1
|
Andre DP, Ruetten S, Rodríguez-Cabello JC, Jockenhoevel S, Schmitz-Rode T, Fernández-Colino A. Biohybrid Vascular Graft Made of Textile-Reinforced Elastin-Like Recombinamers and Its Preservation via Drying Processes. Adv Healthc Mater 2025:e2500482. [PMID: 40317912 DOI: 10.1002/adhm.202500482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/27/2025] [Indexed: 05/07/2025]
Abstract
Vascular grafts are crucial for treating cardiovascular diseases and providing vascular access for hemodialysis in end-stage renal disease, conditions that affect millions of people globally. To address the persisting clinical need for better therapy for these conditions, new designs involving novel materials and innovative tissue-engineered approaches are being developed. Successful clinical translation of such designs will require to ensure device safety, particularly sterility and mechanical integrity. The prevailing method for ensuring sterility is ethylene oxide sterilization, which requires a dry product. The challenge of drying biohybrid implants is substantial, as they contain multiple components (e.g., textile and hydrogel) with differing properties. To address this open question, the effects of different drying methods on the morphological and mechanical properties of biohybrid implants made from elastin-like recombinamers (ELRs) are investigated. For that, mechanical characteristics defined in ISO 7198, as well as the cell attachment behavior on biohybrid vascular grafts, treated either with lyophilization (LYO) or CO2-based critical point drying, are compared. The results show that the applied drying method can significantly influence the properties of the scaffolds and highlight the importance of developing implant-specific drying schemes that ensure its safety and functionality.
Collapse
Affiliation(s)
- Dominic Pascal Andre
- Department of Biohybrid and Medical Textiles (BioTex), AME-Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, 52074, Aachen, Germany
| | - Stephan Ruetten
- Electron Microscopy Facility, Uniklinik RWTH Aachen, 52074, Aachen, Germany
| | - José Carlos Rodríguez-Cabello
- Bioforge Lab, Group for Advanced Materials and Nanobiotechnology, Biomedical Networking Research Center of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Edificio LUCIA, Universidad de Valladolid, Valladolid, 47011, Spain
| | - Stefan Jockenhoevel
- Department of Biohybrid and Medical Textiles (BioTex), AME-Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, 52074, Aachen, Germany
| | - Thomas Schmitz-Rode
- AME-Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, 52074, Aachen, Germany
| | - Alicia Fernández-Colino
- Department of Biohybrid and Medical Textiles (BioTex), AME-Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, 52074, Aachen, Germany
| |
Collapse
|
2
|
Bo Y, Li Y. Multi-target mechanisms and potential applications of quercetin in the treatment of acne vulgaris. Front Pharmacol 2025; 16:1523905. [PMID: 40260380 PMCID: PMC12009773 DOI: 10.3389/fphar.2025.1523905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 03/26/2025] [Indexed: 04/23/2025] Open
Abstract
Acne vulgaris, a prevalent inflammatory dermatosis, afflicts approximately 90% of adolescents globally. Despite the efficacy of conventional therapies, including antibiotics and retinoids, their use is frequently limited by adverse effects and the emergence of drug resistance. Quercetin, a naturally occurring flavonoid, has garnered significant attention owing to its diverse biological activities, encompassing anti-inflammatory, antioxidant, antimicrobial, and immunomodulatory properties. This review comprehensively explores the multi-target mechanisms of quercetin in the treatment of acne, focusing on its ability to modulate inflammatory cytokine production, oxidative stress pathways, sebaceous gland activity, and microbial populations. Additionally, quercetin promotes skin barrier repair and reduces post-inflammatory hyperpigmentation and scarring through its antioxidant and anti-fibrotic effects. Despite promising in vitro and preclinical findings, challenges such as quercetin's low bioavailability and lack of robust clinical evidence necessitate further research. Advanced delivery systems, including nanoparticles and combination therapies, may optimize its therapeutic potential. This review provides insights into the molecular mechanisms and clinical applications of quercetin, highlighting its potential as a safe and effective alternative for acne management.
Collapse
Affiliation(s)
- Yang Bo
- Department of Dermatology, Sichuan Second Hospital of T.C.M, Chengdu, Sichuan, China
- Department of Dermatology, Institute of Traditional Chinese Medicine of Sichuan Academy of Chinese Medicine Sciences, Chengdu, Sichuan, China
| | - Yiming Li
- Department of Dermatology, Sichuan Second Hospital of T.C.M, Chengdu, Sichuan, China
- Department of Dermatology, Institute of Traditional Chinese Medicine of Sichuan Academy of Chinese Medicine Sciences, Chengdu, Sichuan, China
| |
Collapse
|
3
|
Parhizkary M, Jafari SM, Assadpour E, Enayati A, Kashiri M. Pea protein-coated nanoliposomal encapsulation of jujube phenolic extract with different stabilizers; characterization and in vitro release. Food Chem X 2024; 23:101771. [PMID: 39280214 PMCID: PMC11401102 DOI: 10.1016/j.fochx.2024.101771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/12/2024] [Accepted: 08/23/2024] [Indexed: 09/18/2024] Open
Abstract
Jujube, a fruit rich in phenolic compounds, is renowned for its potential health benefits, including lowering blood pressure, and exhibiting anti-cancer, and anti-inflammatory effects, attributed to its potent antioxidant properties. However, the application of these phenolics in food products is limited by their instability and low concentration in plant tissues. This study investigates the nanoencapsulation of jujube extract (JE) using nanoliposomes (NLs) coated with pea protein isolate (PPI) to enhance stability and bioavailability. NLs were prepared via the ethanol injection method and optimized through comprehensive characterization, including dynamic light scattering, polydispersity index, and zeta potential. The encapsulated JE showed improved antioxidant activity and controlled release profiles in simulated gastric fluid and simulated intestinal fluid. This research highlights the potential of PPI-coated NLs in stabilizing and enhancing the bioactivity of jujube phenolics, providing a promising approach for their integration into functional foods.
Collapse
Affiliation(s)
- Maedeh Parhizkary
- Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Seid Mahdi Jafari
- Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
- Halal Research Center of IRI, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran
| | - Elham Assadpour
- Food Industry Research Co., Gorgan, Iran
- Food and Bio-Nanotech International Research Center (Fabiano), Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | | | - Mahboobeh Kashiri
- Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| |
Collapse
|
4
|
Bhargav E, Mohammed N, Singh UN, Ramalingam P, Challa RR, Vallamkonda B, Ahmad SF, Dsnbk P, Pasala PK, Rudrapal M. A central composite design-based targeted quercetin nanoliposomal formulation: Optimization and cytotoxic studies on MCF-7 breast cancer cell lines. Heliyon 2024; 10:e37430. [PMID: 39296160 PMCID: PMC11409131 DOI: 10.1016/j.heliyon.2024.e37430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 09/21/2024] Open
Abstract
This study aimed to enhance the efficacy of quercetin (QT) by formulating it into a liposomal drug delivery system utilizing the concept of central composite design. The drug:lipid ratio, cholesterol concentration, and sonication time were selected as independent variables in the study. The vesicle and percentage entrapment efficiency were selected as the dependent variables. Quercetin nanoliposomes (QT-NLs) were prepared via a combination of ethanol injection and thin film hydration. The vesicle size and entrapment efficiency of all formulations were within the ranges of 100 nm and >80 %, respectively. The zeta potential value indicated the stability of the optimized formulation. The contour plots were used to select the desired batch range. SEM studies revealed an imperfect crystalline morphology without any unwanted agglomeration. MTT assays on VERO cell lines indicated the safety of the developed formulation. MTT assays of MCF-7 cells revealed IC50 values of 5.8 μM and 7.9 μM for QT-NLs and QT, respectively. In our study, the optimized formulation exhibited late and early apoptosis and necrosis when used to treat MCF-7 cells. S and G2/M cell cycle phases of MCF-7 cell arrest were confirmed by the cell cycle report. At sub-G0/G1 phase, 2.10 ± 1.1 %; G0/G1 phase, 34.13 ± 1.9 %; S phase, 34.55 ± 0.98 %; and G2/M phase, 26.24 ± 1.7 % of cell arrest were observed. The results demonstrated the effectiveness of the proposed design for the development of corn starch-coated QT-NLs and their activity in breast cancer cell lines.
Collapse
Affiliation(s)
- E Bhargav
- Raghavendra Institute of Pharmaceutical Education and Research, Anantapur, Andhra Pradesh, India
| | - Nawaz Mohammed
- Raghavendra Institute of Pharmaceutical Education and Research, Anantapur, Andhra Pradesh, India
| | - Udit Narayan Singh
- Raghavendra Institute of Pharmaceutical Education and Research, Anantapur, Andhra Pradesh, India
| | - P Ramalingam
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Hajipur, Bihar, India
| | - Ranadheer Reddy Challa
- Formulation and Development, Quotient Sciences, 3080 McCann Farm Dr, Garnet Valley, PA, USA
| | | | - Sheikh F Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh-11451, Saudi Arabia
| | - Prasanth Dsnbk
- School of Pharmacy & Technology Management, SVKM's Narsee Monjee Institute of Management Studies (NMIMS), Jadcherla, Hyderabad, India
| | - Praveen Kumar Pasala
- Raghavendra Institute of Pharmaceutical Education and Research, Anantapur, Andhra Pradesh, India
| | - Mithun Rudrapal
- Department of Pharmaceutical Sciences, School of Biotechnology and Pharmaceutical Sciences, Vignan's Foundation for Science, Technology & Research, Guntur, Andhra Pradesh, India
| |
Collapse
|
5
|
Li X, Zhang H, Mao X. Liposomes delivery systems of functional substances for precision nutrition. ADVANCES IN FOOD AND NUTRITION RESEARCH 2024; 112:257-300. [PMID: 39218504 DOI: 10.1016/bs.afnr.2024.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Natural bioactive compounds with antioxidant, antimicrobial, anticancer, and other biological activities are vital for maintaining the body's physiological functions and enhancing immunity. These compounds have great potential as nutritional therapeutic agents, but they can be limited due to their poor flavor, color, unstable nature, and poor water solubility, and degradation by gastrointestinal enzymes. Liposomes, as ideal carriers, can encapsulate both water-soluble and fat-soluble nutrients, enhance the bioavailability of functional substances, promote the biological activity of functional substances, and control the release of nutrients. Despite their potential, liposomes still face obstacles in nutrient delivery. Therefore, the design of liposomes for special needs, optimization of the liposome preparation process, enhancement of liposome encapsulation efficiency, and industrial production are key issues that must be addressed in order to develop food-grade liposomes. Moreover, the research on surface-targeted modification and surface functionalization of liposomes is valuable for expanding the scope of application of liposomes and achieving the release of functional substances from liposomes at the appropriate time and site. The establishment of in vivo and in vitro digestion models of nutrient-loaded liposomes, in-depth study of gastrointestinal digestive behavior after liposome ingestion, targeted nutrient release, and deciphering the nutritional intervention of human diseases and positive health promotion are promising fields with broad development prospects.
Collapse
Affiliation(s)
- Xuehan Li
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, P.R. China; Qingdao Key Laboratory of Food Biotechnology, Qingdao, P.R. China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao, P.R. China
| | - Haiyang Zhang
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, P.R. China; Qingdao Key Laboratory of Food Biotechnology, Qingdao, P.R. China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao, P.R. China
| | - Xiangzhao Mao
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, P.R. China; Qingdao Key Laboratory of Food Biotechnology, Qingdao, P.R. China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao, P.R. China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, P.R. China.
| |
Collapse
|
6
|
Pan L, Meng H, Li J, Liu Z, Zhang D, Liu Z, Zhao Q, Xu F. Enhancement of Astaxanthin Bioaccessibility by Encapsulation in Liposomes: An In Vitro Study. Molecules 2024; 29:1687. [PMID: 38675507 PMCID: PMC11051820 DOI: 10.3390/molecules29081687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/05/2024] [Accepted: 04/07/2024] [Indexed: 04/28/2024] Open
Abstract
Astaxanthin was encapsulated in liposomes by a thin layer dispersion and ultrasound method using soybean phospholipid. The digestion properties of liposomes for encapsulating astaxanthin were investigated in light of particle size, size distribution, zeta potential, and microstructure during in vitro digestion as a function of time. These results exhibited that the average particle size increased gradually with liposomal vesicles retained round shapes and a fairly uniform distribution after passage through the simulated gastric fluid digestion. The result revealed that astaxanthin-loaded liposomes were stable in low pH conditions. It was also found that the mixed micelles formed in a simulated intestinal fluid. The zeta potential of astaxanthin-loaded liposomes had a decrease in negativity after digestion. In comparison with free astaxanthin, there was an appreciable increase in the bioaccessibility of astaxanthin after encapsulation in liposomes. This enhancement can be attributed to more soluble astaxanthin in the mixed micelles for astaxanthin-loaded liposomes. It indicated that the barrier of the liposomal bilayer could inhibit astaxanthin fading and leaking after encapsulation in liposomes. These results provide useful information for designing more stable delivery systems in the gastrointestinal tract and improving the bioaccessibility of lipophilic nutraceuticals.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Qian Zhao
- Oil and Food Engineering Technology Research Center of the State Grain and Reserves Administration/Key Laboratory of Henan Province, Henan University of Technology, Zhengzhou 450001, China; (L.P.); (H.M.); (J.L.); (Z.L.); (D.Z.); (Z.L.); (Q.Z.)
| | - Fei Xu
- Oil and Food Engineering Technology Research Center of the State Grain and Reserves Administration/Key Laboratory of Henan Province, Henan University of Technology, Zhengzhou 450001, China; (L.P.); (H.M.); (J.L.); (Z.L.); (D.Z.); (Z.L.); (Q.Z.)
| |
Collapse
|
7
|
Ye ZW, Yang QY, Lin QH, Liu XX, Li FQ, Xuan HD, Bai YY, Huang YP, Wang L, Wang F. Progress of nanopreparation technology applied to volatile oil drug delivery systems. Heliyon 2024; 10:e24302. [PMID: 38293491 PMCID: PMC10825498 DOI: 10.1016/j.heliyon.2024.e24302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 02/01/2024] Open
Abstract
Traditional Chinese medicine volatile oil has a long history and possesses extensive pharmacological activity. However, volatile oils have characteristics such as strong volatility, poor water solubility, low bioavailability, and poor targeting, which limit their application. The use of volatile oil nano drug delivery systems can effectively improve the drawbacks of volatile oils, enhance their bioavailability and chemical stability, and reduce their volatility and toxicity. This article first introduces the limitations of the components of traditional Chinese medicine volatile oils, discusses the main classifications and latest developments of volatile oil nano formulations, and briefly describes the preparation methods of traditional Chinese medicine volatile oil nano formulations. Secondly, the limitations of nano formulation technology are discussed, along with future challenges and prospects. A deeper understanding of the role of nanotechnology in traditional Chinese medicine volatile oils will contribute to the modernization of volatile oils and broaden their application value.
Collapse
Affiliation(s)
- Zu-Wen Ye
- Cancer Research Centre, Jiangxi University of Chinese Medicine, 330004, China
| | - Qi-Yue Yang
- Affiliated Hospital of Chengdu University of Chinese Medicine, 610072, China
| | - Qiao-Hong Lin
- Cancer Research Centre, Jiangxi University of Chinese Medicine, 330004, China
| | - Xiao-Xia Liu
- Cancer Research Centre, Jiangxi University of Chinese Medicine, 330004, China
| | - Feng-Qin Li
- Cancer Research Centre, Jiangxi University of Chinese Medicine, 330004, China
| | - Hong-Da Xuan
- Cancer Research Centre, Jiangxi University of Chinese Medicine, 330004, China
| | - Ying-Yan Bai
- Cancer Research Centre, Jiangxi University of Chinese Medicine, 330004, China
| | - Ya-Peng Huang
- Cancer Research Centre, Jiangxi University of Chinese Medicine, 330004, China
| | - Le Wang
- Cancer Research Centre, Jiangxi University of Chinese Medicine, 330004, China
| | - Fang Wang
- Cancer Research Centre, Jiangxi University of Chinese Medicine, 330004, China
| |
Collapse
|
8
|
Melchior S, Codrich M, Gorassini A, Mehn D, Ponti J, Verardo G, Tell G, Calzolai L, Calligaris S. Design and advanced characterization of quercetin-loaded nano-liposomes prepared by high-pressure homogenization. Food Chem 2023; 428:136680. [PMID: 37418880 PMCID: PMC10410694 DOI: 10.1016/j.foodchem.2023.136680] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/13/2023] [Accepted: 06/18/2023] [Indexed: 07/09/2023]
Abstract
Quercetin-loaded nano-liposomes were prepared by high-pressure homogenization (HPH) at different pressures (up to 150 MPa) and number of passes (up to 3) to define the best processing conditions allowing the lowest particle size and the highest encapsulation efficiency (EE). The process at 150 MPa for 1 pass was the best, producing quercetin-loaded liposomes with the lowest particle size and 42% EE. Advanced techniques (multi-detector asymmetrical-flow field flow fractionation and analytical ultracentrifugation combined with transmission electron microscopy) were further used for the characterization of the liposomes which were oblong in shape (ca. 30 nm). Results highlight the need for several techniques to study nano-sized, polydisperse samples. The potential of quercetin-loaded liposomes against colon cancer cells was demonstrated. Results prove that HPH is an efficient and sustainable method for liposome preparation and highlight the remarkable role of process optimisation as well as the powerfulness of advanced methodologies for the characterisation of nano-structures.
Collapse
Affiliation(s)
- Sofia Melchior
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy.
| | - Marta Codrich
- Department of Medicine, University of Udine, Udine, Italy
| | - Andrea Gorassini
- Department of Humanities and Cultural Heritage, University of Udine, Udine, Italy
| | - Dora Mehn
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Jessica Ponti
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Giancarlo Verardo
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| | - Gianluca Tell
- Department of Medicine, University of Udine, Udine, Italy
| | - Luigi Calzolai
- European Commission, Joint Research Centre (JRC), Ispra, Italy.
| | - Sonia Calligaris
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| |
Collapse
|
9
|
Hassane Hamadou A, Zhang J, Li H, Chen C, Xu B. Modulating the glycemic response of starch-based foods using organic nanomaterials: strategies and opportunities. Crit Rev Food Sci Nutr 2023; 63:11942-11966. [PMID: 35900010 DOI: 10.1080/10408398.2022.2097638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Traditionally, diverse natural bioactive compounds (polyphenols, proteins, fatty acids, dietary fibers) are used as inhibitors of starch digestive enzymes for lowering glycemic index (GI) and preventing type 2 diabetes mellitus (T2DM). In recent years, organic nanomaterials (ONMs) have drawn a great attention because of their ability to overcome the stability and solubility issues of bioactive. This review aimed to elucidate the implications of ONMs in lowering GI and as encapsulating agents of enzymes inhibitors. The major ONMs are presented. The mechanisms underlying the inhibition of enzymes, the stability within the gastrointestinal tract (GIT) and safety of ONMs are also provided. As a result of encapsulation of bioactive in ONMs, a more pronounced inhibition of enzymes was observed compared to un-encapsulated bioactive. More importantly, the lower the size of ONMs, the higher their inhibitory effects due to facile binding with enzymes. Additionally, in vivo studies exhibited the potentiality of ONMs for protection and sustained release of insulin for GI management. Overall, regulating the GI using ONMs could be a safe, robust and viable alternative compared to synthetic drugs (acarbose and voglibose) and un-encapsulated bioactive. Future researches should prioritize ONMs in real food products and evaluate their safety on a case-by-case basis.
Collapse
Affiliation(s)
| | - Jiyao Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Haiteng Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Chao Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Bin Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
10
|
Dymek M, Olechowska K, Hąc-Wydro K, Sikora E. Liposomes as Carriers of GHK-Cu Tripeptide for Cosmetic Application. Pharmaceutics 2023; 15:2485. [PMID: 37896245 PMCID: PMC10610410 DOI: 10.3390/pharmaceutics15102485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Liposomes are self-assembled spherical systems composed of amphiphilic phospholipids. They can be used as carriers of both hydrophobic and hydrophilic substances, such as the anti-aging and wound-healing copper-binding peptide, GHK-Cu (glycyl-L-histidyl-L-lysine). Anionic (AL) and cationic (CL) hydrogenated lecithin-based liposomes were obtained as GHK-Cu skin delivery systems using the thin-film hydration method combined with freeze-thaw cycles and the extrusion process. The influence of total lipid content, lipid composition and GHK-Cu concentration on the physicochemical properties of liposomes was studied. The lipid bilayer fluidity and the peptide encapsulation efficiency (EE) were also determined. Moreover, in vitro assays of tyrosinase and elastase inhibition were performed. Stable GHK-Cu-loaded liposome systems of small sizes (approx. 100 nm) were obtained. The bilayer fluidity was higher in the case of cationic liposomes. As the best carriers, 25 mg/cm3 CL and AL hydrated with 0.5 mg/cm3 GHK-Cu were selected with EE of 31.7 ± 0.9% and 20.0 ± 2.8%, respectively. The obtained results confirmed that the liposomes can be used as carriers for biomimetic peptides such as copper-binding peptide and that the GHK-Cu did not significantly affect the tyrosinase activity but led to 48.90 ± 2.50% elastase inhibition, thus reducing the rate of elastin degeneration and supporting the structural integrity of the skin.
Collapse
Affiliation(s)
- Michał Dymek
- Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 31-155 Kraków, Poland;
| | - Karolina Olechowska
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland; (K.O.); (K.H.-W.)
| | - Katarzyna Hąc-Wydro
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland; (K.O.); (K.H.-W.)
| | - Elżbieta Sikora
- Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 31-155 Kraków, Poland;
| |
Collapse
|
11
|
Abd El-Emam MM, Mostafa M, Farag AA, Youssef HS, El-Demerdash AS, Bayoumi H, Gebba MA, El-Halawani SM, Saleh AM, Badr AM, El Sayed S. The Potential Effects of Quercetin-Loaded Nanoliposomes on Amoxicillin/Clavulanate-Induced Hepatic Damage: Targeting the SIRT1/Nrf2/NF-κB Signaling Pathway and Microbiota Modulation. Antioxidants (Basel) 2023; 12:1487. [PMID: 37627483 PMCID: PMC10451903 DOI: 10.3390/antiox12081487] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/16/2023] [Accepted: 07/19/2023] [Indexed: 08/27/2023] Open
Abstract
Amoxicillin/clavulanate (Co-Amox), a commonly used antibiotic for the treatment of bacterial infections, has been associated with drug-induced liver damage. Quercetin (QR), a naturally occurring flavonoid with pleiotropic biological activities, has poor water solubility and low bioavailability. The objective of this work was to produce a more bioavailable formulation of QR (liposomes) and to determine the effect of its intraperitoneal pretreatment on the amelioration of Co-Amox-induced liver damage in male rats. Four groups of rats were defined: control, QR liposomes (QR-lipo), Co-Amox, and Co-Amox and QR-lipo. Liver injury severity in rats was evaluated for all groups through measurement of serum liver enzymes, liver antioxidant status, proinflammatory mediators, and microbiota modulation. The results revealed that QR-lipo reduced the severity of Co-Amox-induced hepatic damage in rats, as indicated by a reduction in serum liver enzymes and total liver antioxidant capacity. In addition, QR-lipo upregulated antioxidant transcription factors SIRT1 and Nrf2 and downregulated liver proinflammatory signatures, including IL-6, IL-1β, TNF-α, NF-κB, and iNOS, with upregulation in the anti-inflammatory one, IL10. QR-lipo also prevented Co-Amox-induced gut dysbiosis by favoring the colonization of Lactobacillus, Bifidobacterium, and Bacteroides over Clostridium and Enterobacteriaceae. These results suggested that QR-lipo ameliorates Co-Amox-induced liver damage by targeting SIRT1/Nrf2/NF-κB and modulating the microbiota.
Collapse
Affiliation(s)
- Mahran Mohamed Abd El-Emam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt;
| | - Mahmoud Mostafa
- Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minia 61519, Egypt;
| | - Amina A. Farag
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Benha University, Banha 13518, Egypt;
| | - Heba S. Youssef
- Department of Physiology, Faculty of Medicine, Benha University, Benha 13518, Egypt;
| | - Azza S. El-Demerdash
- Laboratory of Biotechnology, Department of Microbiology, Agriculture Research Centre (ARC), Animal Health Research Institute (AHRI), Zagazig 44516, Egypt;
| | - Heba Bayoumi
- Department of Histology and Cell Biology, Faculty of Medicine, Benha University, Benha 13518, Egypt;
| | - Mohammed A. Gebba
- Department of Anatomy and Embryology, Faculty of Medicine, Benha University, Benha 13518, Egypt;
- Department of Anatomy and Embryology, Faculty of Medicine, Merit University, Sohag 82524, Egypt
| | - Sawsan M. El-Halawani
- Department of Biotechnology, Urology and Nephrology Center, Mansoura University, Mansoura 35516, Egypt;
| | - Abdulrahman M. Saleh
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt;
| | - Amira M. Badr
- Pharmacology and Toxicology Department, Faculty of Pharmacy, King Saud University, Riyadh P.O. Box 11451, Saudi Arabia
| | - Shorouk El Sayed
- Department of Microbiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt;
| |
Collapse
|
12
|
Zhang Y, Guan R, Huang H. Anti-Allergic Effects of Quercetin and Quercetin Liposomes in RBL-2H3 Cells. Endocr Metab Immune Disord Drug Targets 2023; 23:692-701. [PMID: 35761488 DOI: 10.2174/1871530322666220627151830] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 05/07/2022] [Accepted: 05/09/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Quercetin is a kind of flavonoid with important bioactivities, such as hypoglycemic, antioxidant, anti-inflammatory, and anti-allergic properties. Although it is unstable, it is worth exploring how to better exert its anti-allergic effect. OBJECTIVE The current study aimed to elucidate the anti-allergic effect of quercetin liposomes on RBL-2H3 cells in vitro. METHODS Quercetin liposomes were prepared to improve the anti-allergic activity of quercetin through a green thin-film dispersion method. We compared the anti-allergic effects of quercetin and quercetin liposomes in RBL-2H3 cells. The anti-allergic activity of the quercetin liposomes was evaluated by the level of β-hexosaminidase, histamine, Ca2+, IL-4, IL-8, and MCP-1. RESULTS The results showed that quercetin liposomes could significantly restrain the release of β-hexosaminidase and histamine, calcium influx, and the expression of inflammatory factors, whose effect is stronger than quercetin. CONCLUSION Collectively, our research suggests that the quercetin liposome can be used as a potential allergy antagonist.
Collapse
Affiliation(s)
- Yanhui Zhang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, China Jiliang University, Hangzhou, China
| | - Rongfa Guan
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, P.R. China
| | - Haizhi Huang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, China Jiliang University, Hangzhou, China
| |
Collapse
|
13
|
Stability of rutin using pectin-chitosan dual coating nanoliposomes. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
14
|
Hanmantrao M, Chaterjee S, Kumar R, Vishwas S, Harish V, Porwal O, Alrouji M, Alomeir O, Alhajlah S, Gulati M, Gupta G, Dua K, Singh SK. Development of Guar Gum-Pectin-Based Colon Targeted Solid Self-Nanoemulsifying Drug Delivery System of Xanthohumol. Pharmaceutics 2022; 14:2384. [PMID: 36365203 PMCID: PMC9693267 DOI: 10.3390/pharmaceutics14112384] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/29/2022] [Accepted: 11/02/2022] [Indexed: 09/19/2023] Open
Abstract
Present study deciphers development of oral polysaccharide-based colon targeted solid self-nanoemulsifying drug delivery system (S-SNEDDS) of xanthohumol (XH). Several studies have shown that XH has anti-inflammatory and antioxidant properties, suggesting that it could be a good candidate for the treatment of colorectal diseases (CRD). Despite its potential, XH has a low aqueous solubility. As a result, its bioavailability is constrained by the dissolution rate. The liquid (L)-SNEDDS was constituted using Labrafac PG as oil, Tween 80 as surfactant and Transcutol P as co-surfactant. The L-SNEDDS was then adsorbed onto the surface of guar gum and pectin and developed into S-SNEDDS powder. Ternary phase diagram was used to optimize the process of developing L-SNEDDS. The formulation showed mean droplet size of 118.96 ± 5.94 nm and zeta potential of -19.08 ± 0.95 mV and drug loading of 94.20 ± 4.71%. Dissolution studies carried out in medium containing rat caecal contents (RCC) represented the targeted release of S-SNEDDS powder. It was observed that S-SNEDDS showed less than 10% release XH in initial 5 h and rapid release occurred between the 5th and 10th hour. Results of cytotoxicity studies revealed good cytotoxicity of XH loaded S-SNEDDS for Caco2 cells as compared to raw-XH.
Collapse
Affiliation(s)
- Mahesh Hanmantrao
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, India
| | - Sourabh Chaterjee
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, India
| | - Rajan Kumar
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, India
| | - Sukriti Vishwas
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, India
| | - Vancha Harish
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, India
| | - Omji Porwal
- Department of Pharmacognosy, Faculty of Pharmacy, Tishk International University, Erbil 4401, Iraq
| | - Mohammed Alrouji
- Department of Medical Laboratories, College of Applied Medical Sciences, Shaqra University, Shaqra 11961, Saudi Arabia
| | - Othman Alomeir
- Department of Pharmacy Practice, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia
| | - Sharif Alhajlah
- Department of Medical Laboratories, College of Applied Medical Sciences, Shaqra University, Shaqra 11961, Saudi Arabia
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, India
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, Jagatpura, Jaipur 302017, India
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 602105, India
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun 248007, India
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, India
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| |
Collapse
|
15
|
Montes C, Villamayor N, Villaseñor MJ, Rios A. Distinctive sensing nanotool for free and nanoencapsulated quercetin discrimination based on S,N co-doped graphene dots. Anal Chim Acta 2022; 1230:340406. [DOI: 10.1016/j.aca.2022.340406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 08/08/2022] [Accepted: 09/14/2022] [Indexed: 11/29/2022]
|
16
|
Yang M, Lu X, Xu J, Liu X, Zhang W, Guan R, Zhong H. Cellular uptake, transport mechanism and anti-inflammatory effect of cyanidin-3-glucoside nanoliposomes in Caco-2/RAW 264.7 co-culture model. Front Nutr 2022; 9:995391. [PMID: 36225868 PMCID: PMC9549275 DOI: 10.3389/fnut.2022.995391] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/08/2022] [Indexed: 12/05/2022] Open
Abstract
Cyanidin-3-glucoside (C3G), which is the widest and richest anthocyanin (ACN) found in the edible fruit and vegetables, has been illustrated to perform a wide range of bioactivities. Nanoliposomes can inhibit C3G degradation and enhance the absorption rate of C3G as tools for conveying materials to particular locations. This experiment aims to study the absorption, transport and anti-inflammatory effects of C3G nanoliposomes in Caco-2/RAW 264.7 co-culture model, which symbolizes an intestinal inflammation system. The results indicated that the uptake and transport of C3G nanoliposomes by Caco-2/RAW 264.7 co-culture model were concentration-dependent as well as affected by temperature (37 and 4°C) and endocytic inhibitors, which revealed C3G nanoliposomes penetrate cells via endocytosis. Moreover, compared with C3G, C3G nanoliposomes significantly decreased pro-inflammatory cytokine expression (tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, IL-8), suggesting a stronger anti-inflammatory potential. Conclusively, the uptake of C3G nanoliposomes by Caco-2/RAW 264.7 co-culture model is mainly involved in macropinocytosis and endocytosis mediated by carrier protein (clathrin). C3G nanoliposomes may play a better role in the treatment of LPS-induced intestinal inflammation diseases.
Collapse
|
17
|
Viel AM, Figueiredo CCM, Granero FO, Silva LP, Ximenes VF, Godoy TM, Quintas LEM, Silva RMGD. Antiglycation, antioxidant and cytotoxicity activities of crude extract of Turnera ulmifolia L. before and after microencapsulation process. J Pharm Biomed Anal 2022; 219:114975. [DOI: 10.1016/j.jpba.2022.114975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 11/29/2022]
|
18
|
Rathod S, Arya S, Kanike S, Shah SA, Bahadur P, Tiwari S. Advances on nanoformulation approaches for delivering plant-derived antioxidants: A case of quercetin. Int J Pharm 2022; 625:122093. [PMID: 35952801 DOI: 10.1016/j.ijpharm.2022.122093] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 07/21/2022] [Accepted: 08/04/2022] [Indexed: 10/15/2022]
Abstract
Oxidative stress has been implicated in tumorigenic, cardiovascular, neuro-, and age-related degenerative changes. Antioxidants minimize the oxidative damage through neutralization of reactive oxygen species (ROS) and other causative agents. Ever since the emergence of COVID-19, plant-derived antioxidants have received enormous attention, particularly in the Indian subcontinent. Quercetin (QCT), a bio-flavonoid, exists in the glycosylated form in fruits, berries and vegetables. The antioxidant potential of QCT analogs relates to the number of free hydroxyl groups in their structure. Despite presence of these groups, QCT exhibits substantial hydrophobicity. Formulation scientists have tested nanotechnology-based approaches for its improved solubilization and delivery to the intended site of action. By the virtue of its hydrophobicity, QCT gets encapsulated in nanocarriers carrying hydrophobic domains. Apart from passive accumulation, active uptake of such formulations into the target cells can be facilitated through well-studied functionalization strategies. In this review, we have discussed the approaches of improving solubilization and bioavailability of QCT with the use of nanoformulations.
Collapse
Affiliation(s)
- Sachin Rathod
- UKA Tarsadia University, Maliba Pharmacy College, Gopal-Vidyanagar Campus, Surat 394350, India
| | - Shristi Arya
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) - Raebareli, Lucknow 226002, India
| | - Shirisha Kanike
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) - Raebareli, Lucknow 226002, India
| | - Shailesh A Shah
- UKA Tarsadia University, Maliba Pharmacy College, Gopal-Vidyanagar Campus, Surat 394350, India
| | - Pratap Bahadur
- Department of Chemistry, Veer Narmad South Gujarat University, Surat 395007, India
| | - Sanjay Tiwari
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) - Raebareli, Lucknow 226002, India.
| |
Collapse
|
19
|
Dymek M, Sikora E. Liposomes as biocompatible and smart delivery systems – The current state. Adv Colloid Interface Sci 2022; 309:102757. [DOI: 10.1016/j.cis.2022.102757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 08/12/2022] [Accepted: 08/16/2022] [Indexed: 11/01/2022]
|
20
|
Ferrara F, Benedusi M, Sguizzato M, Cortesi R, Baldisserotto A, Buzzi R, Valacchi G, Esposito E. Ethosomes and Transethosomes as Cutaneous Delivery Systems for Quercetin: A Preliminary Study on Melanoma Cells. Pharmaceutics 2022; 14:1038. [PMID: 35631628 PMCID: PMC9147749 DOI: 10.3390/pharmaceutics14051038] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/08/2022] [Accepted: 05/09/2022] [Indexed: 01/27/2023] Open
Abstract
The present study is aimed to design ethosomes and transethosomes for topical administration of quercetin. To overcome quercetin low bioavailability, scarce solubility and poor permeability that hamper its pharmaceutical use, the drug was loaded in ethosomes and transethosomes based on different concentrations of phosphatidylcholine. Vesicle morphology was studied by cryogenic transmission electron microscopy, while size distribution and quercetin entrapment capacity were evaluated up to 3 months, respectively, by photon correlation spectroscopy and high-performance liquid chromatography. The antioxidant property was studied by photochemiluminescence test. Quercetin release and permeation was investigated in vitro, using Franz cells associated to different membranes. In vitro assays were conducted on human keratinocytes and melanoma cells to study the behavior of quercetin-loaded nano-vesicular forms with respect to cell migration and proliferation. The results evidenced that both phosphatidylcholine concentration and quercetin affected the vesicle size. Quercetin entrapment capacity, antioxidant activity and size stability were controlled using transethosomes produced by the highest amount of phosphatidylcholine. In vitro permeation studies revealed an enhancement of quercetin permeation in the case of transethosomes with respect to ethosomes. Notably, scratch wound and migration assays suggested the potential of quercetin loaded-transethosomes as adjuvant strategy for skin conditions.
Collapse
Affiliation(s)
- Francesca Ferrara
- Department of Neuroscience and Rehabilitation, University of Ferrara, I-44121 Ferrara, Italy; (F.F.); (M.B.)
| | - Mascia Benedusi
- Department of Neuroscience and Rehabilitation, University of Ferrara, I-44121 Ferrara, Italy; (F.F.); (M.B.)
| | - Maddalena Sguizzato
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, I-44121-Ferrara, Italy or (M.S.); (R.C.)
| | - Rita Cortesi
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, I-44121-Ferrara, Italy or (M.S.); (R.C.)
| | - Anna Baldisserotto
- Department of Life Sciences and Biotechnology, University of Ferrara, I-44121 Ferrara, Italy; (A.B.); (R.B.)
| | - Raissa Buzzi
- Department of Life Sciences and Biotechnology, University of Ferrara, I-44121 Ferrara, Italy; (A.B.); (R.B.)
| | - Giuseppe Valacchi
- Department of Environmental and Prevention Sciences, University of Ferrara, I-44121 Ferrara, Italy
- Plants for Human Health Institute, Department of Animal Science, NC Research Campus Kannapolis, NC State University, Kannapolis, NC 28081, USA
- Department of Food and Nutrition, Kyung Hee University, Seoul 130-701, Korea
| | - Elisabetta Esposito
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, I-44121-Ferrara, Italy or (M.S.); (R.C.)
| |
Collapse
|
21
|
Jain H, Geetanjali D, Dalvi H, Bhat A, Godugu C, Srivastava S. Liposome mediated topical delivery of Ibrutinib and Curcumin as a synergistic approach to combat imiquimod induced psoriasis. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
22
|
A comparative study of liposomes and chitosomes for topical quercetin antioxidant therapy. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
23
|
Savitha S, Bhatkar N, Chakraborty S, Thorat BN. Onion quercetin: As immune boosters, extraction, and effect of dehydration. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
24
|
Craciunescu O, Icriverzi M, Florian PE, Roseanu A, Trif M. Mechanisms and Pharmaceutical Action of Lipid Nanoformulation of Natural Bioactive Compounds as Efficient Delivery Systems in the Therapy of Osteoarthritis. Pharmaceutics 2021; 13:1108. [PMID: 34452068 PMCID: PMC8399940 DOI: 10.3390/pharmaceutics13081108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/16/2021] [Accepted: 07/19/2021] [Indexed: 12/13/2022] Open
Abstract
Osteoarthritis (OA) is a degenerative joint disease. An objective of the nanomedicine and drug delivery systems field is to design suitable pharmaceutical nanocarriers with controllable properties for drug delivery and site-specific targeting, in order to achieve greater efficacy and minimal toxicity, compared to the conventional drugs. The aim of this review is to present recent data on natural bioactive compounds with anti-inflammatory properties and efficacy in the treatment of OA, their formulation in lipid nanostructured carriers, mainly liposomes, as controlled release systems and the possibility to be intra-articularly (IA) administered. The literature regarding glycosaminoglycans, proteins, polyphenols and their ability to modify the cell response and mechanisms of action in different models of inflammation are reviewed. The advantages and limits of using lipid nanoformulations as drug delivery systems in OA treatment and the suitable route of administration are also discussed. Liposomes containing glycosaminoglycans presented good biocompatibility, lack of immune system activation, targeted delivery of bioactive compounds to the site of action, protection and efficiency of the encapsulated material, and prolonged duration of action, being highly recommended as controlled delivery systems in OA therapy through IA administration. Lipid nanoformulations of polyphenols were tested both in vivo and in vitro models that mimic OA conditions after IA or other routes of administration, recommending their clinical application.
Collapse
Affiliation(s)
- Oana Craciunescu
- National Institute of R&D for Biological Sciences, 296 Splaiul Independentei, 060031 Bucharest, Romania;
| | - Madalina Icriverzi
- The Institute of Biochemistry of the Romanian Academy, 296 Splaiul Independentei, 060031 Bucharest, Romania; (M.I.); (P.E.F.); (A.R.)
| | - Paula Ecaterina Florian
- The Institute of Biochemistry of the Romanian Academy, 296 Splaiul Independentei, 060031 Bucharest, Romania; (M.I.); (P.E.F.); (A.R.)
| | - Anca Roseanu
- The Institute of Biochemistry of the Romanian Academy, 296 Splaiul Independentei, 060031 Bucharest, Romania; (M.I.); (P.E.F.); (A.R.)
| | - Mihaela Trif
- The Institute of Biochemistry of the Romanian Academy, 296 Splaiul Independentei, 060031 Bucharest, Romania; (M.I.); (P.E.F.); (A.R.)
| |
Collapse
|
25
|
Post-Processing Techniques for the Improvement of Liposome Stability. Pharmaceutics 2021; 13:pharmaceutics13071023. [PMID: 34371715 PMCID: PMC8309137 DOI: 10.3390/pharmaceutics13071023] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/25/2021] [Accepted: 06/30/2021] [Indexed: 02/06/2023] Open
Abstract
Liposomes have been utilized as a drug delivery system to increase the bioavailability of drugs and to control the rate of drug release at the target site of action. However, the occurrence of self-aggregation, coalescence, flocculation and the precipitation of aqueous liposomes during formulation or storage can cause degradation of the vesicle structure, leading to the decomposition of liposomes. To increase the stability of liposomes, post-processing techniques have been applied as an additional process to liposomes after formulation to remove water and generate dry liposome particles with a higher stability and greater accessibility for drug administration in comparison with aqueous liposomes. This review covers the effect of these techniques including freeze drying, spray drying and spray freeze drying on the stability, physicochemical properties and drug encapsulation efficiency of dry liposomes. The parameters affecting the properties of liposomes during the drying process are also highlighted in this review. In addition, the impact of using a protective agent to overcome such limitations of each process is thoroughly discussed through various studies.
Collapse
|
26
|
Sun Y, Chi J, Ye X, Wang S, Liang J, Yue P, Xiao H, Gao X. Nanoliposomes as delivery system for anthocyanins: Physicochemical characterization, cellular uptake, and antioxidant properties. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110554] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
27
|
Moholkar DN, Sadalage PS, Havaldar DV, Pawar KD. Engineering the liposomal formulations from natural peanut phospholipids for pH and temperature sensitive release of folic acid, levodopa and camptothecin. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 123:111979. [PMID: 33812607 DOI: 10.1016/j.msec.2021.111979] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 01/12/2021] [Accepted: 02/13/2021] [Indexed: 11/29/2022]
Abstract
The present study demonstrates the extraction and identification of phospholipids (PLs) from peanut seed for formulation of liposomes for pH and thermo-sensitive delivery and release of folic acid (FA), levodopa (DOPA) and, camptothecin (CPT). The TLC, FTIR and GC-MS based characterization of extracted peanut PLs showed phosphatidylethanolamine, cardiolipin and phosphatidic acid as major PLs and palmitic acid and oleic acid as major fatty acids. Liposomes (LSMs) of size 1-2 μm formulated by optimized thin-film hydration method were found to entrap FA, DOPA and CPT with 58, 61.4 and 52.12% efficiency, respectively with good stability. The effect of external stimuli like pH and temperature on the release pattern of FA, DOPA and CPT indicated that FA was optimally released at pH 10 and 57 °C, DOPA at pH 2 and 37 °C, while CPT was best released at pH 6 and 47 °C. When tested for the in vitro activity, DOPA released by DOPA@LSMs showed lower toxicity to 3T3 than to SH-SY5Y cells. Similarly, CPT released by CPT@LSMs showed remarkable anticancer activity against MCF-7 cells with an IC50 value of 17.99 μg/mL. Thus peanut PLs can be efficiently used for liposomal formulations for pH and thermo-sensitive release of drugs.
Collapse
Affiliation(s)
- Disha N Moholkar
- School of Nanoscience and Biotechnology, Shivaji University, Kolhapur, Maharashtra, India
| | | | - Darshana V Havaldar
- School of Nanoscience and Biotechnology, Shivaji University, Kolhapur, Maharashtra, India
| | - Kiran D Pawar
- School of Nanoscience and Biotechnology, Shivaji University, Kolhapur, Maharashtra, India.
| |
Collapse
|
28
|
Ethanol injection technique for liposomes formulation: An insight into development, influencing factors, challenges and applications. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102174] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
29
|
Song Z, Yin J, Xiao P, Chen J, Gou J, Wang Y, Zhang Y, Yin T, Tang X, He H. Improving Breviscapine Oral Bioavailability by Preparing Nanosuspensions, Liposomes and Phospholipid Complexes. Pharmaceutics 2021; 13:pharmaceutics13020132. [PMID: 33498470 PMCID: PMC7909566 DOI: 10.3390/pharmaceutics13020132] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/14/2021] [Accepted: 01/16/2021] [Indexed: 11/19/2022] Open
Abstract
Breviscapine (BVP), a flavonoid compound, is widely used in the treatment of cardiovascular and cerebrovascular diseases; however, the low oral bioavailability and short half-life properties limit its application. The aim of this study was to investigate the three preparations for improving its oral bioavailability: nanosuspensions (BVP-NS), liposomes (BVP-LP) and phospholipid complexes (BVP-PLC). In vitro and in vivo results suggested that these three could all significantly improved the cumulative released amount and oral bioavailability compared with physical mixture, in which BVP-PLC was the most optimal preparation with the relative bioavailability and mean retention time of 10.79 ± 0.25 (p < 0.01) and 471.32% (p < 0.01), respectively. Furthermore, the influence of drug-lipid ratios on the in vitro release and pharmacokinetic behavior of BVP-PLC was also studied and the results showed that 1:2 drug-lipid ratio was the most satisfactory one attributed to the moderate-intensity interaction between drug and phospholipid which could balance the drug loading and drug release very well.
Collapse
Affiliation(s)
- Zilin Song
- Department of Pharmaceutics, College of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China; (Z.S.); (J.Y.); (P.X.); (J.C.); (J.G.); (Y.W.); (Y.Z.); (X.T.)
| | - Jiaojiao Yin
- Department of Pharmaceutics, College of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China; (Z.S.); (J.Y.); (P.X.); (J.C.); (J.G.); (Y.W.); (Y.Z.); (X.T.)
| | - Peifu Xiao
- Department of Pharmaceutics, College of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China; (Z.S.); (J.Y.); (P.X.); (J.C.); (J.G.); (Y.W.); (Y.Z.); (X.T.)
| | - Jin Chen
- Department of Pharmaceutics, College of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China; (Z.S.); (J.Y.); (P.X.); (J.C.); (J.G.); (Y.W.); (Y.Z.); (X.T.)
| | - Jingxin Gou
- Department of Pharmaceutics, College of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China; (Z.S.); (J.Y.); (P.X.); (J.C.); (J.G.); (Y.W.); (Y.Z.); (X.T.)
| | - Yanjiao Wang
- Department of Pharmaceutics, College of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China; (Z.S.); (J.Y.); (P.X.); (J.C.); (J.G.); (Y.W.); (Y.Z.); (X.T.)
| | - Yu Zhang
- Department of Pharmaceutics, College of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China; (Z.S.); (J.Y.); (P.X.); (J.C.); (J.G.); (Y.W.); (Y.Z.); (X.T.)
| | - Tian Yin
- School of Food and Wine, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China;
| | - Xing Tang
- Department of Pharmaceutics, College of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China; (Z.S.); (J.Y.); (P.X.); (J.C.); (J.G.); (Y.W.); (Y.Z.); (X.T.)
| | - Haibing He
- Department of Pharmaceutics, College of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China; (Z.S.); (J.Y.); (P.X.); (J.C.); (J.G.); (Y.W.); (Y.Z.); (X.T.)
- Correspondence:
| |
Collapse
|
30
|
Eid J, Jraij A, Greige-Gerges H, Monticelli L. Effect of quercetin on lipid membrane rigidity: assessment by atomic force microscopy and molecular dynamics simulations. BBA ADVANCES 2021; 1:100018. [PMID: 37082004 PMCID: PMC10074961 DOI: 10.1016/j.bbadva.2021.100018] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Quercetin (3,3',4',5,7-pentahydroxyl-flavone) is a natural flavonoid with many valuable biological effects, but its solubility in water is low, posing major limitations in applications. Quercetin encapsulation in liposomes increases its bioavailability; the drug effect on liposome elastic properties is required for formulation development. Here, we quantify the effect of quercetin molecules on the rigidity of lipoid E80 liposomes using atomic force microscopy (AFM) and molecular dynamics (MD) simulations. AFM images show no effect of quercetin molecules on liposomes morphology and structure. However, AFM force curves suggest that quercetin softens lipid membranes; the Young modulus measured for liposomes encapsulating quercetin is smaller than that determined for blank liposomes. We then used MD simulations to interpret the effect of quercetin on membrane rigidity in terms of molecular interactions. The decrease in membrane rigidity was confirmed by the simulations, which also revealed that quercetin affects structural and dynamic properties: membrane thickness is decreased, acyl chains disorder is increased, and diffusion coefficients of lipid molecules are also increased. Such changes appear to be related to the preferential localization of quercetin within the membrane, near the interface between the hydrophobic core and polar head groups of the lipids.
Collapse
Affiliation(s)
- Jad Eid
- Bioactive Molecules Research Laboratory, Doctoral School of Sciences and Technologies, Faculty of Sciences, Lebanese University, Lebanon
- Molecular Microbiology and Structural Biochemistry (MMSB), CNRS & Univ. Claude Bernard Lyon I, UMR 5086, Lyon F-69007, France
| | - Alia Jraij
- Bioactive Molecules Research Laboratory, Doctoral School of Sciences and Technologies, Faculty of Sciences, Lebanese University, Lebanon
- Corresponding authors.
| | - Hélène Greige-Gerges
- Bioactive Molecules Research Laboratory, Doctoral School of Sciences and Technologies, Faculty of Sciences, Lebanese University, Lebanon
| | - Luca Monticelli
- Molecular Microbiology and Structural Biochemistry (MMSB), CNRS & Univ. Claude Bernard Lyon I, UMR 5086, Lyon F-69007, France
- Corresponding authors.
| |
Collapse
|
31
|
Aguilar-Pérez KM, Avilés-Castrillo JI, Medina DI, Parra-Saldivar R, Iqbal HMN. Insight Into Nanoliposomes as Smart Nanocarriers for Greening the Twenty-First Century Biomedical Settings. Front Bioeng Biotechnol 2020; 8:579536. [PMID: 33384988 PMCID: PMC7770187 DOI: 10.3389/fbioe.2020.579536] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 11/24/2020] [Indexed: 02/05/2023] Open
Abstract
The necessity to develop more efficient, biocompatible, patient compliance, and safer treatments in biomedical settings is receiving special attention using nanotechnology as a potential platform to design new drug delivery systems (DDS). Despite the broad range of nanocarrier systems in drug delivery, lack of biocompatibility, poor penetration, low entrapment efficiency, and toxicity are significant challenges that remain to address. Such practices are even more demanding when bioactive agents are intended to be loaded on a nanocarrier system, especially for topical treatment purposes. For the aforesaid reasons, the search for more efficient nano-vesicular systems, such as nanoliposomes, with a high biocompatibility index and controlled releases has increased considerably in the past few decades. Owing to the stratum corneum layer barrier of the skin, the in-practice conventional/conformist drug delivery methods are inefficient, and the effect of the administered therapeutic cues is limited. The current advancement at the nanoscale has transformed the drug delivery sector. Nanoliposomes, as robust nanocarriers, are becoming popular for biomedical applications because of safety, patient compliance, and quick action. Herein, we reviewed state-of-the-art nanoliposomes as a smart and sophisticated drug delivery approach. Following a brief introduction, the drug delivery mechanism of nanoliposomes is discussed with suitable examples for the treatment of numerous diseases with a brief emphasis on fungal infections. The latter half of the work is focused on the applied perspective and clinical translation of nanoliposomes. Furthermore, a detailed overview of clinical applications and future perspectives has been included in this review.
Collapse
Affiliation(s)
| | | | | | | | - Hafiz M. N. Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, Mexico
| |
Collapse
|
32
|
Impact of Quercetin Encapsulation with Added Phytosterols on Bilayer Membrane and Photothermal-Alteration of Novel Mixed Soy Lecithin-Based Liposome. NANOMATERIALS 2020; 10:nano10122432. [PMID: 33291386 PMCID: PMC7762074 DOI: 10.3390/nano10122432] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 01/08/2023]
Abstract
This study used highly lipophilic agents with an aim to increase the oxidant inhibitory activity and enhance photothermal stability of a novel mixed soy lecithin (ML)-based liposome by changing the composition of formulation within the membrane. Specifically, the development and optimization of the liposome intended for improving Trolox equivalent antioxidant capacity (TEAC) value and %TEAC loss was carried out by incorporating a natural antioxidant, quercetin (QU). In this context, a focus was set on QU encapsulation in ML-based liposomes and the concentration-dependent solubility of QU was investigated and calculated as encapsulation efficiency (EE). To explore the combined effects of the incorporation of plant sterols on the integrity and entrapment capacity of mixed phospholipid vesicles, conjugation of two types of phytosterols (PSs), namely β-sitosterol (βS) and stigmasterol (ST), to mixed membranes at different ratios was also performed. The EE measurement revealed that QU could be efficiently encapsulated in the stable ML-based liposome using 0.15 and 0.1 g/100 mL of βS and ST, respectively. The aforementioned liposome complex exhibited a considerable TEAC (197.23%) and enhanced TEAC loss (30.81%) when exposed to ultraviolet (UV) light (280-320 nm) over a 6 h duration. It appeared that the presence and type of PSs affect the membrane-integration characteristics as well as photodamage transformation of the ML-based liposome. The association of QU with either βS or ST in the formulation was justified by their synergistic effects on the enhancement of the EE of liposomes. Parallel to this, it was demonstrated that synergistic PS effects could be in effect in the maintenance of membrane order of the ML-based liposome. The findings presented in this study provided useful information for the development and production of stable QU-loaded ML-based liposomes for food and nutraceutical applications and could serve as a potential mixed lipids-based delivery system in the disease management using antioxidant therapy.
Collapse
|
33
|
Modified magnetic core-shell mesoporous silica nano-formulations with encapsulated quercetin exhibit anti-amyloid and antioxidant activity. J Inorg Biochem 2020; 213:111271. [PMID: 33069945 DOI: 10.1016/j.jinorgbio.2020.111271] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 09/04/2020] [Accepted: 10/02/2020] [Indexed: 12/28/2022]
Abstract
Targeted tissue drug delivery is a challenge in contemporary nanotechnologically driven therapeutic approaches, with the interplay interactions between nanohost and encapsulated drug shaping the ultimate properties of transport, release and efficacy of the drug at its destination. Prompted by the need to pursue the synthesis of such hybrid systems, a family of modified magnetic core-shell mesoporous silica nano-formulations was synthesized with encapsulated quercetin, a natural flavonoid with proven bioactivity. The new nanocarriers were produced via the sol-gel process, using tetraethoxysilane as a precursor and bearing a magnetic core of surface-modified monodispersed magnetite colloidal superparamagnetic nanoparticles, subsequently surface-modified with polyethylene glycol 3000 (PEG3k). The arising nano-formulations were evaluated for their textural and structural properties, exhibiting enhanced solubility and stability in physiological media, as evidenced by the loading capacity, entrapment efficiency results and in vitro release studies of their load. Guided by the increased bioavailability of quercetin in its encapsulated form, further evaluation of the biological activity of the magnetic as well as non-magnetic core-shell nanoparticles, pertaining to their anti-amyloid and antioxidant potential, revealed interference with the aggregation of β-amyloid peptide (Aβ) in Alzheimer's disease, reduction of Aβ cellular toxicity and minimization of Aβ-induced Reactive Oxygen Species (ROS) generation. The data indicate that the biological properties of released quercetin are maintained in the presence of the host nanocarriers. Collectively, the findings suggest that the emerging hybrid nano-formulations can function as efficient nanocarriers of hydrophobic natural flavonoids in the development of multifunctional nanomaterials toward therapeutic applications.
Collapse
|
34
|
Hızır-Kadı İ, Gültekin-Özgüven M, Altin G, Demircan E, Özçelik B. Liposomal nanodelivery systems generated from proliposomes for pollen extract with improved solubility and in vitro bioaccessibility. Heliyon 2020; 6:e05030. [PMID: 32995656 PMCID: PMC7511908 DOI: 10.1016/j.heliyon.2020.e05030] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/03/2020] [Accepted: 09/18/2020] [Indexed: 11/28/2022] Open
Abstract
This study offers a suitable and easy proliposome-liposome method that enhances the encapsulation ability of liposome structures on poor water-soluble extracts. Pollen phenolic extract (PPE) was studied to show applicability in the proposed method. The poor water-soluble PPE (0.2%, w/v) was encapsulated by liposomes generated from proliposomes (P-liposomes) that were prepared via high-pressure homogenization technique without using any organic solvents and high temperature. Only a few drops of ethanol were used to dissolve poor water-soluble compounds in PPE during the preparation of P-liposomes. The trace amount of ethanol maintained the improvement of PPE solubility in P-liposome dispersion, hence the in vitro bioaccessibility and bioactivity of PPE incorporated in P-liposomes increased. Thus, higher encapsulation efficiency was found in P-liposomes compared to conventional liposomes (C-liposomes) in which the EE was 75 and 73%, respectively. To increase the physical stability of liposome structures, the surface of both P-liposomes and C-liposomes was covered with chitosan. There were found small changes between P-liposomes and C-liposomes in terms of mean diameter size and zeta potential. On the other hand, the bioactivity of encapsulated PPE showed differences in P-liposomes and C-liposomes. The antioxidant capacity of PPE in P-liposomes enhanced approximately two times in CUPRAC and three times in DPPH assays. Also, in vitro bioaccessibility of PPE in P-liposomes increased approximately 4 and 2 folds, respectively, regarding total phenolics and flavonoids. To our knowledge, this is the first report about the increment of encapsulation behavior of liposome structures on low water-soluble extract within an aqueous media.
Collapse
Affiliation(s)
- İlayda Hızır-Kadı
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, TR-34469, Istanbul, Turkey
| | - Mine Gültekin-Özgüven
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, TR-34469, Istanbul, Turkey
| | - Gokce Altin
- Molecular Engineering & Sciences Institute, University of Washington, 3946 W Stevens Way NE, 98105, Seattle, WA, USA
| | - Evren Demircan
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, TR-34469, Istanbul, Turkey
| | - Beraat Özçelik
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, TR-34469, Istanbul, Turkey.,BIOACTIVE Research & Innovation Food Manufac. Indust. Trade Ltd., Katar Street, Teknokent ARI-3, B110, Sarıyer, 34467, Istanbul, Turkey
| |
Collapse
|
35
|
Fernandes M, Lopes I, Teixeira J, Botelho C, Gomes AC. Exosome-like Nanoparticles: A New Type of Nanocarrier. Curr Med Chem 2020; 27:3888-3905. [PMID: 30706777 DOI: 10.2174/0929867326666190129142604] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 11/23/2018] [Accepted: 01/17/2019] [Indexed: 12/12/2022]
Abstract
Nanoparticles are one of the most commonly used systems for imaging or therapeutic drug delivery. Exosomes are nanovesicular carriers that transport cargo for intercellular communication. These nanovesicles are linked to the pathology of some major diseases, in some cases with a central role in their progression. The use of these carriers to transport therapeutic drugs is a recent and promising approach to treat diseases such as cancer and Alzheimer disease. The physiological production of these structures is limited impairing its collection and subsequent purification. These drawbacks inspired the search for mimetic alternatives. The collection of exosome-like nanoparticles from plants can be a good alternative, since they are easier to extract and do not have the drawbacks of those produced in animal cells. Both natural and synthetic exosome-like nanoparticles, produced from serial extrusion of cells or by bottom up synthesis, are currently some of the most promising, biocompatible, high efficiency systems for drug delivery.
Collapse
Affiliation(s)
- Mário Fernandes
- Centre of Biological Engineering (CEB), Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal.,Centre of Molecular and Environmental Biology (CBMA), Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Ivo Lopes
- Centre of Biological Engineering (CEB), Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal.,Centre of Molecular and Environmental Biology (CBMA), Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - José Teixeira
- Centre of Biological Engineering (CEB), Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Cláudia Botelho
- Centre of Biological Engineering (CEB), Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal.,Centre of Molecular and Environmental Biology (CBMA), Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Andreia C Gomes
- Centre of Molecular and Environmental Biology (CBMA), Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| |
Collapse
|
36
|
Nadaf SJ, Killedar SG. Nanoliposome Precursors for Shape Modulation: Use of Heuristic Algorithm and QBD Principles for Encapsulating Phytochemicals. Curr Drug Deliv 2020; 17:599-612. [PMID: 32394839 DOI: 10.2174/1567201817666200512102532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 02/17/2020] [Accepted: 04/18/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Screening of multiple methods is worthless for formulators due to material losses, wastage of time, and expenditures. It is imperative to make a quick decision. OBJECTIVE The present investigation describes the systematic approach to select the best suitable method for the development of nanoliposomes (NL), the precursor of nanocochleates encapsulating curcumin using Analytic Hierarchy Process (AHP). METHODS Pair-wise comparison matrices were used to achieve the overall priority weight and ranking for the selection of appropriate technique. Furthermore, Plackett-Burman screening Design (PBD) was exploited to investigate specific effects of associated formulation and process variables on particle size (Y1), drug content (Y2), and entrapment efficiency (Y3), while fabricating NL. RESULTS Results revealed the reliability of the pair-wise comparison matrices and selected the ethanol injection method with the highest priority weight (0.337). Bland-Altman plot and control chart validated the results of AHP. The preparation of vesicles with the preferred diameter and size distribution was essentially fulfilled. Stirring speed (X5), amount of phospholipid (X4), and cholesterol (X8) showed significant influence (p<0.05;) on Y1 and Y3, PBD revealed. These factors can be further optimized using the design of experiments. CONCLUSION AHP being an effective tool, has assisted in selecting the best alternative for fabricating NL, whilst PBD enabled a clear understanding of the effects of diverse formulation variables on responses studied. Results ensure that NL is a riveting candidate for modulating effectively into tailormade diverse shaped nanoformulations for further in vitro; and in vivo; studies.
Collapse
Affiliation(s)
- Sameer J Nadaf
- Department of Pharmacognosy, Sant Gajanan Maharaj College of Pharmacy, Mahagaon-416503, Maharashtra, India
| | - Suresh G Killedar
- Department of Pharmacognosy, Sant Gajanan Maharaj College of Pharmacy, Mahagaon-416503, Maharashtra, India
| |
Collapse
|
37
|
Camilo CJJ, Leite DOD, Silva ARA, Menezes IRA, Coutinho HDM, Costa JGM. Lipid vesicles: applications, principal components and methods used in their formulations: A review. ACTA BIOLÓGICA COLOMBIANA 2020. [DOI: 10.15446/abc.v25n2.74830] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Liposomes and niosomes are currently the most studied lipid vesicles in the nanomedicine field. The system formed by a phospholipid bilayer in aqueous medium allows these vesicles to carry both hydrophilic and lipophilic compounds, providing an increase in solubility of drugs lready used in conventional therapy. The focus on the development of these vesicles should be directed to determining the ideal composition, with low toxicity, biocompatibility and which remains stable for long periods. These characteristics are related to the components used for formulation and the substances that will be encapsulated. Another important point relates to the methods used during formulation, which are important in determining the type of vesicle formed, whether these be large or small, unilamellar or multilamellar. Because of the deliberate actions applied in the development of these vesicles, this review sought to gather updated information regarding the different methods used, including their main components while considering the behavior of each of them when used in different formulations. Also, data showing the importance of formulations in the medical field evidencing studies performed with liposome and niosome vesicles as promising in this area, and others, were included. The approach allows a better understanding of the participation of components in formulations such as cholesterol and non-ionic surfactants, as well as the basis for choosing the ideal components and methods for future research in the development of these vesicles.
Collapse
|
38
|
Yang S, Liu L, Han J, Tang Y. Encapsulating plant ingredients for dermocosmetic application: an updated review of delivery systems and characterization techniques. Int J Cosmet Sci 2020; 42:16-28. [PMID: 31724203 DOI: 10.1111/ics.12592] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 11/12/2019] [Indexed: 12/15/2022]
Abstract
Today, there is a rising demand and ongoing search for novel plant-derived phytochemicals in the cosmetic market owing to the growing consumer expectations worldwide for green and natural health products. Various plant ingredients, including polyphenols, oils, volatile oils, vitamins and other herbal extracts, have been extensively used in herbal cosmetics. Recent advances in encapsulation technologies have greatly improved their chemical stability, biocompatibility, skin permeability and dermocosmetic efficiency when applied topically. This comprehensive review summarizes the up-to-date information on encapsulated plant ingredients tailored for dermocosmetic application with a focus on the development of novel delivery systems. An overview of the commonly used techniques for carrier characterization, performance-related properties and toxicological evaluation is also included, which might provide guidance for researchers to select or develop appropriate assay systems.
Collapse
Affiliation(s)
- S Yang
- Beijing Key Laboratory of Plant Resources Research and Development, School of Science, Beijing Technology and Business University, Beijing, 100048, China.,Department of Cosmetics, School of Science, Beijing Technology and Business University, Beijing, 100048, China
| | - L Liu
- Beijing Key Laboratory of Plant Resources Research and Development, School of Science, Beijing Technology and Business University, Beijing, 100048, China.,Department of Cosmetics, School of Science, Beijing Technology and Business University, Beijing, 100048, China
| | - J Han
- Beijing Key Laboratory of Plant Resources Research and Development, School of Science, Beijing Technology and Business University, Beijing, 100048, China.,Department of Cosmetics, School of Science, Beijing Technology and Business University, Beijing, 100048, China
| | - Y Tang
- Beijing Key Laboratory of Plant Resources Research and Development, School of Science, Beijing Technology and Business University, Beijing, 100048, China.,Department of Cosmetics, School of Science, Beijing Technology and Business University, Beijing, 100048, China
| |
Collapse
|
39
|
Li Y, Cong H, Wang S, Yu B, Shen Y. Liposomes modified with bio-substances for cancer treatment. Biomater Sci 2020; 8:6442-6468. [DOI: 10.1039/d0bm01531h] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In recent years, liposomes have been used in the field of biomedicine and have achieved many significant results.
Collapse
Affiliation(s)
- Yanan Li
- Institute of Biomedical Materials and Engineering
- College of Chemistry and Chemical Engineering
- College of Materials Science and Engineering
- Affiliated Hospital of Qingdao University
- Qingdao University
| | - Hailin Cong
- Institute of Biomedical Materials and Engineering
- College of Chemistry and Chemical Engineering
- College of Materials Science and Engineering
- Affiliated Hospital of Qingdao University
- Qingdao University
| | - Song Wang
- Institute of Biomedical Materials and Engineering
- College of Chemistry and Chemical Engineering
- College of Materials Science and Engineering
- Affiliated Hospital of Qingdao University
- Qingdao University
| | - Bing Yu
- Institute of Biomedical Materials and Engineering
- College of Chemistry and Chemical Engineering
- College of Materials Science and Engineering
- Affiliated Hospital of Qingdao University
- Qingdao University
| | - Youqing Shen
- Institute of Biomedical Materials and Engineering
- College of Chemistry and Chemical Engineering
- College of Materials Science and Engineering
- Affiliated Hospital of Qingdao University
- Qingdao University
| |
Collapse
|
40
|
Khursheed R, Singh SK, Wadhwa S, Gulati M, Awasthi A. Enhancing the potential preclinical and clinical benefits of quercetin through novel drug delivery systems. Drug Discov Today 2019; 25:209-222. [PMID: 31707120 DOI: 10.1016/j.drudis.2019.11.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 10/20/2019] [Accepted: 11/01/2019] [Indexed: 12/27/2022]
Abstract
Quercetin is reported to have numerous pharmacological actions, including antidiabetic, anti-inflammatory and anticancer activities. The main mechanism responsible for its pharmacological activities is its ability to quench reactive oxygen species (ROS) and, hence, decrease the oxidative stress responsible for the development of various diseases. Despite its proven therapeutic potential, the clinical use of quercetin remains limited because of its low aqueous solubility, bioavailability, and substantial first-pass metabolism. To overcome this, several novel formulations have been reported. In this review, we focus on the applications of quercetin extract as well as its novel formulations for treating different disorders. We also examine its proposed mechanism of action of quercetin.
Collapse
Affiliation(s)
- Rubiya Khursheed
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India.
| | - Sheetu Wadhwa
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Ankit Awasthi
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| |
Collapse
|
41
|
Amanzadeh E, Esmaeili A, Rahgozar S, Nourbakhshnia M. Application of quercetin in neurological disorders: from nutrition to nanomedicine. Rev Neurosci 2019; 30:555-572. [DOI: 10.1515/revneuro-2018-0080] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 09/21/2018] [Indexed: 12/22/2022]
Abstract
Abstract
Quercetin is a polyphenolic flavonoid, which is frequently found in fruits and vegetables. The antioxidant potential of quercetin has been studied from subcellular compartments, that is, mitochondria to tissue levels in the brain. The neurodegeneration process initiates alongside aging of the neurons. It appears in different parts of the brain as Aβ plaques, neurofibrillary tangles, Lewy bodies, Pick bodies, and others, which leads to Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, amyotrophic lateral sclerosis, and other diseases. So far, no specific treatment has been identified for these diseases. Despite common treatments that help to prevent the development of disease, the condition of patients with progressive neurodegenerative diseases usually do not completely improve. Currently, the use of flavonoids, especially quercetin for the treatment of neurodegenerative diseases, has been expanded in animal models. It has also been used to treat animal models of neurodegenerative diseases. In addition, improvements in behavioral levels, as well as in cellular and molecular levels, decreased activity of antioxidant and apoptotic proteins, and increased levels of antiapoptotic proteins have been observed. Low bioavailability of quercetin has also led researchers to construct various quercetin-involved nanoparticles. The treatment of animal models of neurodegeneration using quercetin-involved nanoparticles has shown that improvements are observed in shorter periods and with use of lower concentrations. Indeed, intranasal administration of quercetin-involved nanoparticles, constructing superparamagnetic nanoparticles, and combinational treatment using nanoparticles such as quercetin and other drugs are suggested for future studies.
Collapse
|
42
|
Chi J, Ge J, Yue X, Liang J, Sun Y, Gao X, Yue P. Preparation of nanoliposomal carriers to improve the stability of anthocyanins. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.03.070] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
43
|
Trucillo P, Campardelli R, Scognamiglio M, Reverchon E. Control of liposomes diameter at micrometric and nanometric level using a supercritical assisted technique. J CO2 UTIL 2019. [DOI: 10.1016/j.jcou.2019.04.014] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
44
|
Barnett HH, Heimbuck AM, Pursell I, Hegab RA, Sawyer BJ, Newman JJ, Caldorera-Moore ME. Poly (ethylene glycol) hydrogel scaffolds with multiscale porosity for culture of human adipose-derived stem cells. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2019; 30:895-918. [PMID: 31039085 DOI: 10.1080/09205063.2019.1612725] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Three-dimensional (3 D) hydrogel scaffolds are an attractive option for tissue regeneration applications because they allow for cell migration, fluid exchange, and can be synthesized to closely mimic the physical properties of the extracellular matrix environment. The material properties of hydrogels play a vital role in cellular migration and differentiation. In light of this, in-depth understanding of material properties is required before such scaffolds can be used to study their influence on cells. Herein, various blends and thicknesses of poly (ethylene glycol) dimethacrylate (PEGDMA) hydrogels were synthesized, flash frozen, and dried by lyophilization to create scaffolds with multiscale porosity. Environmental scanning electron microscopy (ESEM) images demonstrated that lyophilization induced microporous voids in the PEGDMA hydrogels while swelling studies show the hydrogels retain their innate swelling properties. Change in pore size was observed between drying methods, polymer blend, and thickness when imaged in the hydrated state. Human adipose-derived stem cells (hASCs) were seeded on lyophilized and non-lyophilized hydrogels to determine if the scaffolds would support cell attachment and proliferation of a clinically relevant cell type. Cell attachment and morphology of the hASCs were evaluated using fluorescence imaging. Qualitative observations in cell attachment and morphology of hASCs on the surface of the different hydrogel spatial configurations indicate these multiscale porosity hydrogels create a suitable scaffold for hASC culture. These findings offer another factor of tunability in creating biomimetic hydrogels for various tissue engineering applications including tissue repair, regeneration, wound healing, and controlled release of growth factors.
Collapse
Affiliation(s)
- Haley H Barnett
- a School of Biological Sciences, Louisiana Tech University , Ruston , LA , USA
| | - Abitha M Heimbuck
- b Department of Biomedical Engineering , Louisiana Tech University , Ruston , LA , USA
| | - India Pursell
- a School of Biological Sciences, Louisiana Tech University , Ruston , LA , USA
| | - Rachel A Hegab
- b Department of Biomedical Engineering , Louisiana Tech University , Ruston , LA , USA
| | - Benjamin J Sawyer
- b Department of Biomedical Engineering , Louisiana Tech University , Ruston , LA , USA.,c Department of chemistry, Trinity University , San Antonio , TX , USA
| | - Jamie J Newman
- a School of Biological Sciences, Louisiana Tech University , Ruston , LA , USA
| | | |
Collapse
|
45
|
Heimbuck AM, Priddy-Arrington TR, Sawyer BJ, Caldorera-Moore ME. Effects of post-processing methods on chitosan-genipin hydrogel properties. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 98:612-618. [DOI: 10.1016/j.msec.2018.12.119] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 11/27/2018] [Accepted: 12/27/2018] [Indexed: 01/06/2023]
|
46
|
|
47
|
Synthesize of alginate/chitosan bilayer nanocarrier by CCD-RSM guided co-axial electrospray: A novel and versatile approach. Food Res Int 2019; 116:1163-1172. [DOI: 10.1016/j.foodres.2018.11.047] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 11/13/2018] [Accepted: 11/22/2018] [Indexed: 12/23/2022]
|
48
|
Vélez MA, Perotti MC, Hynes ER, Gennaro AM. Effect of lyophilization on food grade liposomes loaded with conjugated linoleic acid. J FOOD ENG 2019. [DOI: 10.1016/j.jfoodeng.2018.07.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
49
|
de Carli C, Moraes-Lovison M, Pinho SC. Production, physicochemical stability of quercetin-loaded nanoemulsions and evaluation of antioxidant activity in spreadable chicken pâtés. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2018.08.037] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
50
|
Auwal SM, Zarei M, Tan CP, Saari N. Comparative physicochemical stability and efficacy study of lipoid S75-biopeptides nanoliposome composite produced by conventional and direct heating methods. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2018. [DOI: 10.1080/10942912.2018.1504064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Shehu Muhammad Auwal
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Department of Biochemistry, Faculty of Basic Medical Sciences, Bayero University, Kano, Nigeria
| | - Mohammad Zarei
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Department of Food Science and Technology, College of Agriculture and Natural Resources, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran
| | - Chin Ping Tan
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Nazamid Saari
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|