1
|
Liu X, Liu L, Huang F, Meng Y, Chen Y, Wang J, Wang S, Luo Y, Li J, Liang Y. pH-sensitive chitosan/sodium alginate/calcium chloride hydrogel beads for potential oral delivery of rice bran bioactive peptides. Food Chem 2025; 470:142618. [PMID: 39736181 DOI: 10.1016/j.foodchem.2024.142618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 12/09/2024] [Accepted: 12/21/2024] [Indexed: 01/01/2025]
Abstract
Although rice bran active peptide (RBAP) has potent antioxidant properties, its practical applications have been limited by its low bioavailability. In this study, we hypothesized that pH-responsive hydrogels prepared from the ionic gelation between chitosan and alginate could be a promising delivery system of short-chain peptides, like RBAP, for protecting them from chemical degradation during digestion and improving their functionality. The hydrogel beads retained RBAP in the gastric environment due to strong interactions between two biopolymers and RBAP, followed by a sustained release of more than 70 % peptide in the intestinal condition, thus improving its gastrointestinal stability. The RBAP-loaded hydrogel beads not only significantly enhanced free radical scavenging ability by 3-7 times during digestion but also protected human umbilical vein endothelial cells from H2O2-induced oxidative stress after digestion. This study presents a novel hydrogel platform for enhancing the gastrointestinal stability and functional efficacy of RBAP and other water-soluble peptides.
Collapse
Affiliation(s)
- Xinxin Liu
- Molecular Nutrition Branch, National Engineering Research Center of Rice and By-product Deep Processing/College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China; Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Longhai Liu
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Fang Huang
- Molecular Nutrition Branch, National Engineering Research Center of Rice and By-product Deep Processing/College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Yanmei Meng
- Molecular Nutrition Branch, National Engineering Research Center of Rice and By-product Deep Processing/College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Yajuan Chen
- Molecular Nutrition Branch, National Engineering Research Center of Rice and By-product Deep Processing/College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Jianqiang Wang
- Molecular Nutrition Branch, National Engineering Research Center of Rice and By-product Deep Processing/College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Shuang Wang
- Molecular Nutrition Branch, National Engineering Research Center of Rice and By-product Deep Processing/College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Yangchao Luo
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT, 06269, United States.
| | - Jianghua Li
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China.
| | - Ying Liang
- Molecular Nutrition Branch, National Engineering Research Center of Rice and By-product Deep Processing/College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China.
| |
Collapse
|
2
|
Ben Dassi R, Ibidhi S, Jemai H, Cherif A, Driouich Chaouachi R. Resveratrol: Challenges and prospects in extraction and hybridization with nanoparticles, polymers, and bio-ceramics. Phytother Res 2024; 38:5309-5322. [PMID: 39228146 DOI: 10.1002/ptr.8319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 07/17/2024] [Accepted: 07/30/2024] [Indexed: 09/05/2024]
Abstract
Resveratrol (RSV), a bioactive natural phenolic compound found in plants, fruits, and vegetables, has garnered significant attention in pharmaceutical, food, and cosmetic industries due to its remarkable biological and pharmacological activities. Despite its potential in treating various diseases, its poor pharmacokinetic properties, such as low solubility, stability, bioavailability, and susceptibility to rapid oxidation, limit its biomedical applications. Recent advancements focus on incorporating resveratrol into innovative materials like nanoparticles, polymers, and bio-ceramics to enhance its properties and bioavailability. In this review, an exhaustive literature search was conducted from PubMed, Google Scholar, Science Direct, Scopus, and Web of Science databases to explore these advancements, to compares conventional and innovative extraction methods, and to highlights resveratrol's therapeutic potential, including its anti-inflammatory, anti-oxidative, anti-cancerogenic, antidiabetic, neuroprotective, and cardio-protective properties. Additionally, we discuss the challenges and prospects of hybrid materials combining resveratrol with nanoparticles, polymers, and bio-ceramics for therapeutic applications. Rigorous studies are still needed to confirm their clinical efficacy.
Collapse
Affiliation(s)
- Roua Ben Dassi
- Laboratory BVBGR-LR11ES31, Institute of Biotechnology of Sidi Thabet, University of Manouba, Tunisia
- Doctoral School in Sciences and Technologies of Computing, Communications, Design and the Environment, University of Manouba, Tunisia
| | - Salah Ibidhi
- Laboratory BVBGR-LR11ES31, Institute of Biotechnology of Sidi Thabet, University of Manouba, Tunisia
- Doctoral School in Sciences and Technologies of Computing, Communications, Design and the Environment, University of Manouba, Tunisia
| | - Hedya Jemai
- Laboratory BVBGR-LR11ES31, Institute of Biotechnology of Sidi Thabet, University of Manouba, Tunisia
| | - Ameur Cherif
- Laboratory BVBGR-LR11ES31, Institute of Biotechnology of Sidi Thabet, University of Manouba, Tunisia
| | - Rim Driouich Chaouachi
- Laboratory BVBGR-LR11ES31, Institute of Biotechnology of Sidi Thabet, University of Manouba, Tunisia
| |
Collapse
|
3
|
Boateng ID, Clark K. Trends in extracting Agro-byproducts' phenolics using non-thermal technologies and their combinative effect: Mechanisms, potentials, drawbacks, and safety evaluation. Food Chem 2024; 437:137841. [PMID: 37918151 DOI: 10.1016/j.foodchem.2023.137841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 10/20/2023] [Accepted: 10/22/2023] [Indexed: 11/04/2023]
Abstract
The agro-food industries generate significant waste with adverse effects. However, these byproducts are rich in polyphenols with diverse bioactivities. Innovative non-thermal extraction (NTE) technologies (Naviglio extractor®, cold plasma (CP), high hydrostatic pressure (HHP), pulse-electric field (PEF), ultrasound-assisted extraction (UAE), etc.) and their combinative effect (integrated UAE + HPPE, integrated PEF + enzyme-assisted extraction, etc.) could improve polyphenolic extraction. Hence, this article comprehensively reviewed the mechanisms, applications, drawbacks, and safety assessment of emerging NTE technologies and their combinative effects in the last 5 years, emphasizing their efficacy in improving agro-byproduct polyphenols' extraction. According to the review, incorporating cutting-edge NTE might promote the extraction ofmore phenolic extractfrom agro-byproducts due to numerous benefits,such as increased extractability,preserved thermo-sensitive phenolics, and low energy consumption. The next five years should investigate combined novel NTE technologies as they increase extractability. Besides, more research must be done on extracting free and bound phenolics, phenolic acids, flavonoids, and lignans from agro by-products. Finally, the safety of the extraction technology on the polyphenolic extract needs a lot of studies (in vivo and in vitro), and their mechanisms need to be explored.
Collapse
Affiliation(s)
- Isaac Duah Boateng
- College of Agriculture, Food, and Natural Resources, University of Missouri, Columbia, MO 65211, United States of America; Certified Group, 199 W Rhapsody Dr, San Antonio, TX 78216, United States of America; Kumasi Cheshire Home, Off Edwenase Road, Kumasi, Ghana.
| | - Kerry Clark
- College of Agriculture, Food, and Natural Resources, University of Missouri, Columbia, MO 65211, United States of America.
| |
Collapse
|
4
|
Li W, Yuan H, Liu Y, Wang B, Xu X, Xu X, Hussain D, Ma L, Chen D. Current analytical strategies for the determination of resveratrol in foods. Food Chem 2024; 431:137182. [PMID: 37603999 DOI: 10.1016/j.foodchem.2023.137182] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 08/12/2023] [Accepted: 08/14/2023] [Indexed: 08/23/2023]
Abstract
Resveratrol, a non-flavonoid polyphenolic compound, possesses various beneficial properties such as anti-cancer, anti-aging, anti-bacterial, and antioxidant effects. It is naturally produced by many plants in response to stimulation. However, the content of resveratrol in natural plants can vary significantly, ranging from micrograms to milligrams per kilogram. As the demand for resveratrol increases, the development of methods for extracting and quantifying resveratrol in food has become a rapidly growing field in recent years. This review aims to comprehensively summarize the progress made in resveratrol analysis in food over the past decade (2012-2022), with a specific focus on the latest advancements in extraction and detection technologies. The objective is to offer a valuable reference for further research and utilization of resveratrol in various food applications.
Collapse
Affiliation(s)
- Wenxuan Li
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases of Henan Province, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Hang Yuan
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Yuwei Liu
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases of Henan Province, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Bin Wang
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases of Henan Province, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Xinli Xu
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases of Henan Province, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Xia Xu
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases of Henan Province, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450000, China
| | - Dilshad Hussain
- HEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan.
| | - Lei Ma
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450000, China.
| | - Di Chen
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases of Henan Province, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450000, China.
| |
Collapse
|
5
|
Yao Y, Yuan H, Chen C, Liang J, Li C. Study of the Antioxidant Capacity and Oxidation Products of Resveratrol in Soybean Oil. Foods 2023; 13:29. [PMID: 38201057 PMCID: PMC10778236 DOI: 10.3390/foods13010029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/16/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
Resveratrol (3,5,4'-trihydroxystilbene), a naturally occurring polyphenol that is widely utilized in functional food due to its antioxidant, anti-inflammatory, anti-cancer and anti-aging properties. In the present study, the antioxidant capacity and oxidation products of resveratrol in soybean oil were investigated. The antioxidant activity of resveratrol was evaluated by employing various in vitro antioxidant assays such as DPPH scavenging activities, ferric reducing abilities (FRAP) and oxygen radical absorbance capacity (ORAC). Furthermore, monitoring the peroxide value and the acid value of soybean oil with the addition of 200-1000 μg/g of resveratrol at 60 and 180 °C. It was found that when the concentration of resveratrol in soybean oil was 600 µg/g, the antioxidant capacity was most effective. Resveratrol and its thermal degradation products were identified using liquid chromatography-mass spectrometry (LC-MS) and gas chromatography-mass spectrometry (GC-MS). There were seven nonvolatile oxidation products with mass-to-charge ratios of 138.03, 171.04, 185.10, 157.03, 436.13, 244.07 and 306.09 kg/C and two volatile oxidation products with mass-to-charge ratios of 100.05 and 158.13 kg/C were identified. The research findings may provide essential information for the development of resveratrol as functional oils in future.
Collapse
Affiliation(s)
| | | | | | | | - Changmo Li
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; (Y.Y.); (H.Y.); (C.C.); (J.L.)
| |
Collapse
|
6
|
Eremia SAV, Albu C, Radu GL, Alecu A, Brinduse E. The Influence of Melatonin Treatment in the Vinification of Feteasca Neagra and Cabernet Sauvignon Wines on the Profile of Polyphenolic Compounds and Antioxidant Activity. Antioxidants (Basel) 2023; 12:1214. [PMID: 37371944 PMCID: PMC10295522 DOI: 10.3390/antiox12061214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 05/30/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
Until recently, the main antioxidant role among wine constituents was attributed to polyphenolic compounds, but once the presence of melatonin in wines was confirmed, an interesting new field of research opened up due to its possible synergistic effects with other antioxidants in the winemaking process, which may lead to a change in the profile of polyphenolic compounds and antioxidant activity. In order to investigate the evolution of active principles from the phenylpropanoid metabolism associated with the synergistic effects of melatonin, for the first time, a melatonin treatment was performed in the pre-stage of the different winemaking processes of Feteasca Neagra and Cabernet Sauvignon wines with different melatonin concentrations. After comparing the acquired results for the evolution of the polyphenolic compound profile and antioxidant activity of treated wines, we ascertained an increase in the antioxidant compound concentrations, especially in resveratrol, quercetin, and cyanidin-3-glucoside, directly proportional to the used melatonin concentration; an intensification in activity of PAL and C4H enzymes; and the modification in the expression of specific anthocyanin biosynthesis genes, especially UDP-D-glucose-flavonoid-3-O-glycosyltransferase. It was also shown that the application of melatonin in the pre-stage of the winemaking process can be successfully used to obtain red wines with increased antioxidant activity (almost 14%).
Collapse
Affiliation(s)
- Sandra A. V. Eremia
- Centre of Bioanalysis, National Institute of Research and Development for Biological Sciences–Bucharest, 296 Splaiul Independentei, 060031 Bucharest, Romania
| | - Camelia Albu
- Centre of Bioanalysis, National Institute of Research and Development for Biological Sciences–Bucharest, 296 Splaiul Independentei, 060031 Bucharest, Romania
| | - Gabriel-Lucian Radu
- Centre of Bioanalysis, National Institute of Research and Development for Biological Sciences–Bucharest, 296 Splaiul Independentei, 060031 Bucharest, Romania
| | - Andreia Alecu
- Centre of Bioanalysis, National Institute of Research and Development for Biological Sciences–Bucharest, 296 Splaiul Independentei, 060031 Bucharest, Romania
| | - Elena Brinduse
- Institute for Research and Development for Viticulture and Wine Making, 2 Valea Mantei, Valea Calugareasca, 107620 Prahova, Romania
| |
Collapse
|
7
|
Carvalho JRB, Meireles AN, Marques SS, Gregório BJR, Ramos II, Silva EMP, Barreiros L, Segundo MA. Exploiting Kinetic Features of ORAC Assay for Evaluation of Radical Scavenging Capacity. Antioxidants (Basel) 2023; 12:505. [PMID: 36830065 PMCID: PMC9951910 DOI: 10.3390/antiox12020505] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/10/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023] Open
Abstract
The analysis and interpretation of data retrieved from Oxygen Radical Absorbance Capacity (ORAC) assays represent a challenging task. ORAC indexes originate from different mathematical approaches often lacking correct elucidation of kinetic features concerning radical scavenging reactions by antioxidant compounds. In this work, the expression of ORAC values as area under fluorescein (FL) decay curves (AUC) and lag time are critically compared. This multi-parametric analysis showed the extension of radical scavenging reactions beyond the lag time period for caffeic acid, gallic acid, reduced glutathione and quercetin, extending their antioxidant protection of FL. Ethanol delayed the reaction of both FL and antioxidant compounds with free radical species generated from 2,2'-azobis(2-amidinopropane) dihydrochloride thermolysis. Trolox equivalent values, commonly used to express ORAC values, were more affected by the differences in radical scavenging kinetics between the reference and the tested antioxidant compounds when calculated from AUC than from lag time. These findings stressed the importance of choosing calibrator compounds presenting ORAC kinetics similar to samples to prevent biased estimation of the antioxidant capacity. Additionally, the framework proposed here provides a sustainable analytical method for the evaluation of antioxidant capacity, with an AGREE score of 0.73.
Collapse
Affiliation(s)
- Joana R. B. Carvalho
- LAQV, REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, R Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Andreia N. Meireles
- LAQV, REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, R Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Sara S. Marques
- LAQV, REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, R Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Bruno J. R. Gregório
- LAQV, REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, R Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Inês I. Ramos
- LAQV, REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, R Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Eduarda M. P. Silva
- LAQV, REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, R Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- TOXRUN—Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, 4585-116 Gandra, Portugal
| | - Luisa Barreiros
- LAQV, REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, R Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- Escola Superior de Saúde, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 400, 4200-072 Porto, Portugal
| | - Marcela A. Segundo
- LAQV, REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, R Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| |
Collapse
|
8
|
Meng DH, Li YH, Zheng YQ, Wang X, Chen LY, Meng XS, Lv ZL. A rapid GC–MS method for the simultaneous determination of serotonin and resveratrol using characteristic ions: investigating the distributions of target compounds in different organs of sea buckthorn. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2023. [DOI: 10.1007/s11694-023-01807-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
9
|
Resveratrol: Its Path from Isolation to Therapeutic Action in Eye Diseases. Antioxidants (Basel) 2022; 11:antiox11122447. [PMID: 36552655 PMCID: PMC9774148 DOI: 10.3390/antiox11122447] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/05/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Due to the confirmed therapeutic potential of resveratrol (Rv) for eye diseases, namely its powerful anti-angiogenic and antioxidant effects, this molecule must be studied more deeply. Nowadays, the pharmaceutic and pharmacokinetic available studies offer a troubling picture because of its low stability and bioavailability. To overcome this problem, researchers started to design and create different delivery systems that could improve the delivery amount of Rv. Therefore, this review aims to shed light on the proper and efficient techniques to isolate, purify and quantify the Rv molecule, and how this therapeutic molecule can be a part of a delivery system. The Rv great impact on aspects regarding its stability, bioavailability and absorption are also debated here, based on the existent literature on in vitro and in vivo human and animal studies. Moreover, after its absorption the Rv influence at the molecular level in ocular pathologies is described. In addition, the present review summarizes the available literature about Rv, hoping that Rv will gain more attention to investigate its unexplored side.
Collapse
|
10
|
Capozzi A, Saucier C, Bisbal C, Lambert K. Grape Polyphenols in the Treatment of Human Skeletal Muscle Damage Due to Inflammation and Oxidative Stress during Obesity and Aging: Early Outcomes and Promises. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196594. [PMID: 36235130 PMCID: PMC9573747 DOI: 10.3390/molecules27196594] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/23/2022] [Accepted: 09/28/2022] [Indexed: 11/21/2022]
Abstract
Today, inactivity and high-calorie diets contribute to the development of obesity and premature aging. In addition, the population of elderly people is growing due to improvements in healthcare management. Obesity and aging are together key risk factors for non-communicable diseases associated with several co-morbidities and increased mortality, with a major impact on skeletal muscle defect and/or poor muscle mass quality. Skeletal muscles contribute to multiple body functions and play a vital role throughout the day, in all our activities. In our society, limiting skeletal muscle deterioration, frailty and dependence is not only a major public health challenge but also a major socio-economic issue. Specific diet supplementation with natural chemical compounds such as grape polyphenols had shown to play a relevant and direct role in regulating metabolic and molecular pathways involved in the prevention and treatment of obesity and aging and their related muscle comorbidities in cell culture and animal studies. However, clinical studies aiming to restore skeletal muscle mass and function with nutritional grape polyphenols supplementation are still very scarce. There is an urgent need for clinical studies to validate the very encouraging results observed in animal models.
Collapse
Affiliation(s)
- Adriana Capozzi
- PhyMedExp, INSERM U1046, CNRS UMR 9214, University of Montpellier, CEDEX 5, 34295 Montpellier, France
- SPO, INRAE, Institute Agro, University of Montpellier, 34000 Montpellier, France
| | - Cédric Saucier
- SPO, INRAE, Institute Agro, University of Montpellier, 34000 Montpellier, France
| | - Catherine Bisbal
- PhyMedExp, INSERM U1046, CNRS UMR 9214, University of Montpellier, CEDEX 5, 34295 Montpellier, France
- Correspondence: (C.B.); (K.L.); Tel.: +33-(0)4-1175-9891 (C.B. & K.L.)
| | - Karen Lambert
- PhyMedExp, INSERM U1046, CNRS UMR 9214, University of Montpellier, CEDEX 5, 34295 Montpellier, France
- Correspondence: (C.B.); (K.L.); Tel.: +33-(0)4-1175-9891 (C.B. & K.L.)
| |
Collapse
|
11
|
Polysaccharides-based delivery system for efficient encapsulation and controlled release of food-derived active peptides. Carbohydr Polym 2022; 291:119580. [DOI: 10.1016/j.carbpol.2022.119580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/18/2022] [Accepted: 05/04/2022] [Indexed: 11/23/2022]
|
12
|
Gil-Martín E, Forbes-Hernández T, Romero A, Cianciosi D, Giampieri F, Battino M. Influence of the extraction method on the recovery of bioactive phenolic compounds from food industry by-products. Food Chem 2021; 378:131918. [PMID: 35085901 DOI: 10.1016/j.foodchem.2021.131918] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 12/06/2021] [Accepted: 12/19/2021] [Indexed: 12/13/2022]
Abstract
Agro-foodindustries generate colossal amounts of non-edible waste and by-products, easily accessible as raw materials for up-cycling active phytochemicals. Phenolic compounds are particularly relevant in this field given their abundance in plant residues and the market interest of their functionalities (e.g. natural antioxidant activity) as part of nutraceutical, cosmetological and biomedical formulations. In "bench-to-bedside" achievements, sample extraction is essential because valorization benefits from matrix desorption and solubilization of targeted phytocompounds. Specifically, the composition and polarity of the extractant, the optimal sample particle size and sample:solvent ratio, as well as pH, pressure and temperature are strategic for the release and stability of mobilized species. On the other hand, current green chemistry environmental rules require extraction approaches that eliminate polluting consumables and reduce energy needs. Thus, the following pages provide an update on advanced technologies for the sustainable and efficient recovery of phenolics from plant matrices.
Collapse
Affiliation(s)
- Emilio Gil-Martín
- Department of Biochemistry, Genetics and Immunology, Faculty of Biology, University of Vigo, 36310 Vigo, Spain.
| | - Tamara Forbes-Hernández
- Department of Analytical and Food Chemistry, CITACA, CACTI, University of Vigo, 36310 Vigo, Spain.
| | - Alejandro Romero
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| | - Danila Cianciosi
- Department of Clinical Sciences, Polytechnic University of Marche, Ancona, 60131, Italy
| | - Francesca Giampieri
- Department of Clinical Sciences, Polytechnic University of Marche, Ancona, 60131, Italy; Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Maurizio Battino
- Department of Clinical Sciences, Polytechnic University of Marche, Ancona, 60131, Italy; International Joint Research Laboratory of Intelligent Agriculture and Agri-product Processing, Jiangsu University, Zhenjiang, China; Research group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Isabel Torres, 21, 39011 Santander, Spain
| |
Collapse
|
13
|
Zhabayeva A, Velyamov M, Nakypbekova N, Dolgikh S, Adekenov S. Supercritical Fluid Extraction in Resveratrol Isolation Technology. EURASIAN CHEMICO-TECHNOLOGICAL JOURNAL 2021. [DOI: 10.18321/ectj1082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The article discusses the use of supercritical fluid extraction in the technology for the isolation of resveratrol, a phenolic compound found in Vitis vinifera L. A technology was developed for obtaining the sum of polyphenolic compounds with a quantitative content of resveratrol. As a raw material for the production of the substance, Vitis pomace was used after the production of wine and juice, which makes it possible to introduce complex processing of plant raw materials. For the first time, by the method of carbon dioxide extraction, the conditions for the isolation of resveratrol from Vitis pomace raw materials of the Kazakhstani varieties Saperavi and Cabernet were optimized. The influence of pressure (from 10 to 35 MPa), duration (from 60 to 180 min), temperature (from 50 to 70 °C) was studied when optimizing the extraction mode. The quantitative content of resveratrol in carbon dioxide extracts was determined by high-performance liquid chromatography( HPLC). The optimal parameters for the extraction of Vitis vinifera L. pomace (pressure, duration, temperature) were established, which provide a relatively high content of resveratrol in the extracts.
Collapse
|
14
|
Benbouguerra N, Hornedo-Ortega R, Garcia F, El Khawand T, Saucier C, Richard T. Stilbenes in grape berries and wine and their potential role as anti-obesity agents: A review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.03.060] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
15
|
|
16
|
Functional Ingredients from Agri-Food Waste: Effect of Inclusion Thereof on Phenolic Compound Content and Bioaccessibility in Bakery Products. Antioxidants (Basel) 2020; 9:antiox9121216. [PMID: 33276525 PMCID: PMC7761272 DOI: 10.3390/antiox9121216] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 11/27/2020] [Accepted: 11/30/2020] [Indexed: 12/16/2022] Open
Abstract
Reducing food loss and waste is among the efforts to relieve the pressure on natural resources and move towards more sustainable food systems. Alternative pathways of food waste management include valorization of by-products as a source of phenolic compounds for formulation of functional foods. Bakery products may act as an optimal carrier of phenolic compounds upon fortification. The aim of this paper is to present and discuss the effect that the inclusion of functional ingredients from agri-food waste can have on phenolic content and bioaccessibility in bakery products. To this aim, methods for the recovery of phenolic compounds from agri-food waste are presented, and fortification of bakery products by waste from fruits, vegetables, and seed crops is discussed. Bioaccessibility studies on fortified food products are considered to identify gaps and needs in developing sustainable healthy foods. Fruit and vegetable by-products are among the food wastes mostly valorized as functional ingredients in bakery product formulation. Agri-food waste inclusion level has shown to correlate positively with the increase in phenolic content and antioxidant capacity. Nevertheless, further studies are required to assess bioaccessibility and bioavailability of phenolic compounds in enriched food products to estimate the potential of agri-food waste in promoting human health and well-being.
Collapse
|
17
|
Zeinali M, Abbaspour-Ravasjani S, Ghorbani M, Babazadeh A, Soltanfam T, Santos AC, Hamishehkar H, Hamblin MR. Nanovehicles for co-delivery of anticancer agents. Drug Discov Today 2020; 25:1416-1430. [DOI: 10.1016/j.drudis.2020.06.027] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/26/2020] [Accepted: 06/26/2020] [Indexed: 12/17/2022]
|
18
|
Khan SA, Dar AH, Bhat SA, Fayaz J, Makroo HA, Dwivedi M. High Intensity Ultrasound Processing in Liquid Foods. FOOD REVIEWS INTERNATIONAL 2020. [DOI: 10.1080/87559129.2020.1768404] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Shafat Ahmad Khan
- Department of Food Technology, Islamic University of Sciences and Technology Awantipora, India
- Department of Food Process Engineering, National Institute of Technology, Rourkela, India
| | - Aamir Hussain Dar
- Department of Food Technology, Islamic University of Sciences and Technology Awantipora, India
| | - Shakeel Ahmad Bhat
- College of Agricultural Engineering and Technology, SKUAST Kashmir (Sher e Kashmir University of Agricultural Sciences and Technology Kashmir), India
| | - Jibreez Fayaz
- Department of Food Technology, Islamic University of Sciences and Technology Awantipora, India
| | - Hilal Ahmad Makroo
- Department of Food Technology, Islamic University of Sciences and Technology Awantipora, India
| | - Madhuresh Dwivedi
- Department of Food Process Engineering, National Institute of Technology, Rourkela, India
| |
Collapse
|
19
|
Panzella L, Moccia F, Nasti R, Marzorati S, Verotta L, Napolitano A. Bioactive Phenolic Compounds From Agri-Food Wastes: An Update on Green and Sustainable Extraction Methodologies. Front Nutr 2020; 7:60. [PMID: 32457916 PMCID: PMC7221145 DOI: 10.3389/fnut.2020.00060] [Citation(s) in RCA: 156] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 04/16/2020] [Indexed: 12/14/2022] Open
Abstract
Phenolic compounds are broadly represented in plant kingdom, and their occurrence in easily accessible low-cost sources like wastes from agri-food processing have led in the last decade to an increase of interest in their recovery and further exploitation. Indeed, most of these compounds are endowed with beneficial properties to human health (e.g., in the prevention of cancer and cardiovascular diseases), that may be largely ascribed to their potent antioxidant and scavenging activity against reactive oxygen species generated in settings of oxidative stress and responsible for the onset of several inflammatory and degenerative diseases. Apart from their use as food supplements or as additives in functional foods, natural phenolic compounds have become increasingly attractive also from a technological point of view, due to their possible exploitation in materials science. Several extraction methodologies have been reported for the recovery of phenolic compounds from agri-food wastes mostly based on the use of organic solvents such as methanol, ethanol, or acetone. However, there is an increasing need for green and sustainable approaches leading to phenolic-rich extracts with low environmental impact. This review addresses the most promising and innovative methodologies for the recovery of functional phenolic compounds from waste materials that have appeared in the recent literature. In particular, extraction procedures based on the use of green technologies (supercritical fluid, microwaves, ultrasounds) as well as of green solvents such as deep eutectic solvents (DES) are surveyed.
Collapse
Affiliation(s)
- Lucia Panzella
- Department of Chemical Sciences, University of Naples “Federico II”, Naples, Italy
| | - Federica Moccia
- Department of Chemical Sciences, University of Naples “Federico II”, Naples, Italy
| | - Rita Nasti
- Department of Environmental Science and Policy, Università degli Studi di Milano, Milan, Italy
| | - Stefania Marzorati
- Department of Environmental Science and Policy, Università degli Studi di Milano, Milan, Italy
| | - Luisella Verotta
- Department of Environmental Science and Policy, Università degli Studi di Milano, Milan, Italy
| | | |
Collapse
|
20
|
Babazadeh A, Mohammadi Vahed F, Jafari SM. Nanocarrier-mediated brain delivery of bioactives for treatment/prevention of neurodegenerative diseases. J Control Release 2020; 321:211-221. [DOI: 10.1016/j.jconrel.2020.02.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 02/03/2020] [Accepted: 02/05/2020] [Indexed: 12/31/2022]
|
21
|
Optimization of the extraction of antioxidant phenolic compounds from grape pomace using response surface methodology. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2019. [DOI: 10.1007/s11694-018-00027-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
22
|
Papoutsis K, Pristijono P, Golding JB, Stathopoulos CE, Bowyer MC, Scarlett CJ, Vuong QV. Screening the effect of four ultrasound-assisted extraction parameters on hesperidin and phenolic acid content of aqueous citrus pomace extracts. FOOD BIOSCI 2018. [DOI: 10.1016/j.fbio.2017.11.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|