1
|
Ranjbaran M, Kaur S, Wang J, Raut B, Verma MS. A drop dispenser for simplifying on-farm detection of foodborne pathogens. PLoS One 2024; 19:e0315444. [PMID: 39739646 DOI: 10.1371/journal.pone.0315444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 11/25/2024] [Indexed: 01/02/2025] Open
Abstract
Nucleic-acid biosensors have emerged as useful tools for on-farm detection of foodborne pathogens on fresh produce. Such tools are specifically designed to be user-friendly so that a producer can operate them with minimal training and in a few simple steps. However, one challenge in the deployment of these biosensors is delivering precise sample volumes to the biosensor's reaction sites. To address this challenge, we developed an innovative drop dispenser using advanced 3D printing technology, combined with a hydrophilic surface chemistry treatment. This dispenser enables the generation of precise sample drops, containing DNA or bacterial samples, in volumes as small as a few micro-liters (∼20 to ∼33 μL). The drop generator was tested over an extended period to assess its durability and usability over time. The results indicated that the drop dispensers have a shelf life of approximately one month. In addition, the device was rigorously validated for nucleic acid testing, specifically by using loop-mediated isothermal amplification (LAMP) for the detection of Escherichia coli O157, a prevalent foodborne pathogen. To simulate real-world conditions, we tested the drop dispensers by integrating them into an on-farm sample collection system, ensuring they deliver samples accurately and consistently for nucleic acid testing in the field. Our results demonstrated similar performance to commercial pipettors in LAMP assays, with a limit of detection of 7.8×106 cells/mL for whole-cell detection. This combination of precision, ease of use, and durability make our drop dispenser a promising tool for enhancing the effectiveness of nucleic acid biosensors in the field.
Collapse
Affiliation(s)
- Mohsen Ranjbaran
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, Indiana, United States of America
- Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana, United States of America
| | - Simerdeep Kaur
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, Indiana, United States of America
- Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana, United States of America
| | - Jiangshan Wang
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, Indiana, United States of America
- Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana, United States of America
| | - Bibek Raut
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, United States of America
| | - Mohit S Verma
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, Indiana, United States of America
- Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana, United States of America
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, United States of America
| |
Collapse
|
2
|
Nichols H, Santin M, Maloney JG. Establishing the Performance of Next-Generation Amplicon Sequencing for Detection of Giardia duodenalis in Ready-to-Eat Packaged Leafy Greens. J Food Prot 2024; 87:100355. [PMID: 39216731 DOI: 10.1016/j.jfp.2024.100355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/23/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Giardia duodenalis is a globally distributed intestinal parasite that commonly infects both humans and animals. G. duodenalis is a species complex, which includes eight assemblages that vary both in genetic structure and host specificity. The prevalence of mixed-assemblage G. duodenalis cysts on food, an understudied infection route for G. duodenalis, remains unknown. In the present study, a method able to detect G. duodenalis mixed-assemblage infections using next-generation amplicon sequencing (NGS) of the beta-giardin gene was applied in combination with the US-FDA's BAM Chapter 19b protocol for the detection of G. duodenalis from fresh produce to ascertain the limit of detection of G. duodenalis on leafy greens. Ready-to-eat baby Romaine lettuce was inoculated with 5 (n = 5), 20 (n = 10), 100 (n = 10), 200 (n = 10), or 1,000 (n = 10) G. duodenalis cysts of the assemblage B strain H3. Detection of G. duodenalis was successful in 100% of the samples seeded with 1,000, 200, and 100 cysts, in 50% of the samples seeded with 20 cysts, and in none of the samples seeded with 5 cysts. We thus demonstrate robust detection of G. duodenalis on packaged leafy greens using the BAM Chapter 19B method coupled with assemblage-sensitive NGS. This protocol provides a new diagnostic tool useful for both prevalence studies and outbreak investigations involving fresh produce that may assist in better describing the role of G. duodenalis in foodborne illness and in protecting consumers from contaminated fresh produce.
Collapse
Affiliation(s)
- Holly Nichols
- Environmental Microbial and Food Safety Laboratory, Agricultural Research Service, U.S. Department of Agriculture, 20705 Beltsville, MD, USA.
| | - Monica Santin
- Environmental Microbial and Food Safety Laboratory, Agricultural Research Service, U.S. Department of Agriculture, 20705 Beltsville, MD, USA.
| | - Jenny G Maloney
- Environmental Microbial and Food Safety Laboratory, Agricultural Research Service, U.S. Department of Agriculture, 20705 Beltsville, MD, USA.
| |
Collapse
|
3
|
Sen S, Bhowmik P, Tiwari S, Peleg Y, Bandyopadhyay B. Versatility of reverse transcriptase loop-mediated isothermal amplification (RT-LAMP) from diagnosis of early pathological infection to mutation detection in organisms. Mol Biol Rep 2024; 51:211. [PMID: 38270670 DOI: 10.1007/s11033-023-09110-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 12/05/2023] [Indexed: 01/26/2024]
Abstract
Loop-mediated isothermal amplification (LAMP) is a rapid, state-of-the-art DNA amplification technology, used primarily for the quick diagnosis and early identification of microbial infection, caused by pathogens such as virus, bacteria and malaria. A target DNA can be amplified within 30 min using the LAMP reaction, taking place at a steady temperature. The LAMP method uses four or six primers to bind eight regions of a target DNA and has a very high specificity. The devices used for conducting LAMP are usually simple since the LAMP method is an isothermal process. When LAMP is coupled with Reverse Transcription (RT), it allows direct detection of RNA in a sample. This greatly enhances the efficiency of diagnosis of RNA viruses in a sample. Recently, the rampant spread of COVID-19 demanded such a rapid, simple, and cost-effective Point of Care Test (PoCT) for the accurate diagnosis of this pandemic. Loop-mediated isothermal amplification (LAMP) assays are not only used for the detection of microbial pathogens, but there are various other applications such as detection of genetic mutations in food and various organisms. In this review, various implementations of RT-LAMP techniques would be discussed.
Collapse
Affiliation(s)
- Srishti Sen
- School of Bioscience, Engineering and Technology, VIT Bhopal University, Bhopal, Madhya Pradesh, India
| | - Priyanka Bhowmik
- Department of Biological Sciences, School of Life Science and Biotechnology, Adamas University, Kolkata, India
| | - Shubhangi Tiwari
- School of Bioscience, Engineering and Technology, VIT Bhopal University, Bhopal, Madhya Pradesh, India
| | - Yoav Peleg
- Structural Proteomics Unit (SPU), Life Sciences Core Facilities (LSCF), Weizmann Institute of Science, Rehovot, Israel
| | - Boudhayan Bandyopadhyay
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, India.
| |
Collapse
|
4
|
Loop mediated isothermal amplification for detection of foodborne parasites: A journey from lab to lab-on-a-chip. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
5
|
Lalonde L, Oakley J, Fries P. Verification and Use of the US-FDA BAM 19b Method for Detection of Cyclospora cayetanensis in a Survey of Fresh Produce by CFIA Laboratory. Microorganisms 2022; 10:microorganisms10030559. [PMID: 35336134 PMCID: PMC8954584 DOI: 10.3390/microorganisms10030559] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/15/2022] [Accepted: 02/24/2022] [Indexed: 11/16/2022] Open
Abstract
To facilitate the harmonized surveillance and investigation of cyclosporiasis outbreaks in the US and Canada, we adapted and verified the US-FDA’s BAM 19b method and employed it in a national produce survey. Performance was verified by spiking 200, 10, 5 or 0 C. cayetanensis oocysts onto berries (50 ± 5 g, n = 85) and 200, 10 or 0 oocysts onto green onions (25 ± 3 g, n = 24) and leafy greens (25 ± 1 g, n = 120) and testing these samples by the BAM method on Bio-Rad CFX96. Method robustness was assessed by aging (0 or 7 days) and freezing the produce and washes prior to testing, then implementing the method for the surveillance testing of 1759 imported leafy green, herb and berry samples. Diagnostic sensitivity was 100/44% and 93/30% for berries and leafy greens spiked with 200/10 oocysts, respectively. The diagnostic and analytical specificity were 100% for all matrices and related parasites tested. The proportion positive was unaffected (p = 0.22) by age or condition of produce (7d, fresh, frozen) or wash concentrate (3d, fresh, frozen); however, the Cq values were higher (p = 0.009) for raspberries aged 7d (37.46 ± 0.29) compared to fresh (35.36 ± 0.29). C. cayetanensis was detected in berries (two), herbs (two) and leafy greens (one), representing 0.28% of the tested survey samples. These results independently verified the reported performance characteristics and robustness of the BAM method for the detection of C. cayetanensis in a variety of matrices, including under adverse sample conditions, using a unique detection platform and demonstrating its routine diagnostic use in our Canadian Food Inspection Agency (CFIA) laboratory.
Collapse
|
6
|
A cloth-based hybridization array system for rapid detection of the food- and waterborne protozoan parasites Giardia duodenalis, Cryptosporidium spp. and Toxoplasma gondii. Food Waterborne Parasitol 2021; 24:e00130. [PMID: 34458600 PMCID: PMC8379661 DOI: 10.1016/j.fawpar.2021.e00130] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 08/03/2021] [Accepted: 08/06/2021] [Indexed: 01/17/2023] Open
Abstract
Protozoan parasites in food or water samples are generally detected using microscopy or PCR followed by Sanger sequencing. However, microscopy is subjective, requires a high degree of expertise and has limited sensitivity, while DNA sequencing requires expensive and specialized equipment and facilities. This study describes a cloth-based hybridization array system (CHAS) that is an alternative to Sanger sequencing to confirm PCR-positive samples. CHAS is an inexpensive, rapid and reliable method for the simultaneous detection of multiple protozoan parasite species based on the colorimetric detection of PCR amplicons on a polyester cloth. PCR primers and CHAS hybridization probes were developed to detect the protozoan parasites Giardia duodenalis, Cryptosporidium spp. and Toxoplasma gondii. In addition, CHAS probes were designed for the differentiation of G. duodenalis Assemblages A and B. In artificially contaminated fresh produce (lettuce, parsley) and water samples (river water, wastewater), this CHAS assay allowed for the successful detection of G. duodenalis, Cryptosporidium spp., and T. gondii. The present study demonstrates that the CHAS detection method is a simple and inexpensive alternative to DNA sequencing for the confirmation of PCR-positive results in laboratories testing for parasites in food or water samples. This assay may also be beneficial in developing countries, where DNA sequencing facilities may not be readily available.
Collapse
|