1
|
Nie X, Zuo Z, Zhang R, Luo S, Chi Y, Yuan X, Song C, Wu Y. New advances in biological preservation technology for aquatic products. NPJ Sci Food 2025; 9:15. [PMID: 39900935 PMCID: PMC11790869 DOI: 10.1038/s41538-025-00372-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 01/17/2025] [Indexed: 02/05/2025] Open
Abstract
Aquatic products, characterized by their high moisture content, abundant nutrients, and neutral pH, create an optimal environment for the rapid proliferation of spoilage organisms, lipid oxidation, and autolytic degradation. These factors collectively expedite the spoilage and deterioration of aquatic products during storage and transportation within the supply chain. To maintain the quality and extend the shelf-life of aquatic products, appropriate preservation methods must be implemented. The growing consumer preference for bio-preservatives, is primarily driven by consumer demands for naturalness and concerns about environmental sustainability. The present review discusses commonly employed bio-preservatives derived from plants, animals, and microorganisms and their utilization in the preservation of aquatic products. Moreover, the preservation mechanisms of bio-preservatives, including antioxidant activity, inhibition of spoilage bacteria and enzyme activity, and the formation of protective films are reviewed. Integration of bio-preservation techniques with other methods, such as nanotechnology, ozone technology, and coating technology that enhance the fresh-keeping effect are discussed. Importantly, the principal issues in the application of bio-preservation technology for aquatic products and their countermeasures are presented. Further studies and the identification of new bio-preservatives that preserve the safety and quality of aquatic products should continue.
Collapse
Affiliation(s)
- Xiaobao Nie
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, China.
| | - Zhijie Zuo
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, China
| | - Ruichang Zhang
- Department of Food and Drugs, Shandong Institute of Commerce and Technology, Jinan, Shandong, China
| | - Si Luo
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, China
| | - Yongzhou Chi
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, China
| | - Xiangyang Yuan
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, China
| | - Chengwen Song
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, China
| | - Yongjiang Wu
- College of Smart Agriculture, Chongqing University of Arts and Sciences, Yongchuan, China.
| |
Collapse
|
2
|
Khateeb S. Etoricoxib-NLC Mitigates Radiation-Induced Ovarian Damage in Rats: Insights into Pro-Inflammatory Cytokines, Antioxidant Activity, and Hormonal Responses. Biomolecules 2024; 15:12. [PMID: 39858407 PMCID: PMC11761947 DOI: 10.3390/biom15010012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/17/2024] [Accepted: 12/23/2024] [Indexed: 01/27/2025] Open
Abstract
Radiotherapy is a critical treatment for cancer but poses significant risks to ovarian tissue, particularly in young females, leading to premature ovarian failure (POF). This study examines the therapeutic potential of etoricoxib nanostructured lipid carriers (ETO-NLC) in mitigating radiation-induced ovarian damage in female Wistar rats. Twenty-four female rats were randomly assigned to four groups: a control group receiving normal saline, a group exposed to a single dose of whole-body gamma radiation (6 Gy), a group treated with etoricoxib (10 mg/kg) post-radiation, and a group treated with ETO-NLC for 14 days following radiation. Histopathological evaluations and oxidative stress biomarker assessments were conducted, including ELISAs for reactive oxygen species (ROS), pro-inflammatory cytokines (IL-1β, TNF-α), and signaling molecules (PI3K, AKT, P38MAPK, AMH). Serum levels of estrogen, FSH, and LH were measured, and gene expression analysis for TGF-β and Nrf2 was performed using qRT-PCR. The findings indicate that ETO-NLC has the potential to ameliorate the harmful effects of ovarian damage induced by γ-radiation. These therapeutic effects were achieved through the modulation of oxidative stress, inflammation, augmentation of antioxidant defenses (including Nrf2 activation), support for cell survival pathways (via PI3K/Akt signaling), regulation of MAPK, mitigation of fibrosis (TGF-β), and preservation of ovarian reserve (as evidenced by AMH, FSH/LH, and estrogen levels). ETO-NLC shows promise as an effective strategy for attenuating radiation-induced ovarian damage, highlighting the need for further research to enhance therapeutic interventions aimed at preserving ovarian function during cancer treatment.
Collapse
Affiliation(s)
- Sahar Khateeb
- Department of Biochemistry, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia;
- Biochemistry Division, Department of Chemistry, Faculty of Science, Fayoum University, Fayoum P.O. Box 63514, Egypt;
| |
Collapse
|
3
|
Blanco-Morales V, Mercatante D, Rodriguez-Estrada MT, Garcia-Llatas G. Current and New Insights on Delivery Systems for Plant Sterols in Food. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1440:403-435. [PMID: 38036891 DOI: 10.1007/978-3-031-43883-7_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Plant sterols are minor bioactive components of food lipids, which are often used for the formulation of functional foods due to their cholesterol-lowering properties. However, they have low solubility and tend to crystallize, which may affect their biological effects, the sensory profile of the sterol-enriched food, and its consumer acceptability. Moreover, due to the unsaturated structure of sterols, they are susceptible to oxidation, so different encapsulation systems have been developed to improve their dispersibility/solubility, stability, delivery, and bioaccessibility. This chapter provides an overview of the main encapsulation systems currently used for plant sterols and their application in model and food systems, with a particular focus on their efficiency and impact on sterol bioaccessibility.
Collapse
Affiliation(s)
- V Blanco-Morales
- Nutrition and Food Science Area, Faculty of Pharmacy, University of Valencia, Valencia, Spain
| | - D Mercatante
- Department of Agricultural and Food Sciences, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - M T Rodriguez-Estrada
- Department of Agricultural and Food Sciences, Alma Mater Studiorum-University of Bologna, Bologna, Italy.
- CIRI-Agrifood (Interdepartmental Centre of Industrial Agrifood Research), Alma Mater Studiorum-University of Bologna, Cesena, Italy.
| | - G Garcia-Llatas
- Nutrition and Food Science Area, Faculty of Pharmacy, University of Valencia, Valencia, Spain
| |
Collapse
|
4
|
Guo SJ, Wang XD, Ma YX, Hu YY, Yang RN, Ma CG. Guar gum series affect nanostructured lipid carriers via electrostatic assembly or steric hindrance: Improving their oral delivery for phytosterols. Int J Biol Macromol 2023; 253:126667. [PMID: 37660846 DOI: 10.1016/j.ijbiomac.2023.126667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/11/2023] [Accepted: 08/31/2023] [Indexed: 09/05/2023]
Abstract
Surface modification of nanostructured lipid carriers (NLCs) can be an effective way to improve their oral delivery for active ingredients. In this study, four type of guar gum series modified NLCs for the delivery of phytosterols (PS) were constructed and the effects of the polysaccharides on their structure and physicochemical properties were studied. DLS and AFM results revealed that positively charged polysaccharides could bind to PS-NLCs through electrostatic attraction and made the complexes finally take positive charges, while negatively charged polysaccharides were more likely to fill in the gaps of NLC systems to achieve a balance between electrostatic repulsion and intermolecular forces. Although all four polysaccharides exhibited good storage stability and controlled release of PS in simulated intestinal digestion, PS-NLCs modified with partially hydrolyzed cationic guar gum (PHCG) at medium or high concentrations exhibited better gastric stability, mucoadhesion, and cellular uptake, which had considerable significance for improving the oral bioavailability of PS. This might be related to the coating structure of PHCG-PS-NLCs confirmed by AFM, FTIR, and Raman characterization. This study provide a reference value for designing suitable PS-NLC complexes without synthetic surfactants.
Collapse
Affiliation(s)
- Shu-Jing Guo
- Lipid Technology and Engineering, College of Food Science and Engineering, Henan University of Technology, Lianhua Road 100, Zhengzhou 450001, Henan Province, PR China
| | - Xue-De Wang
- Lipid Technology and Engineering, College of Food Science and Engineering, Henan University of Technology, Lianhua Road 100, Zhengzhou 450001, Henan Province, PR China.
| | - Yu-Xiang Ma
- Lipid Technology and Engineering, College of Food Science and Engineering, Henan University of Technology, Lianhua Road 100, Zhengzhou 450001, Henan Province, PR China
| | - Yu-Yuan Hu
- Lipid Technology and Engineering, College of Food Science and Engineering, Henan University of Technology, Lianhua Road 100, Zhengzhou 450001, Henan Province, PR China
| | - Rui-Nan Yang
- Lipid Technology and Engineering, College of Food Science and Engineering, Henan University of Technology, Lianhua Road 100, Zhengzhou 450001, Henan Province, PR China
| | - Chuan-Guo Ma
- Lipid Technology and Engineering, College of Food Science and Engineering, Henan University of Technology, Lianhua Road 100, Zhengzhou 450001, Henan Province, PR China
| |
Collapse
|
5
|
Taha EF, Hamed NS, Khateeb S. Etoricoxib nanostructured lipid carriers attenuate inflammation by modulating Cyclooxygenase-2 signaling and activation of nuclear factor-κB-p65 pathways in radiation-induced acute cardiotoxicity in rats. Eur J Pharmacol 2023; 957:176029. [PMID: 37648012 DOI: 10.1016/j.ejphar.2023.176029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/14/2023] [Accepted: 08/25/2023] [Indexed: 09/01/2023]
Abstract
The current investigation aimed to explore the potential of etoricoxib nanostructured lipid carriers (ET-NLCs) as an anti-inflammatory drug in radiation-exposed rats, with a focus on assessing its efficacy in reducing inflammation while minimizing cardiac toxicity compared to conventional etoricoxib (ET) treatment. The ET-NLCs were prepared by the low-temperature melt emulsification solidification technique. Various techniques were employed to characterize the NLCs. Rats were exposed to gamma-irradiation (6 Gy) to induce cardiac inflammation and injury, followed by oral administration of ET or ET-NLCs (10 mg/kg b.w.) for 14 consecutive days. Results demonstrated a significant increase in the levels of malondialdehyde (MDA), cyclooxygenase-2 (COX-2), nuclear factor kappa-B p65 (NF-κB-p65), and poly ADP-ribose polymerase (PARP-1) in the heart tissues of gamma-irradiated rats compared to the control group. This increase was accompanied by a reduction in the activity of antioxidant enzymes. However, treatment with ET and ET-NLCs exhibited a positive impact on these levels. Interestingly, the efficacy of ET-NLCs in mitigating radiation-induced inflammation in heart tissue was found to be superior to that of ET. In conclusion, the study suggests that the utilization of NLCs as a drug delivery system for ET may not only enhance its therapeutic efficacy but also help reduce the cardiovascular risks associated with ET, specifically focused on individuals who had been exposed to gamma radiation. These findings open new avenues for further research in the development of effective and safer therapeutic strategies for managing inflammatory diseases and their impact on cardiovascular health.
Collapse
Affiliation(s)
- Eman Fs Taha
- Health Radiation Research Department, National Centre for Radiation Research and Technology, Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Noha Sayed Hamed
- Radioisotopes Department, Nuclear Research Centre, Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Sahar Khateeb
- Biochemistry Division, Department of Chemistry, Faculty of Science, Fayoum University, Fayoum, Egypt.
| |
Collapse
|
6
|
Malekmohammadi M, Ghanbarzadeh B, Hanifian S, Samadi Kafil H, Gharekhani M, Falcone PM. The Gelatin-Coated Nanostructured Lipid Carrier (NLC) Containing Salvia officinalis Extract: Optimization by Combined D-Optimal Design and Its Application to Improve the Quality Parameters of Beef Burger. Foods 2023; 12:3737. [PMID: 37893630 PMCID: PMC10606122 DOI: 10.3390/foods12203737] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/23/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
The current study aims to synthesize the gelatin-coated nanostructured lipid carrier (NLC) to encapsulate sage extract and use this nanoparticle to increase the quality parameters of beef burger samples. NLCs were prepared by formulation of gelatin (as surfactant and coating biopolymer), tallow oil (as solid lipid), rosemary essential oil (as liquid lipid), sage extract (as active material or encapsulant), polyglycerol ester and Tween 80 (as low-molecular emulsifier) through the high-shear homogenization-sonication method. The effects of gelatin concentrations and the solid/liquid ratio on the particle size, polydispersity index (PDI), and encapsulation efficiency (EE%) of sage extract-loaded NLCs were quantitatively investigated and optimized using a combined D-optimal design. Design expert software suggested the optimum formulation with a gelatin concentration of 0.1 g/g suspension and solid/liquid lipid ratio of 60/40 with a particle size of 100.4 nm, PDI of 0.36, and EE% 80%. The morphology, interactions, thermal properties, and crystallinity of obtained NLC formulations were investigated by TEM, FTIR, DSC, and XRD techniques. The optimum sage extract-loaded/gelatin-coated NLC showed significantly higher antioxidant activity than free extract after 30 days of storage. It also indicated a higher inhibitory effect against E. coli and P. aeruginosa than free form in MIC and MBC tests. The optimum sage extract-loaded/gelatin-coated NLC, more than free extract, increased the oxidation stability of the treated beef burger samples during 90 days of storage at 4 and -18 °C (verified by thiobarbituric acid and peroxide values tests). Incorporation of the optimum NLC to beef burgers also effectively decreased total counts of mesophilic bacteria, psychotropic bacteria, S. aureus, coliform, E. coli, molds, and yeasts of treated beef burger samples during 0, 3, and 7 days of storage in comparison to the control sample. These results suggested that the obtained sage extract-loaded NLC can be an effective preservative to extend the shelf life of beef burgers.
Collapse
Affiliation(s)
- Maedeh Malekmohammadi
- Department of Food Science and Technology, Tabriz Branch, Islamic Azad University, Tabriz P.O. Box 11365-4435, Iran (S.H.); (M.G.)
| | - Babak Ghanbarzadeh
- Department of Food Science and Technology, Faculty of Agriculture, University of Tabriz, Tabriz P.O. Box 51666-16471, Iran
| | - Shahram Hanifian
- Department of Food Science and Technology, Tabriz Branch, Islamic Azad University, Tabriz P.O. Box 11365-4435, Iran (S.H.); (M.G.)
| | - Hossein Samadi Kafil
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz P.O. Box 51656-65811, Iran;
| | - Mehdi Gharekhani
- Department of Food Science and Technology, Tabriz Branch, Islamic Azad University, Tabriz P.O. Box 11365-4435, Iran (S.H.); (M.G.)
| | - Pasquale M. Falcone
- Department of Agricultural, Food and Environmental Sciences, University Polytechnical of Marche, Brecce Bianche 10, 60131 Ancona, Italy
| |
Collapse
|
7
|
Zielińska A, da Ana R, Fonseca J, Szalata M, Wielgus K, Fathi F, Oliveira MBPP, Staszewski R, Karczewski J, Souto EB. Phytocannabinoids: Chromatographic Screening of Cannabinoids and Loading into Lipid Nanoparticles. Molecules 2023; 28:molecules28062875. [PMID: 36985847 PMCID: PMC10058297 DOI: 10.3390/molecules28062875] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/13/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Solid Lipid Nanoparticles (SLN) and Nanostructured Lipid Carriers (NLC) are receiving increasing interest as an approach to encapsulate natural extracts to increase the physicochemical stability of bioactives. Cannabis extract-derived cannabidiol (CBD) has potent therapeutic properties, including anti-inflammatory, antioxidant, and neuroprotective properties. In this work, physicochemical characterization was carried out after producing Compritol-based nanoparticles (cSLN or cNLC) loaded with CBD. Then, the determination of the encapsulation efficiency (EE), loading capacity (LC), particle size (Z-Ave), polydispersity index (PDI), and zeta potential were performed. Additionally, the viscoelastic profiles and differential scanning calorimetry (DSC) patterns were recorded. As a result, CBD-loaded SLN showed a mean particle size of 217.2 ± 6.5 nm, PDI of 0.273 ± 0.023, and EE of about 74%, while CBD-loaded NLC showed Z-Ave of 158.3 ± 6.6 nm, PDI of 0.325 ± 0.016, and EE of about 70%. The rheological analysis showed that the loss modulus for both lipid nanoparticle formulations was higher than the storage modulus over the applied frequency range of 10 Hz, demonstrating that they are more elastic than viscous. The crystallinity profiles of both CBD-cSLN (90.41%) and CBD-cNLC (40.18%) were determined. It may justify the obtained encapsulation parameters while corroborating the liquid-like character demonstrated in the rheological analysis. Scanning electron microscopy (SEM) study confirmed the morphology and shape of the developed nanoparticles. The work has proven that the solid nature and morphology of cSLN/cNLC strengthen these particles' potential to modify the CBD delivery profile for several biomedical applications.
Collapse
Affiliation(s)
- Aleksandra Zielińska
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszyńska 32, 60-479 Poznan, Poland
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Raquel da Ana
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Joel Fonseca
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Milena Szalata
- Department of Biotechnology, Institute of Natural Fibres and Medicinal Plants, National Research Institute, Wojska Polskiego 71B, 60-630 Poznan, Poland
| | - Karolina Wielgus
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, Szpitalna 27/33, 60-572 Poznan, Poland
| | - Faezeh Fathi
- REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira No. 280, 4050-313 Porto, Portugal
| | - M Beatriz P P Oliveira
- REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira No. 280, 4050-313 Porto, Portugal
| | - Rafał Staszewski
- Department of Hypertension Angiology and Internal Medicine, Poznan University of Medical Sciences, 61-701 Poznan, Poland
| | - Jacek Karczewski
- Department of Environmental Medicine, Poznan University of Medical Sciences, 61-701 Poznan, Poland
- Department of Gastroenterology, Dietetics and Internal Diseases, H. Swiecicki University Hospital, Poznan University of Medical Sciences, 60-355 Poznan, Poland
| | - Eliana B Souto
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
- REQUIMTE/UCIBIO, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| |
Collapse
|
8
|
Guo S, Ma C, Hu Y, Song Z, Wang T, Yang R. A notable impact of lipid matrices on cholesterol bioaccessibility from phytosterols-loaded nanostructured lipid carriers during in vitro intestinal digestion. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
9
|
Hu Y, Ma C, Yang R, Guo S, Wang T, Liu J. Impact of molecular interactions between hydrophilic phytosterol glycosyl derivatives and bile salts on the micellar solubility of cholesterol. Food Res Int 2023; 167:112642. [PMID: 37087234 DOI: 10.1016/j.foodres.2023.112642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 02/04/2023] [Accepted: 02/21/2023] [Indexed: 02/26/2023]
Abstract
Hydrophilic phytosterol glycosyl derivatives are synthetic phytosterol analogues by coupling with the glycosyl moiety to improve the water solubility and bioaccessibility of free phytosterols. The aim of this study is to clarify the molecular interaction of phytosterol glycosyl derivatives with bile salts and the consequent impact on cholesterol solubilization. Sharp nonlinear decrease in the micellar solubility of cholesterol and accompanying changes in particle size, zeta potential and microtopography of mixed micelles were observed when phytosterol glycosyl derivatives were introduced in cholesterol-loaded bile salt micelles. These results suggested that β-sitosterol glycosyl derivatives molecules indeed participated in the formation of mixed micelles. Further, nuclear magnetic resonance showed that the structural change of mixed micelles was caused by the insertion of β-sitosterol glycosyl derivatives via hydrogen bonds with sodium taurocholate, which resulted in the low cholesterol solubilization. Moreover, the hydrogen-bond interactions were apparently influenced by the glycosyl moiety of β-sitosterol glycosyl derivatives. These molecular mechanisms may contribute to the development of cholesterol-absorption inhibitors.
Collapse
Affiliation(s)
- Yuyuan Hu
- College of Food Science and Engineering, Henan University of Technology, Lianhua Road 100, Zhengzhou 450001, Henan Province, PR China.
| | - Chuanguo Ma
- College of Food Science and Engineering, Henan University of Technology, Lianhua Road 100, Zhengzhou 450001, Henan Province, PR China
| | - Ruinan Yang
- College of Food Science and Engineering, Henan University of Technology, Lianhua Road 100, Zhengzhou 450001, Henan Province, PR China.
| | - Shujing Guo
- College of Food Science and Engineering, Henan University of Technology, Lianhua Road 100, Zhengzhou 450001, Henan Province, PR China.
| | - Tong Wang
- College of Food Science and Engineering, Henan University of Technology, Lianhua Road 100, Zhengzhou 450001, Henan Province, PR China.
| | - Jun Liu
- College of Food Science and Engineering, Henan University of Technology, Lianhua Road 100, Zhengzhou 450001, Henan Province, PR China; National Engineering Research Center of Wheat and Corn Further Processing, Henan University of Technology, Lianhua Road 100, Zhengzhou 450001, Henan Province, PR China.
| |
Collapse
|
10
|
Otchere E, McKay BM, English MM, Aryee ANA. Current trends in nano-delivery systems for functional foods: a systematic review. PeerJ 2023; 11:e14980. [PMID: 36949757 PMCID: PMC10026715 DOI: 10.7717/peerj.14980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 02/09/2023] [Indexed: 03/19/2023] Open
Abstract
Background Increased awareness of the relationship between certain components in food beyond basic nutrition and health has generated interest in the production and consumption. Functional foods owe much of their health benefits to the presence of bioactive components. Despite their importance, their poor stability, solubility, and bioavailability may require the use of different strategies including nano-delivery systems (NDS) to sustain delivery and protection during handling, storage, and ingestion. Moreover, increasing consumer trend for non-animal sourced ingredients and interest in sustainable production invigorate the need to evaluate the utility of plant-based NDS. Method In the present study, 129 articles were selected after screening from Google Scholar searches using key terms from current literature. Scope This review provides an overview of current trends in the use of bioactive compounds as health-promoting ingredients in functional foods and the main methods used to stabilize these components. The use of plant proteins as carriers in NDS for bioactive compounds and the merits and challenges of this approach are also explored. Finally, the review discusses the application of protein-based NDS in food product development and highlights challenges and opportunities for future research. Key Findings Plant-based NDS is gaining recognition in food research and industry for their role in improving the shelf life and bioavailability of bioactives. However, concerns about safety and possible toxicity limit their widespread application. Future research efforts that focus on mitigating or enhancing their safety for food applications is warranted.
Collapse
Affiliation(s)
- Emmanuel Otchere
- Department of Human Ecology, Delaware State University, Dover, Delaware, United States
| | - Brighid M. McKay
- Department of Human Nutrition, St. Francis Xavier University, Antigonish, Nova Scotia, Canada
| | - Marcia M. English
- Department of Human Nutrition, St. Francis Xavier University, Antigonish, Nova Scotia, Canada
| | - Alberta N. A. Aryee
- Department of Human Ecology, Delaware State University, Dover, Delaware, United States
| |
Collapse
|
11
|
Adinepour F, Pouramin S, Rashidinejad A, Jafari SM. Fortification/enrichment of milk and dairy products by encapsulated bioactive ingredients. Food Res Int 2022; 157:111212. [DOI: 10.1016/j.foodres.2022.111212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 12/20/2022]
|
12
|
da Silva MG, de Godoi KRR, Gigante ML, Pavie Cardoso L, Paula Badan Ribeiro A. Developed and characterization of nanostructured lipid carriers containing food-grade interesterified lipid phase for food application. Food Res Int 2022; 155:111119. [DOI: 10.1016/j.foodres.2022.111119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 03/06/2022] [Accepted: 03/08/2022] [Indexed: 11/04/2022]
|
13
|
Li A, Zhu A, Kong D, Wang C, Liu S, Zhou L, Cheng M. Water-Dispersible Phytosterol Nanoparticles: Preparation, Characterization, and in vitro Digestion. Front Nutr 2022; 8:793009. [PMID: 35096938 PMCID: PMC8795707 DOI: 10.3389/fnut.2021.793009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 12/15/2021] [Indexed: 11/27/2022] Open
Abstract
For improving solubility and bioaccessibility of phytosterols (PS), phytosterol nanoparticles (PNPs) were prepared by emulsification–evaporation combined high-pressure homogenization method. The organic phase was formed with the dissolved PS and soybean lecithin (SL) in anhydrous ethanol, then mixed with soy protein isolate (SPI) solution, and homogenized into nanoparticles, followed by the evaporation of ethanol. The optimum fabrication conditions were determined as PS (1%, w/v): SL of 1:4, SPI content of 0.75% (w/v), and ethanol volume of 16 ml. PNPs were characterized to have average particle size 93.35 nm, polydispersity index (PDI) 0.179, zeta potential −29.3 mV, and encapsulation efficiency (EE) 97.3%. The impact of temperature, pH, and ionic strength on the stability of fabricated PNPs was determined. After 3-h in vitro digestion, the bioaccessibility of PS in nanoparticles reached 70.8%, significantly higher than the 18.2% of raw PS. Upon freeze-drying, the particle size of PNPs increased to 199.1 nm, resulting in a bimodal distribution. The solubility of PS in water could reach up to 2.122 mg/ml, ~155 times higher than that of raw PS. Therefore, this study contributes to the development of functional PS-food ingredients.
Collapse
Affiliation(s)
- Ao Li
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, China
- Department of Food Science and Technology, Wuhan Polytechnic University, Wuhan, China
| | - Aixia Zhu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
| | - Di Kong
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
| | - Chunwei Wang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
- Wuhan Livestock and Poultry Feed Engineering Technology Research Center, Wuhan Polytechnic University, Wuhan, China
| | - Shiping Liu
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, China
| | - Lan Zhou
- Department of Food Science and Technology, Wuhan Polytechnic University, Wuhan, China
- *Correspondence: Lan Zhou
| | - Ming Cheng
- Department of Food Science and Technology, Wuhan Polytechnic University, Wuhan, China
- Ming Cheng
| |
Collapse
|
14
|
Hou L, Sun X, Pan L, Gu K. Effects of Phytosterol Butyrate Ester on the Characteristics of Soybean Phosphatidylcholine Liposomes. J Oleo Sci 2021; 70:1295-1306. [PMID: 34373401 DOI: 10.5650/jos.ess21033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The nutritional and structural properties of phytosterols (PS)/phytosterol esters (PEs) facilitate their use as substitutes for cholesterol in liposome encapsulation systems designed for oral drugs and health products. The purpose of this study was to determine the effect of phytosterol butyrate ester (PBE) on the properties of liposomes. PBE was encapsulated within liposomes (approximately 60 nm) prepared using soybean phosphatidylcholine using the thin-film hydration method. There was no significant change in the average particle diameter and zeta potential of these liposomal vesicles corresponding to the increasing amounts of encapsulated PBE. The incorporation of PBE increased the polydispersity index (PDI) independent of concentration. Additionally, we observed that the storage stability of PBE liposomes with uniform particle size and approximately spherical shape vesicle was better at low concentration. The results of Fourier-transform infrared (FTIR) spectroscopy and Raman spectroscopy showed that PBE was positioned at the water interface, which increased the order of hydrophobic alkyl chains in the lipid membranes. The incorporation of PBE led to an increase in the trans conformation of hydrophobic alkyl chain and consequently, the thermal stability of liposomes, which was confirmed by differential scanning calorimetry (DSC). The results of powder X-ray diffraction (XRD) analysis confirmed that PBE was present in an amorphous form in the liposomes. Additionally, the incorporation of PBE reduced the micropolarity of the lipid membrane. Thus, when preparing liposomes using thin-film hydration, the presence of PBE affected the characteristics of liposomes.
Collapse
Affiliation(s)
- Lifen Hou
- Lipid Research Laboratory, College of Chemistry and Chemical Engineering, Henan University of Technology
| | - Xiangyang Sun
- College of Food and Bioengineering, Henan University of Animal Husbandry and Economy
| | - Li Pan
- College of Food Science and Technology, Henan University of Technology
| | - Keren Gu
- Lipid Research Laboratory, College of Chemistry and Chemical Engineering, Henan University of Technology
| |
Collapse
|
15
|
Li F, Wang X, Wang H, Mei X. Preparation and characterization of phytosterol-loaded nanoparticles with sodium caseinate/dextran conjugates. Food Sci Biotechnol 2021; 30:531-539. [PMID: 33936844 DOI: 10.1007/s10068-021-00885-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 01/10/2021] [Accepted: 01/26/2021] [Indexed: 11/29/2022] Open
Abstract
Sodium caseinate (SC)/dextran conjugates were prepared via Maillard reaction under controlled dry-heating conditions. Moreover, the nanoparticles of phytosterols (PS) encapsulated by SC or SC/dextran were produced using the emulsion evaporation method. The encapsulation efficiency (78.81 ± 5.22%) of PS in SC/dextran nanoparticles was higher than that (73.5 ± 2.78%) in SC nanoparticles. Compared with the compact and dense structure of SC nanoparticles, SC/dextran nanoparticles existed as relatively loose aggregates. The result of differential scanning calorimetry demonstrated that the encapsulation of PS greatly decreased its crystallinity. The released rates of PS from SC and SC/dextran nanoparticles under acidic gastric conditions were 8.59% and 4.73%, respectively. After 7 h of intestinal digestion, the released rate (52.19%) of PS from SC/dextran nanoparticles was significantly higher than that from SC (32.67%) nanoparticles. Therefore, SC/dextran conjugates prepared by the Maillard reaction are more suitable to be used as wall material for the nano-encapsulation of PS.
Collapse
Affiliation(s)
- Feifan Li
- No. 17 Qinghua East Road, Haidian District, Beijing, 100083 China
| | - Xiaoli Wang
- No. 17 Qinghua East Road, Haidian District, Beijing, 100083 China
| | - Hongfu Wang
- No. 17 Qinghua East Road, Haidian District, Beijing, 100083 China
| | - Xiaohong Mei
- No. 17 Qinghua East Road, Haidian District, Beijing, 100083 China
| |
Collapse
|
16
|
|
17
|
Saghafi Z, Mohammadi M, Mahboobian MM, Derakhshandeh K. Preparation, characterization, and in vivo evaluation of perphenazine-loaded nanostructured lipid carriers for oral bioavailability improvement. Drug Dev Ind Pharm 2021; 47:509-520. [PMID: 33650445 DOI: 10.1080/03639045.2021.1892745] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVE The main scope of the present investigation was to improve the bioavailability of perphenazine (PPZ) by incorporating it into the nanostructured lipid carriers (NLCs). SIGNIFICANCE As a result of lipophilic nature and poor aqueous solubility, as well as extensive hepatic metabolism, PPZ has low systemic bioavailability via the oral route. NLCs have shown potentials to surmount the oral delivery drawbacks of poorly water-soluble drugs. METHODS The PPZ-NLCs were prepared by the emulsification-solvent evaporation method and subjected for particle size, zeta potential, and entrapment efficiency (EE) analysis. The optimized NLCs were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), and powder X-ray diffractometry (PXRD). Besides, in vitro release behavior, storage stability, and pharmacokinetic studies followed by a single-dose oral administration in rats were performed. RESULTS Optimized PPZ-NLCs showed a particle size of less than 180 nm with appropriate EE of more than 95%. Microscopic images captured with SEM and TEM exhibited that NLCs were approximately spherical in shape. DSC and PXRD analysis confirmed reduced crystallinity of PPZ after incorporation in NLCs. FTIR spectra demonstrated no chemical interactions between PPZ and NLC components. In vitro release studies confirmed the extended-release properties of NLC formulations. PPZ-NLCs exhibited good stability at 4 °C within three months. The oral bioavailability of NLC-6 and NLC-12 was enhanced about 3.12- and 2.49-fold, respectively, compared to the plain drug suspension. CONCLUSION NLC can be designated as an effective nanocarrier for oral delivery of PPZ.
Collapse
Affiliation(s)
- Zahra Saghafi
- Department of Pharmaceutics, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mojdeh Mohammadi
- Department of Pharmacology and Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Mehdi Mahboobian
- Department of Pharmaceutics, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Katayoun Derakhshandeh
- Department of Pharmaceutics, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
18
|
Feng S, Wang L, Shao P, Sun P, Yang CS. A review on chemical and physical modifications of phytosterols and their influence on bioavailability and safety. Crit Rev Food Sci Nutr 2021; 62:5638-5657. [PMID: 33612007 DOI: 10.1080/10408398.2021.1888692] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Phytosterols have been shown to lower cholesterol levels and to have antioxidant, anti-inflammatory and other biological activities. However, the high melting point and poor solubility limit their bioavailability and practical application. It is advantageous to modify phytosterols chemically and physically. This article reviews and discusses the chemical and physical modifications of phytosterols, as well as their effects on the bioavailability and possible toxicity in vivo. The current research on chemical modifications is mainly focused on esterification to increase the oil solubility and water solubility. For physical modifications (mainly microencapsulation), there are biopolymer-based, surfactant-based and lipid-based nanocarriers. Both chemical and physical modifications of phytosterols can effectively increase the absorption and bioavailability. The safety of modified phytosterols is also an important issue. Phytosterol esters are generally considered to be safe. However, phytosterol oxides, which may be produced during the synthesis of phytosterol esters, have shown toxicity in animal models. The toxicity of nanocarriers also needs further studies.
Collapse
Affiliation(s)
- Simin Feng
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, People's Republic of China.,Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, Beijing, China.,Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers The State University of New Jersey, Piscataway, New Jersey, USA
| | - Liling Wang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Ping Shao
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, People's Republic of China.,Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, Beijing, China
| | - Peilong Sun
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, People's Republic of China.,Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, Beijing, China
| | - Chung S Yang
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers The State University of New Jersey, Piscataway, New Jersey, USA
| |
Collapse
|
19
|
McClements DJ, Öztürk B. Utilization of Nanotechnology to Improve the Handling, Storage and Biocompatibility of Bioactive Lipids in Food Applications. Foods 2021; 10:foods10020365. [PMID: 33567622 PMCID: PMC7915003 DOI: 10.3390/foods10020365] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/03/2021] [Accepted: 02/05/2021] [Indexed: 02/07/2023] Open
Abstract
Bioactive lipids, such as fat-soluble vitamins, omega-3 fatty acids, conjugated linoleic acids, carotenoids and phytosterols play an important role in boosting human health and wellbeing. These lipophilic substances cannot be synthesized within the human body, and so people must include them in their diet. There is increasing interest in incorporating these bioactive lipids into functional foods designed to produce certain health benefits, such as anti-inflammatory, antioxidant, anticancer and cholesterol-lowering properties. However, many of these lipids have poor compatibility with food matrices and low bioavailability because of their extremely low water solubility. Moreover, they may also chemically degrade during food storage or inside the human gut because they are exposed to certain stressors, such as high temperatures, oxygen, light, moisture, pH, and digestive/metabolic enzymes, which again reduces their bioavailability. Nanotechnology is a promising technology that can be used to overcome many of these limitations. The aim of this review is to highlight different kinds of nanoscale delivery systems that have been designed to encapsulate and protect bioactive lipids, thereby facilitating their handling, stability, food matrix compatibility, and bioavailability. These systems include nanoemulsions, solid lipid nanoparticles (SLNs), nanostructured lipid carriers (NLCs), nanoliposomes, nanogels, and nano-particle stabilized Pickering emulsions.
Collapse
Affiliation(s)
- David Julian McClements
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA 01003, USA
- Department of Food Science & Bioengineering, Zhejiang Gongshang University, Hangzhou 310018, China
- Correspondence:
| | - Bengü Öztürk
- Department of Food Engineering, Faculty of Engineering, Yeditepe University, Istanbul 34755, Turkey;
| |
Collapse
|
20
|
Nakagawa K, Nakabayashi M, Ohgaki R, Sakano Y, Kobayashi T. Preparation of a nanostructured multi-phase lipid carrier for iron encapsulation: A lipase-triggered release of ferric ions. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2021. [DOI: 10.3136/fstr.27.559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Kyuya Nakagawa
- Department of Chemical Engineering, Faculty of Engineering, Kyoto University
| | - Maya Nakabayashi
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University
| | - Ren Ohgaki
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University
| | - Yuma Sakano
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University
| | - Takashi Kobayashi
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University
| |
Collapse
|
21
|
Maqsoudlou A, Assadpour E, Mohebodini H, Jafari SM. The influence of nanodelivery systems on the antioxidant activity of natural bioactive compounds. Crit Rev Food Sci Nutr 2020; 62:3208-3231. [PMID: 33356489 DOI: 10.1080/10408398.2020.1863907] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Bioactive compounds may lose their antioxidant activity (e.g., phenolic compounds) at elevated temperatures, enhanced oxidative conditions and severe light exposures so they should be protected by various strategies such as nano/microencapsulation methods. Encapsulation technology has been employed as a proper method for using antioxidant ingredients and to provide easy dispersibility of antioxidants in all matrices including food and pharmaceutical products. It can improve the food fortification processes, release of antioxidant ingredients, and extending the shelf-life and bioavailability of them when ingested in the intestine. In this study, our main goal is to have an overview of the influence of nanoencapsulation on the bioactivity and bioavailability, and cellular activities of antioxidant ingredients in different delivery systems. Also, the effect of encapsulation process conditions, storage conditions, carrier wall materials, and release profile on the antioxidant activity of different natural bioactives are explained. Finally, analytical techniques for measuring antioxidant activity of nanoencapsulated ingredients will be covered.
Collapse
Affiliation(s)
- Atefe Maqsoudlou
- Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Elham Assadpour
- Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Hossein Mohebodini
- Department of Animal Science and Food Science, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Seid Mahdi Jafari
- Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| |
Collapse
|
22
|
Mohammadi M, Jafari SM, Hamishehkar H, Ghanbarzadeh B. Phytosterols as the core or stabilizing agent in different nanocarriers. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.05.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
23
|
Tolve R, Cela N, Condelli N, Di Cairano M, Caruso MC, Galgano F. Microencapsulation as a Tool for the Formulation of Functional Foods: The Phytosterols' Case Study. Foods 2020; 9:foods9040470. [PMID: 32283860 PMCID: PMC7230576 DOI: 10.3390/foods9040470] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/04/2020] [Accepted: 04/08/2020] [Indexed: 11/21/2022] Open
Abstract
Hypercholesterolemia, which is an increase in total and low-density lipoprotein (LDL) serum cholesterol, is an important risk factor for the development of cardiovascular diseases. Lifestyle modifications underpin any action plan for reducing serum cholesterol. Phytosterols are natural compounds belonging to the triterpenes family. Thanks to their structural analogy with cholesterol, phytosterols have the ability to reduce serum LDL-cholesterol levels. Phytosterols are used to enrich or fortify a broad spectrum of food products. Like unsaturated fatty acids and cholesterol, phytosterols are easily oxidized. Microencapsulation could be a useful tool to overcome this and other drawbacks linked to the use of phytosterols in food fortification. In this review, in addition to explaining the phytosterols’ mechanisms of action, a focus on the use of free and encapsulated phytosterols for the formulation of functional foods, taking also into account both technological and legislative issues, is given.
Collapse
|
24
|
Improving the efficiency of natural antioxidant compounds via different nanocarriers. Adv Colloid Interface Sci 2020; 278:102122. [PMID: 32097732 DOI: 10.1016/j.cis.2020.102122] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 02/05/2020] [Accepted: 02/06/2020] [Indexed: 02/01/2023]
Abstract
Encapsulation technology, as a promising approach, has been employed for the protection and controlled release of different bioactive compounds including natural antioxidants; there are restrictions for applying these valuable ingredients in real food products, pharmaceuticals, and cosmetics such as low solubility, low shelf life, difficultly in their packaging and handling, losses due to environmental stresses and food processes, undesirable flavors and odors, untargeted release and instability in various conditions during digestion in gastrointestinal tract. Nanocarriers can be employed to overcome these challenges. There are five groups of nanocarriers based on the principal mechanism/ingredient used to make them for the encapsulation of natural antioxidants titled biopolymeric nanoparticles, lipid-based and surfactant-based nanocarriers, nanocarriers made with specially designed equipment, nature-inspired nanocarriers, and miscellaneous ones. The main goal of this study is to have an overview of role of different nanocarriers in improving the efficiency of natural antioxidant compounds for different purposes. It has been verified that antioxidant-loaded nanocarriers can be applied in many formulations with a higher and controlled release antioxidant activity, which would meet the current needs of consumers' expectations towards clean label products.
Collapse
|
25
|
Development of novel active packaging films based on whey protein isolate incorporated with chitosan nanofiber and nano-formulated cinnamon oil. Int J Biol Macromol 2020; 149:11-20. [PMID: 32007845 DOI: 10.1016/j.ijbiomac.2020.01.083] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 12/24/2019] [Accepted: 01/08/2020] [Indexed: 11/23/2022]
Abstract
Active packaging is designed to extend products shelf life by incorporating active components with biological properties in its structure. The main goal of this research was to develop a biodegradable whey protein isolate (WPI)-based film, incorporated with chitosan nanofiber (CSNF) and cinnamon essential oil (CiEO) (both emulsified and Nanostructured lipid carriers (NLC) form). Then, the physicochemical properties of developed bio-nanocomposite were fully characterized. Both water solubility and the water vapor permeability of WPI film decreased significantly (p < 0.05) by incorporating the CSNF into film structure. The good complexation between WPI and CSNF was confirmed by FTIR. Microstructure revealed that the fiber networks were well distributed throughout the films while the morphological heterogeneity and contributed to the reduction of the tensile strength were evident after addition of CiEO. These obtained results from SEM to be quite in accordance with FT-IR findings that confirmed the incorporation of NLCs into bio-nanocomposite structure have been through physical interactions. The film barrier properties to ultraviolet light were increased by adding all of nano-reinforcements. Moreover, the antibacterial activity of resulting films was enhanced by adding CiEO, especially NLC form. This study introduces a novel ecofriendly bio-nano composite in packaging industries for the shelf life extension of different perishable foods.
Collapse
|
26
|
Verruck S, Balthazar CF, Rocha RS, Silva R, Esmerino EA, Pimentel TC, Freitas MQ, Silva MC, da Cruz AG, Prudencio ES. Dairy foods and positive impact on the consumer's health. ADVANCES IN FOOD AND NUTRITION RESEARCH 2019; 89:95-164. [PMID: 31351531 DOI: 10.1016/bs.afnr.2019.03.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The objective of the present chapter was to demonstrate the state of the art in the recent advances in nutritional and functional components of dairy products research. In this chapter, the main mechanisms responsible and essential for a better understanding of nutritional and functional values of the components of milk and dairy products are highlighted. It also includes a discussion about the positive impacts of fermented milk, cheese, butter, ice cream, and dairy desserts components on the consumer's health.
Collapse
Affiliation(s)
- Silvani Verruck
- Universidade Federal de Santa Catarina (UFSC), Departamento de Ciência e Tecnologia de Alimentos, Florianópolis, Brazil
| | | | - Ramon Silva Rocha
- Universidade Federal Fluminense (UFF), Faculdade de Veterinária, Niterói, Brazil; Instituto Federal de Educação, Ciência e Tecnologia do Rio de Janeiro (IFRJ), Departamento de Alimentos, Rio de Janeiro, Brazil
| | - Ramon Silva
- Universidade Federal Fluminense (UFF), Faculdade de Veterinária, Niterói, Brazil; Instituto Federal de Educação, Ciência e Tecnologia do Rio de Janeiro (IFRJ), Departamento de Alimentos, Rio de Janeiro, Brazil
| | | | | | | | - Marcia Cristina Silva
- Instituto Federal de Educação, Ciência e Tecnologia do Rio de Janeiro (IFRJ), Departamento de Alimentos, Rio de Janeiro, Brazil
| | - Adriano Gomes da Cruz
- Instituto Federal de Educação, Ciência e Tecnologia do Rio de Janeiro (IFRJ), Departamento de Alimentos, Rio de Janeiro, Brazil.
| | - Elane Schwinden Prudencio
- Universidade Federal de Santa Catarina (UFSC), Departamento de Ciência e Tecnologia de Alimentos, Florianópolis, Brazil
| |
Collapse
|
27
|
Jampilek J, Kos J, Kralova K. Potential of Nanomaterial Applications in Dietary Supplements and Foods for Special Medical Purposes. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E296. [PMID: 30791492 PMCID: PMC6409737 DOI: 10.3390/nano9020296] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 02/15/2019] [Accepted: 02/15/2019] [Indexed: 12/12/2022]
Abstract
Dietary supplements and foods for special medical purposes are special medical products classified according to the legal basis. They are regulated, for example, by the European Food Safety Authority and the U.S. Food and Drug Administration, as well as by various national regulations issued most frequently by the Ministry of Health and/or the Ministry of Agriculture of particular countries around the world. They constitute a concentrated source of vitamins, minerals, polyunsaturated fatty acids and antioxidants or other compounds with a nutritional or physiological effect contained in the food/feed, alone or in combination, intended for direct consumption in small measured amounts. As nanotechnology provides "a new dimension" accompanied with new or modified properties conferred to many current materials, it is widely used for the production of a new generation of drug formulations, and it is also used in the food industry and even in various types of nutritional supplements. These nanoformulations of supplements are being prepared especially with the purpose to improve bioavailability, protect active ingredients against degradation, or reduce side effects. This contribution comprehensively summarizes the current state of the research focused on nanoformulated human and veterinary dietary supplements, nutraceuticals, and functional foods for special medical purposes, their particular applications in various food products and drinks as well as the most important related guidelines, regulations and directives.
Collapse
Affiliation(s)
- Josef Jampilek
- Division of Biologically Active Complexes and Molecular Magnets, Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacky University, Slechtitelu 27, 783 71 Olomouc, Czech Republic.
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska cesta 9, 845 10 Bratislava, Slovakia.
| | - Jiri Kos
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Comenius University, Odbojarov 10, 832 32 Bratislava, Slovakia.
| | - Katarina Kralova
- Institute of Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 842 15 Bratislava, Slovakia.
| |
Collapse
|
28
|
|
29
|
Nanosystems in Edible Coatings: A Novel Strategy for Food Preservation. Int J Mol Sci 2018; 19:ijms19030705. [PMID: 29494548 PMCID: PMC5877566 DOI: 10.3390/ijms19030705] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 01/28/2018] [Accepted: 02/24/2018] [Indexed: 11/17/2022] Open
Abstract
Currently, nanotechnology represents an important tool and an efficient option for extending the shelf life of foods. Reducing particle size to nanometric scale gives materials distinct and improved properties compared to larger systems. For food applications, this technology allows the incorporation of hydrophilic and lipophilic substances with antimicrobial and antioxidant properties that can be released during storage periods to increase the shelf life of diverse products, including whole and fresh-cut fruits and vegetables, nuts, seeds, and cheese, among others. Edible coatings are usually prepared with natural polymers that are non-toxic, economical, and readily available. Nanosystems, in contrast, may also be prepared with biodegradable synthetic polymers, and liquid and solid lipids at room temperature. In this review, recent developments in the use of such nanosystems as nanoparticles, nanotubes, nanocomposites, and nanoemulsions, are discussed critically. The use of polymers as the support matrix for nanodispersions to form edible coatings for food preservation is also analyzed, but the central purpose of the article is to describe available information on nanosystems and their use in different food substrates to help formulators in their work.
Collapse
|
30
|
|