sudarshan M, Mehrotra S, Gautam V, Sundar S, Kumar R. Advancing Treatment for Leishmaniasis: From Overcoming Challenges to Embracing Therapeutic Innovations. ACS Infect Dis 2025; 11:47-68. [PMID: 39737830 DOI: 10.1021/acsinfecdis.4c00693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2025]
Abstract
Protozoan parasite infections, particularly leishmaniasis, present significant public health challenges in tropical and subtropical regions, affecting socio-economic status and growth. Despite advancements in immunology, effective vaccines remain vague, leaving drug treatments as the primary intervention. However, existing medications face limitations, such as toxicity and the rise of drug-resistant parasites. This presents an urgent need to identify new therapeutic targets for leishmaniasis treatment. Understanding the complex life cycle of Leishmania and its survival in host macrophages can provide insights into potential targets for intervention. Current treatments, including antimonials, amphotericin B, and miltefosine, are constrained by side effects, costs, resistance, and reduced efficacy. Exploring novel therapeutic targets within the parasite's physiology, such as key metabolic enzymes or essential surface proteins, may lead to the development of more effective and less toxic drugs. Additionally, innovative strategies like drug repurposing, combination therapies, and nanotechnology-based delivery systems could enhance efficacy and combat resistance, thus improving anti-leishmanial therapies.
Collapse
Affiliation(s)
- Vishal Kumar Singh
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences Banaras Hindu University, Varanasi-221005, U.P., India
| | - Rahul Tiwari
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences Banaras Hindu University, Varanasi-221005, U.P., India
| | - Rajneesh
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences Banaras Hindu University, Varanasi-221005, U.P., India
| | - Awnish Kumar
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences Banaras Hindu University, Varanasi-221005, U.P., India
| | - Shashi Bhushan Chauhan
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences Banaras Hindu University, Varanasi-221005, U.P., India
| | - Medhavi Sudarshan
- Department of Zoology, Jagat Narayan Lal College, Patliputra University, Khagaul, Patna-801105, India
| | - Sanjana Mehrotra
- Department of Human Genetics, Guru Nanak Dev University, Amritsar, Punjab-143005, India
| | - Vibhav Gautam
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences Banaras Hindu University, Varanasi-221005, U.P., India
| | - Shyam Sundar
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi-221005, U.P. India
| | - Rajiv Kumar
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences Banaras Hindu University, Varanasi-221005, U.P., India
| |
Collapse
|
2
|
da Rocha Torres Pavione N, de Moraes JVB, Ribeiro IC, de Castro RB, da Silva W, de Souza ACA, da Silva VHF, de Souza Vasconcellos R, da Costa Bressan G, Fietto JLR. Heterologous expression and biochemical characterization of the recombinant nucleoside triphosphate diphosphohydrolase 2 (LbNTPDase2) from Leishmania (Viannia) braziliensis. Purinergic Signal 2024; 20:509-520. [PMID: 37999896 PMCID: PMC11377403 DOI: 10.1007/s11302-023-09980-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/10/2023] [Indexed: 11/25/2023] Open
Abstract
Leishmania braziliensis is a pathogenic protozoan parasite that causes American Tegumentary Leishmaniasis (ATL), an important tropical neglected disease. ENTPDases are nucleotidases that hydrolyze intracellular and/or extracellular nucleotides. ENTPDases are known as regulators of purinergic signalling induced by extracellular nucleotides. Leishmania species have two isoforms of ENTPDase, and, particularly, ENTPDase2 seems to be involved in infectivity and virulence. In this study, we conducted the heterologous expression and biochemical characterization of the recombinant ENTPDase2 of L. braziliensis (rLbNTPDase2). Our results show that this enzyme is a canonical ENTPDase with apyrase activity, capable of hydrolysing triphosphate and diphosphate nucleotides, and it is dependent on divalent cations (calcium or magnesium). Substrate specificity was characterized as UDP>GDP>ADP>GTP>ATP=UTP. The enzyme showed optimal activity at a neutral to basic pH and was partially inhibited by suramin and DIDS. Furthermore, the low apparent Km for ADP suggests that the enzyme may play a role in adenosine-mediated signalling. The biochemical characterization of this enzyme can open new avenues for using LbNTPDase2 as a drug target.
Collapse
Affiliation(s)
- Nancy da Rocha Torres Pavione
- Biochemistry and Molecular Biology Department, Universidade Federal de Viçosa, Viçosa, MG, Brazil
- General Biology Department, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - João Victor Badaró de Moraes
- Biochemistry and Molecular Biology Department, Universidade Federal de Viçosa, Viçosa, MG, Brazil
- General Biology Department, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Isadora Cunha Ribeiro
- Biochemistry and Molecular Biology Department, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Raissa Barbosa de Castro
- Biochemistry and Molecular Biology Department, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Walmir da Silva
- Biochemistry and Molecular Biology Department, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | | | | | | | - Gustavo da Costa Bressan
- Biochemistry and Molecular Biology Department, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | | |
Collapse
|
3
|
Soni M, Srivastava G, Ramalingam K, Shakya AK, Siddiqi MI, Pratap JV. Identification of potent inhibitors for Leishmania donovani homoserine kinase: an integrated in silico and kinetic study. J Biomol Struct Dyn 2023; 42:13923-13938. [PMID: 37962849 DOI: 10.1080/07391102.2023.2279279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023]
Abstract
Leishmaniasis is caused by ∼20 species of Leishmania that affects millions in endemic areas. Available therapies are not sufficient to effectively control the disease, cause severe side effects and eventually lead to drug resistance, making the discovery of novel therapeutic molecules an immediate need. Molecular target-based drug discovery, where the target is a defined molecular gene, protein or a mechanism, is a rationale driven approach for novel therapeutics. Humans obtain the essential amino acid such as threonine from dietary sources, while Leishmania synthesize it de-novo. Enzymes of the threonine biosynthesis pathway, including the rate limiting Homoserine kinase (HSK) which converts L-homoserine into ortho-phospho homoserine are thus attractive targets for rationale driven therapy. The absence of HSK in humans and its presence in Leishmania donovani enhances the opportunity to exploit HSK as a molecular target for anti-leishmanials therapeutic development. In this study, we utilize structure-based high throughput drug discovery (SBDD), followed by biochemical validation and identified two potential inhibitors (RH00038 and S02587) from Maybridge chemical library that targets L. donovani HSK. These two inhibitors effectively induced the mortality of Leishmania donovani in both amastigote and promastigote stages, with one of them being specific to parasite and twice as effective as the standard therapeutic molecule.
Collapse
Affiliation(s)
- Mohini Soni
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, UP, India
| | - Gaurava Srivastava
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Karthik Ramalingam
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Anil Kumar Shakya
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Mohammad Imran Siddiqi
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, UP, India
| | - J Venkatesh Pratap
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, UP, India
| |
Collapse
|
4
|
Soni M, Pratap JV. Development of Novel Anti-Leishmanials: The Case for Structure-Based Approaches. Pathogens 2022; 11:pathogens11080950. [PMID: 36015070 PMCID: PMC9414883 DOI: 10.3390/pathogens11080950] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 11/16/2022] Open
Abstract
The neglected tropical disease (NTD) leishmaniasis is the collective name given to a diverse group of illnesses caused by ~20 species belonging to the genus Leishmania, a majority of which are vector borne and associated with complex life cycles that cause immense health, social, and economic burdens locally, but individually are not a major global health priority. Therapeutic approaches against leishmaniasis have various inadequacies including drug resistance and a lack of effective control and eradication of the disease spread. Therefore, the development of a rationale-driven, target based approaches towards novel therapeutics against leishmaniasis is an emergent need. The utilization of Artificial Intelligence/Machine Learning methods, which have made significant advances in drug discovery applications, would benefit the discovery process. In this review, following a summary of the disease epidemiology and available therapies, we consider three important leishmanial metabolic pathways that can be attractive targets for a structure-based drug discovery approach towards the development of novel anti-leishmanials. The folate biosynthesis pathway is critical, as Leishmania is auxotrophic for folates that are essential in many metabolic pathways. Leishmania can not synthesize purines de novo, and salvage them from the host, making the purine salvage pathway an attractive target for novel therapeutics. Leishmania also possesses an organelle glycosome, evolutionarily related to peroxisomes of higher eukaryotes, which is essential for the survival of the parasite. Research towards therapeutics is underway against enzymes from the first two pathways, while the third is as yet unexplored.
Collapse
Affiliation(s)
- Mohini Soni
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - J. Venkatesh Pratap
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Correspondence:
| |
Collapse
|
5
|
Paes-Vieira L, Rocco-Machado N, Freitas-Mesquita AL, Dos Santos Emiliano YS, Gomes-Vieira AL, de Almeida-Amaral EE, Meyer-Fernandes JR. Differential regulation of E-NTPdases during Leishmania amazonensis lifecycle and effect of their overexpression on parasite infectivity and virulence. Parasitol Int 2021; 85:102423. [PMID: 34298165 DOI: 10.1016/j.parint.2021.102423] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 06/28/2021] [Accepted: 07/16/2021] [Indexed: 10/20/2022]
Abstract
Infections caused by Leishmania amazonensis are characterized by a persistent parasitemia due to the ability of the parasite to modulate the immune response of macrophages. It has been proposed that ecto-nucleoside triphosphate diphosphohydrolase (E-NTPDases) could be able to suppress the host immune defense by reducing the ATP and ADP levels. The AMP generated from E-NTPDase activity can be subsequently hydrolyzed by ecto-nucleotidases, increasing the levels of adenosine, which can reduce the inflammatory response. In the present work, we provide new information about the role of E-NTPDases on infectivity and virulence of L. amazonensis. Our data demonstrate that not only the E-NTPDase activity is differentially regulated during the parasite development but also the expression of the genes ntpd1 and ntpd2. E-NTPDase activity increases significantly in axenic amastigotes and metacyclic promastigotes, both infective forms in mammalian host. A similar profile was found for mRNA levels of the ntpd1 and ntpd2 genes. Using parasites overexpressing the genes ntpd1 and ntpd2, we could demonstrate that L. amazonensis promastigotes overexpressing ntpd2 gene show a remarkable increase in their ability to interact with macrophages compared to controls. In addition, both ntpd1 and ntpd2-overexpressing parasites were more infective to macrophages than controls. The kinetics of lesion formation by transfected parasites were similar to controls until the second week. However, twenty days post-infection, mice infected with ntpd1 and ntpd2-overexpressing parasites presented significantly reduced lesions compared to controls. Interestingly, parasite load reached similar levels among the different experimental groups. Thus, our data show a non-linear relationship between higher E-NTPDase activity and lesion formation. Previous studies have correlated increased ecto-NTPDase activity with virulence and infectivity of Leishmania parasites. Based in our results, we are suggesting that the induced overexpression of E-NTPDases in L. amazonensis could increase extracellular adenosine levels, interfering with the balance of the immune response to promote the pathogen clearance and maintain the host protection.
Collapse
Affiliation(s)
- Lisvane Paes-Vieira
- Laboratório de Bioquímica Celular, Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| | - Nathália Rocco-Machado
- Laboratório de Bioquímica Celular, Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Anita Leocadio Freitas-Mesquita
- Laboratório de Bioquímica Celular, Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Yago Sousa Dos Santos Emiliano
- Laboratório de Bioquímica de Tripanosomatideos, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz-FIOCRUZ, Pavilhão Leônidas Deane, 4° andar, sala 405A, Manguinhos, 21045-900 Rio de Janeiro, RJ, Brazil
| | - André Luiz Gomes-Vieira
- Instituto de Química, Departamento de Bioquímica, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, Brazil
| | - Elmo Eduardo de Almeida-Amaral
- Laboratório de Bioquímica de Tripanosomatideos, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz-FIOCRUZ, Pavilhão Leônidas Deane, 4° andar, sala 405A, Manguinhos, 21045-900 Rio de Janeiro, RJ, Brazil
| | - José Roberto Meyer-Fernandes
- Laboratório de Bioquímica Celular, Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagem, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
6
|
de Souza ACA, Castro RBD, Dos Santos YL, Pavione NDRT, Agripino JDM, Bahia MT, Machado-Coelho GLL, de Souza RF, de Oliveira LL, Souza CDSFD, Bressan GC, Vasconcellos RDS, de Almeida MR, Fietto JLR. High Performance of ELISA test using recombinant rLiNTPDase2 from Leishmania infantum: a Phase II diagnosis of Canine Visceral Leishmaniasis. Acta Trop 2020; 209:105535. [PMID: 32450137 DOI: 10.1016/j.actatropica.2020.105535] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 05/08/2020] [Accepted: 05/08/2020] [Indexed: 01/01/2023]
Abstract
Canine visceral leishmaniasis (CVL) has been the theme of several studies given the importance of dog as natural reservoir of the pathogen Leishmania infantum in endemic regions and its role on dissemination of CVL and human visceral Lesihmaniasis (VL). The current immunodiagnosis of CVL has limitations concerning accuracy, specificity and sensitivity. Therefore, improvements are required. rLiNTPDase2 has been previously highlighted as a new recombinant antigen from L. infantum to the CVL diagnosis by ELISA assay (rLiNTPDase2-ELISA). In this study, we aimed to evaluate rLiNTPDase2-ELISA in a Phase II study with 651 dog sera samples, also comparing it with methodologies previously established and used in epidemiology surveillance in Brazil, an endemic country of CVL and VL. The rLiNTPDase2-ELISA using standard control sera showed high capability to distinguish between positive and negative sera, sensitivity of 92.6% and specificity of 88.5%. The test was reproductive and the kappa statistics judgement "substantial agreement". rLiNTPDase2-ELISA does not show cross-reactivity with ehrlichiosis-reagent sera. However, we verified 15.3% of cross-reactivity with Chagas disease-reagent sera. The performance of rLiNTPDase2-ELISA was evaluated using sera samples from vaccinated dogs (Leish-Tec®). The results showed high agreement with parasitological and PCR results (sensitivity of 100.0% and specificity of 91.7%). Furthermore, we compared the performance of rLiNTPDase2-ELISA in CVL-reagent sera samples from endemic areas, which were previously diagnosed using other tests for CVL: immunofluorescent (IFI-LVC-Bio-Manguinhos), IFI-LVC-Bio-Manguinhos coupled to ELISA (EIE-LVC-Bio-Manguinhos) and the Rapid Dual Path Platform® (TR-DPP®-Bio-Manguinhos) coupled to EIE-LVC-Bio-Manguinhos. rLiNTPDase2-ELISA showed high level of concordance with IFI-LVC-Bio-Manguinhos (88.6%) and with IFI-LVC-Bio-Manguinhos coupled to EIE-LVC-Bio-Manguinhos (82.9%) but not with TR-DPP® -Bio-Manguinhos coupled to EIE-LVC-Bio-Manguinhos (33.3%), which casts doubts on the effectiveness of this latest test. In addition, the rLiNTPDase2 antigen adsorbed in 96-well plate was stable enough to be used at least for three months. Taken together, our data confirmed, by Phase II study using hundreds samples, the good potential of rLiNTPDase2-ELISA to be used in the field as a new diagnostic assay for CVL.
Collapse
Affiliation(s)
- Anna Cláudia Alves de Souza
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Av. P. H. Rolfs, s/n, Campus Universitário, CEP: 36570-000 Viçosa, MG, Brazil.
| | - Raissa Barbosa de Castro
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Av. P. H. Rolfs, s/n, Campus Universitário, CEP: 36570-000 Viçosa, MG, Brazil
| | - Yaro Luciolo Dos Santos
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Av. P. H. Rolfs, s/n, Campus Universitário, CEP: 36570-000 Viçosa, MG, Brazil
| | - Nancy da Rocha Torres Pavione
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Av. P. H. Rolfs, s/n, Campus Universitário, CEP: 36570-000 Viçosa, MG, Brazil
| | - Joice de Melo Agripino
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Av. P. H. Rolfs, s/n, Campus Universitário, CEP: 36570-000 Viçosa, MG, Brazil
| | - Maria Terezinha Bahia
- Núcleo de Pesquisa em Ciências Biológicas - NUPEB, Universidade Federal de Ouro Preto, Ouro Preto, CEP 35400-000, MG, Brazil
| | - George Luiz Lins Machado-Coelho
- Núcleo de Pesquisa em Ciências Biológicas - NUPEB, Universidade Federal de Ouro Preto, Ouro Preto, CEP 35400-000, MG, Brazil
| | - Ronny Francisco de Souza
- Coordenação do Curso de Biologia, Centro Universitário de Caratinga-UNEC, Fundação Educacional de Caratinga-FUNEC, Rua Niterói S/N°, Campus Caratinga, (Unidade II), CEP 35300-345, Caratinga/MG, Brazil
| | - Leandro Licursi de Oliveira
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Av. P. H. Rolfs, s/n, Campus Universitário, CEP: 36570-000 Viçosa, MG, Brazil
| | | | - Gustavo Costa Bressan
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Av. P. H. Rolfs, s/n, Campus Universitário, CEP: 36570-000 Viçosa, MG, Brazil
| | - Raphael de Souza Vasconcellos
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Av. P. H. Rolfs, s/n, Campus Universitário, CEP: 36570-000 Viçosa, MG, Brazil
| | - Márcia Rogéria de Almeida
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Av. P. H. Rolfs, s/n, Campus Universitário, CEP: 36570-000 Viçosa, MG, Brazil
| | - Juliana Lopes Rangel Fietto
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Av. P. H. Rolfs, s/n, Campus Universitário, CEP: 36570-000 Viçosa, MG, Brazil
| |
Collapse
|
7
|
Mule SN, Saad JS, Fernandes LR, Stolf BS, Cortez M, Palmisano G. Protein glycosylation inLeishmaniaspp. Mol Omics 2020; 16:407-424. [DOI: 10.1039/d0mo00043d] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Protein glycosylation is a co- and post-translational modification that, inLeishmaniaparasites, plays key roles in vector–parasite–vertebrate host interaction.
Collapse
Affiliation(s)
- Simon Ngao Mule
- GlycoProteomics Laboratory
- Department of Parasitology
- Institute of Biomedical Sciences
- University of Sao Paulo
- Sao Paulo - 05508-000
| | - Joyce Silva Saad
- GlycoProteomics Laboratory
- Department of Parasitology
- Institute of Biomedical Sciences
- University of Sao Paulo
- Sao Paulo - 05508-000
| | - Livia Rosa Fernandes
- GlycoProteomics Laboratory
- Department of Parasitology
- Institute of Biomedical Sciences
- University of Sao Paulo
- Sao Paulo - 05508-000
| | - Beatriz S. Stolf
- Department of Parasitology
- Institute of Biomedical Sciences
- University of Sao Paulo
- Sao Paulo
- Brazil
| | - Mauro Cortez
- Department of Parasitology
- Institute of Biomedical Sciences
- University of Sao Paulo
- Sao Paulo
- Brazil
| | - Giuseppe Palmisano
- GlycoProteomics Laboratory
- Department of Parasitology
- Institute of Biomedical Sciences
- University of Sao Paulo
- Sao Paulo - 05508-000
| |
Collapse
|
8
|
Maia ACRG, Porcino GN, Faria-Pinto P, Mendes TV, Antinarelli LMR, Coimbra ES, Reis AB, Juliano L, Juliano MA, Marques MJ, Vasconcelos EG. Leishmania infantum nucleoside triphosphate diphosphohydrolase 1 (NTPDase 1) B-domain: Antibody antiproliferative effect on the promastigotes and IgG subclass responses in canine visceral leishmaniasis. Vet Parasitol 2019; 271:38-44. [PMID: 31303201 DOI: 10.1016/j.vetpar.2019.06.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/06/2019] [Accepted: 06/07/2019] [Indexed: 11/17/2022]
Abstract
A nucleoside triphosphate diphosphohydrolase-1 (NTPDase 1) was identified on the surface, flagellum and kinetoplast from L. infantum promastigotes by immunocytochemistry and confocal laser scanning microscopy, using immune sera that recognized specifically the B domain of NTPDase 1 and produced against synthetic peptides (LbB1LJ and LbB2LJ) derived from this domain. The polyclonal antibodies had effective antileishmanial effect, reducing significantly in vitro promastigotes growth (21-25%), an antiproliferative effect also demonstrated by immune sera produced against recombinant r-pot B domain, and two other synthetic peptides (potB1LJ and potB2LJ). In addition, using these biomolecules in ELISA technique, IgG1 and IgG2 subclasses reactivities of either healthy dogs or infected by L. infantum and classified clinically as asymptomatic, oligosymptomatic and symptomatic were tested. Analysis of distinct IgG1 and IgG2 seropositivities patterns suggested antibody subclasses binding epitopes along B domain for protection against infection, indicating this domain as a new tool for prophylactic and immunotherapeutic investigations.
Collapse
Affiliation(s)
- Ana Carolina Ribeiro Gomes Maia
- Departamento de Bioquímica, Laboratório de Estrutura e Função de Proteínas, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Juiz de Fora, MG, Brazil.
| | - Gabriane Nascimento Porcino
- Departamento de Bioquímica, Laboratório de Estrutura e Função de Proteínas, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Juiz de Fora, MG, Brazil
| | - Priscila Faria-Pinto
- Departamento de Bioquímica, Laboratório de Estrutura e Função de Proteínas, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Juiz de Fora, MG, Brazil
| | - Túlio Vieira Mendes
- Hospital Naval Marcilio Dias, Marinha do Brasil, Doenças Infecciosas e Parasitárias, Rio de Janeiro, RJ, Brazil
| | - Luciana Maria Ribeiro Antinarelli
- Departamento de Parasitologia, Microbiologia e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Juiz de Fora, MG, Brazil
| | - Elaine Soares Coimbra
- Departamento de Parasitologia, Microbiologia e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Juiz de Fora, MG, Brazil
| | - Alexandre Barbosa Reis
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas & Departamento de Análises Clínicas, Escola de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
| | - Luiz Juliano
- Departamento de Biofísica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Maria Aparecida Juliano
- Departamento de Biofísica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Marcos José Marques
- Departamento de Ciências Biológicas, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Alfenas, MG, Brazil
| | - Eveline Gomes Vasconcelos
- Departamento de Bioquímica, Laboratório de Estrutura e Função de Proteínas, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Juiz de Fora, MG, Brazil
| |
Collapse
|