1
|
Meng F, He M, Yang M, Liu J, Guo S, Liu S. Effect of high hydrostatic pressure on the multi-scale structure and digestive properties of Lonicera caerulea berry polyphenol-wheat starch complex. Int J Biol Macromol 2025; 308:142776. [PMID: 40180065 DOI: 10.1016/j.ijbiomac.2025.142776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/23/2025] [Accepted: 03/31/2025] [Indexed: 04/05/2025]
Abstract
Polyphenols increase resistant starch (RS) content and stabilize postprandial blood glucose levels. This study examined the effects of high hydrostatic pressure (HHP) technology on the multi-scale structure and digestibility of the Lonicera caerulea berry polyphenol-wheat starch (LPWS) complex in vitro and in vivo. The results showed that 200, 400, and 600 MPa HHP treatments promoted starch gelatinization, destroyed the grain structure of wheat starch (WS), significantly increased the particle size (P < 0.05), significantly increased the RS content by 1.60, 2.33, and 2.60 times (P < 0.05), and decreased the crystallinity and molecular weight. Under HHP, Lonicera caerulea berry polyphenols (LCBP) and WS formed A + V complex and the two interacted with each other through hydrogen bonding, leading to a further reduction in the gelatinization enthalpy (ΔH). The amount of glucose released by internal digestion in mice decreased significantly from 10.28 mmol/L to 8.87 mmol/L at 180 min (P < 0.05). Complex digestives appeared dense, which reduced WS digestion. This study provides a theoretical basis for the research and development of functional starch with stable postprandial blood glucose levels, and its use as a functional food ingredient.
Collapse
Affiliation(s)
- Fanna Meng
- Engineering Research Center of Chestnut Industry Technology of the Ministry of Education, College of Food Science & Technology, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei 066004, China
| | - Mingyu He
- Engineering Research Center of Chestnut Industry Technology of the Ministry of Education, College of Food Science & Technology, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei 066004, China
| | - Mingxi Yang
- Engineering Research Center of Chestnut Industry Technology of the Ministry of Education, College of Food Science & Technology, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei 066004, China
| | - Jinjie Liu
- Engineering Research Center of Chestnut Industry Technology of the Ministry of Education, College of Food Science & Technology, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei 066004, China
| | - Shuo Guo
- Engineering Research Center of Chestnut Industry Technology of the Ministry of Education, College of Food Science & Technology, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei 066004, China
| | - Suwen Liu
- Engineering Research Center of Chestnut Industry Technology of the Ministry of Education, College of Food Science & Technology, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei 066004, China; Hebei Yanshan Special Industrial Technology Research Institute, Qinhuangdao, Hebei 066004, China.
| |
Collapse
|
2
|
Lu X, Zhong M, Zuo J, Ma S, Li L, Li M, Hebishy E, Zheng B. Insight into the binding mode of different lotus seed natural starch-phenolic acids complexes. Int J Biol Macromol 2025; 307:141582. [PMID: 40023424 DOI: 10.1016/j.ijbiomac.2025.141582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 02/14/2025] [Accepted: 02/26/2025] [Indexed: 03/04/2025]
Abstract
This study investigated the influence of natural lotus seed starch on the adsorption of seven endogenous phenolic acids present in lotus seeds. The research delineated the interaction mechanisms and subsequently analyzed the alterations in starch characteristics following adsorption. A comprehensive suite of analytical techniques, including adsorption isotherms, 13C NMR, DSC, LF-NMR, rheology, particle size, and potential analyses was employed. All seven phenolic acids were found to spontaneously and physically bind to natural lotus seed starch, primarily through hydrogen bonding, van der Waals interactions, and hydrophobic forces. Post adsorption, the starch granules exhibited diminished crystallinity and reduced bound-water content. Notably, p-coumaic acid, chlorogenic acid, and p-hydroxybenzoic acid formed single helical complexes with the starch, whereas coumalic acid formed non-encapsulated compounds. The adsorption process resulted in increased total color difference (ΔE), particle size, zeta potential, and gelatinization enthalpy of the starch granules, while concurrently decreasing granule-bound water content, glass transition temperature (Tg), and the loss modulus (G″) of the starch pastes. Consequently, the formation of starch-phenolic acid complexes reduces the bound water content, which in turn diminishes the storage modulus and regeneration capability of the starch paste. These findings provide a novel basis for understanding the mechanisms governing the interactions between starch and phenolic acids, thereby elucidating the alterations in the properties of phenolic acid- and starch-rich foods during processing.
Collapse
Affiliation(s)
- Xu Lu
- College of Food Science, Fujian Agriculture and Forestry University, 15 Shangxiadian Road, 350002 Fuzhou, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China; China-Ireland International Cooperation Center for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, 350002 Fuzhou, China
| | - Meifang Zhong
- College of Food Science, Fujian Agriculture and Forestry University, 15 Shangxiadian Road, 350002 Fuzhou, China; China-Ireland International Cooperation Center for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, 350002 Fuzhou, China
| | - Jiaxin Zuo
- Centre of Excellence in Agri-food Technologies, National Centre for Food Manufacturing, University of Lincoln, Holbeach, Spalding, UK
| | - Shuang Ma
- College of Food Science, Fujian Agriculture and Forestry University, 15 Shangxiadian Road, 350002 Fuzhou, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China; China-Ireland International Cooperation Center for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, 350002 Fuzhou, China
| | - Lianxiu Li
- College of Food Science, Fujian Agriculture and Forestry University, 15 Shangxiadian Road, 350002 Fuzhou, China; China-Ireland International Cooperation Center for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, 350002 Fuzhou, China
| | - Mingyu Li
- College of Food Science and Engineering, East China University of Science and Technology, 200237 Shanghai, China
| | - Essam Hebishy
- Centre of Excellence in Agri-food Technologies, National Centre for Food Manufacturing, University of Lincoln, Holbeach, Spalding, UK
| | - Baodong Zheng
- College of Food Science, Fujian Agriculture and Forestry University, 15 Shangxiadian Road, 350002 Fuzhou, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China; China-Ireland International Cooperation Center for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, 350002 Fuzhou, China.
| |
Collapse
|
3
|
Wu Y, Liu Y, Jia Y, Feng CH, Ren F, Liu H. Research progress on the regulation of starch-polyphenol interactions in food processing. Int J Biol Macromol 2024; 279:135257. [PMID: 39233167 DOI: 10.1016/j.ijbiomac.2024.135257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/25/2024] [Accepted: 08/31/2024] [Indexed: 09/06/2024]
Abstract
Starch is a fundamental material in the food industry. However, the inherent structural constraints of starch impose limitations on its physicochemical properties, including thermal instability, viscosity, and retrogradation. To address these obstacles, polyphenols are extensively employed for starch modification owing to their distinctive structural characteristics and potent antioxidant capabilities. Interaction between the hydroxyl groups of polyphenols and starch results in the formation of inclusion or non-inclusion complexes, thereby inducing alterations in the multiscale structure of starch. These modifications lead to changes in the physicochemical properties of starch, while simultaneously enhancing its nutritional value. Recent studies have demonstrated that both thermal and non-thermal processing exert a significant influence on the formation of starch-polyphenol complexes. This review meticulously analyzes the techniques facilitating complex formation, elucidating the critical factors that dictate this process. Of noteworthy importance is the observation that thermal processing significantly boosts these interactions, whereas non-thermal processing enables more precise modifications. Thus, a profound comprehension and precise regulation of the production of starch-polyphenol complexes are imperative for optimizing their application in various starch-based food products. This in-depth study is dedicated to providing a valuable pathway for enhancing the quality of starchy foods through the strategic integration of suitable processing technologies.
Collapse
Affiliation(s)
- Yingying Wu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering, and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Yanan Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering, and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Yuanqiang Jia
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering, and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Chao-Hui Feng
- School of Regional Innovation and Social Design Engineering, Faculty of Engineering, Kitami Institute of Technology, 165 Koen-cho, Kitami 090-8507, Hokkaido, Japan
| | - Feiyue Ren
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering, and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China.
| | - Hongzhi Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering, and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China.
| |
Collapse
|
4
|
Wu Y, Liu Y, Jia Y, Feng C, Zhang H, Ren F. Strategic exploration of whole grain cereals in modulating the glycaemic response. Crit Rev Food Sci Nutr 2024:1-16. [PMID: 38976377 DOI: 10.1080/10408398.2024.2374055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
In the current context, diabetes presents itself as a widespread and complex global health issue. This study explores the significant influence of food microstructure and food matrix components interaction (protein, lipid, polyphenols, etc.) on the starch digestibility and the glycaemic response of post-prandial glycemia, focusing on the potential effectiveness of incorporating bioactive components from whole grain cereals into dietary strategies for the management and potential prevention of diabetes. This study aims to integrate the regulation of postprandial glycaemic homeostasis, including the complexities of starch digestion, the significant potential of bioactive whole grain components and the impact of food processing, to develop a comprehensive framework that combines these elements into a strategic approach to diabetes nutrition. The convergence of these nutritional strategies is analyzed in the context of various prevalent dietary patterns, with the objective of creating an accessible approach to mitigate and prevent diabetes. The objective remains to coalesce these nutritional paradigms into a coherent strategy that not only addresses the current public health crisis but also threads a preventative approach to mitigate future prevalence and impact.
Collapse
Affiliation(s)
- Yingying Wu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering, and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing, China
| | - Yanan Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering, and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing, China
| | - Yuanqiang Jia
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering, and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing, China
| | - Chaohui Feng
- School of Regional Innovation and Social Design Engineering, Faculty of Engineering, Kitami Institute of Technology, Kitami, Japan
| | - Huijuan Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering, and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing, China
| | - Feiyue Ren
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering, and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing, China
| |
Collapse
|
5
|
Cetin‐Babaoglu H, Aydın H, Kumas R, Arslan‐Tontul S. Enhancing nutritional and functional properties of rice starch by modification with Matcha extract. Food Sci Nutr 2024; 12:4284-4291. [PMID: 38873475 PMCID: PMC11167186 DOI: 10.1002/fsn3.4087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/23/2024] [Accepted: 02/28/2024] [Indexed: 06/15/2024] Open
Abstract
The aim of this study is to increase the functionality of rice starch by modifying matcha tea extract and to determine the effect on some physicochemical properties and starch digestibility. According to the data analyzed, treatment with matcha extract was effective in increasing the nutritional value of native rice starch. At the highest level of extract addition, total phenolic and flavonoid content reached 129.54 mg/100 g and 40.16 mg/100 g, respectively, as no phenolic or flavonoid content was detected in control. In addition, the highest DPPH and FRAP values were determined to be 296.62 μmol TE/100 g and 814.89 mg/100 g, respectively, at the highest extract addition level. Treatment with matcha extract significantly reduced the eGI of native rice starch from to 94.61 to 64.63, while resistant starch was increased from 0.90 to 33.43%. According to the physiochemical analysis, there was a positive correlation between the extract ratio and the water-holding capacity of rice starch due to the high hydrophilic capacity of the phenolic compounds. In addition, the solubility and swelling power of starch were increased by treatment with matcha extract, but high temperatures had a negative effect on these physicochemical properties.
Collapse
Affiliation(s)
| | - Hümeyra Aydın
- Food Engineering Department, Agricultural FacultySelçuk UniversityKonyaTurkey
| | - Rumeysa Kumas
- Food Engineering Department, Agricultural FacultySelçuk UniversityKonyaTurkey
| | | |
Collapse
|
6
|
Wu Y, Liu Y, Jia Y, Zhang H, Ren F. Formation and Application of Starch-Polyphenol Complexes: Influencing Factors and Rapid Screening Based on Chemometrics. Foods 2024; 13:1557. [PMID: 38790857 PMCID: PMC11121577 DOI: 10.3390/foods13101557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/12/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Understanding the nuanced interplay between plant polyphenols and starch could have significant implications. For example, it could lead to the development of tailor-made starches for specific applications, from bakinag and brewing to pharmaceuticals and bioplastics. In addition, this knowledge could contribute to the formulation of functional foods with lower glycemic indexes or improved nutrient delivery. Variations in the complexes can be attributed to differences in molecular weight, structure, and even the content of the polyphenols. In addition, the unique structural characteristics of starches, such as amylose/amylopectin ratio and crystalline density, also contribute to the observed effects. Processing conditions and methods will always alter the formation of complexes. As the type of starch/polyphenol can have a significant impact on the formation of the complex, the selection of suitable botanical sources of starch/polyphenols has become a focus. Spectroscopy coupled with chemometrics is a convenient and accurate method for rapidly identifying starches/polyphenols and screening for the desired botanical source. Understanding these relationships is crucial for optimizing starch-based systems in various applications, from food technology to pharmaceutical formulations.
Collapse
Affiliation(s)
- Yingying Wu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China; (Y.W.); (Y.L.); (Y.J.); (H.Z.)
- Technology Research Center of Food Additives, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Yanan Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China; (Y.W.); (Y.L.); (Y.J.); (H.Z.)
- Technology Research Center of Food Additives, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Yuanqiang Jia
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China; (Y.W.); (Y.L.); (Y.J.); (H.Z.)
- Technology Research Center of Food Additives, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Huijuan Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China; (Y.W.); (Y.L.); (Y.J.); (H.Z.)
- Technology Research Center of Food Additives, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Feiyue Ren
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China; (Y.W.); (Y.L.); (Y.J.); (H.Z.)
- Technology Research Center of Food Additives, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China
| |
Collapse
|
7
|
Zhu H, Wang C, Wang Y, Yu J, Copeland L, Wang S. Novel Type of Slowly Digested Starch Complex with Antioxidant Properties. Biomacromolecules 2024; 25:2914-2924. [PMID: 38676646 DOI: 10.1021/acs.biomac.4c00030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2024]
Abstract
With the increasing number of diabetic patients in the world, there is an urgent requirement to reduce the incidence of diabetes. It is considered that a viable prophylactic treatment for type 2 diabetes mellitus is to reduce starch digestibility and oxidative stress. In this study, a novel type of slowly digested starch [pea starch (PS)-gingerol complex] was fabricated to evaluate its in vitro enzymatic digestibility and antioxidant activities. Theoretical and experimental analyses showed that PS can encapsulate gingerols with long alkyl chains to form starch-gingerol complexes, which are further stacked into a mixture of V6- and V7-crystallites. These complexes, in particular the PS-10-gingerol complex, showed high resistance to amylolysis and good antioxidant activities. This study demonstrates that these novel starch-gingerol complexes have the potential to deliver antioxidants encapsulated in starch with slow-digesting properties and reduce oxidative stress. Moreover, this new type of slowly digested starch with antioxidant properties showed great potential in the prevention of type 2 diabetes.
Collapse
Affiliation(s)
- Huilan Zhu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
- School of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Cuiping Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
- School of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Yujue Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
- School of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Jinglin Yu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Les Copeland
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Shujun Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
- School of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| |
Collapse
|
8
|
Ouyang H, Jin D, He Y, Tang K, Guo X, Lin Y, Cheng F, Zhu P, Wu D, Zhang K. Effect of branched 1,4-butanediol citrate oligomers with different molecular weights on toughness and aging resistance of glycerol plasticized starch. Int J Biol Macromol 2024; 268:131603. [PMID: 38626835 DOI: 10.1016/j.ijbiomac.2024.131603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/25/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024]
Abstract
The thermoplastic starch with glycerol is easy to retrograde and sensitive to hygroscopicity. In this study, branched 1,4-butanediol citrate oligomers with different molecular weights (P1, P2, and P3) are synthesized, and then mixed with glycerol (G) as the co-plasticizers to prepare thermoplastic starch (CS/PG). The results show that the molecular weight and branching degree of the branched 1,4-butanediol citrate oligomers increase as reaction time prolongs. Compared with glycerol plasticized starch, the thermoplastic starch films with branched 1,4-butanediol citrate oligomers/glycerol (10 wt%/20 wt%) have a better toughness, transmittance, and aging resistance, and have a lower crystallinity, hygroscopicity, and thermal stability. The toughness, transmittance, and aging resistance of CS/PG films are positively correlated with the molecular weight of the branched 1,4-butanediol citrate oligomers. These are due to the fact that the branched 1,4-butanediol citrate oligomer with a high molecular weight could form a stronger hydrogen bond and the more stable cross-linked structure with starch chains than that with a lower molecular weight. The elongation at break of CS/P3G film stored for 3 and 30 d are 98.0 % and 88.1 %, respectively. The mixture of branched butanediol citrate oligomers and glycerol, especially P3/G, has a potential application in the preparation of thermoplastic starch.
Collapse
Affiliation(s)
- Haishun Ouyang
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Dongliang Jin
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Yixuan He
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Kewen Tang
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Xiaoming Guo
- School of Materials Science & Engineering, Hubei University of Automotive Technology, Shiyan 442002, China.
| | - Yi Lin
- Textile Research Institute, Sichuan University, Chengdu 610065, China
| | - Fei Cheng
- Textile Research Institute, Sichuan University, Chengdu 610065, China
| | - Puxin Zhu
- Textile Research Institute, Sichuan University, Chengdu 610065, China
| | - Dacheng Wu
- Textile Research Institute, Sichuan University, Chengdu 610065, China
| | - Kang Zhang
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| |
Collapse
|
9
|
Kumar R, Roy D, Damodharan N, Kennedy JF, Kumar KJ. Effect of dry heat and its combination with vacuum heat on physicochemical, rheological and release characteristics of Alocasia macrorrhizos retrograded starches. Int J Biol Macromol 2024; 264:130733. [PMID: 38471610 DOI: 10.1016/j.ijbiomac.2024.130733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/04/2024] [Accepted: 03/06/2024] [Indexed: 03/14/2024]
Abstract
Retrograded starches have received increasing attention due to their potential excipient properties in pharmaceutical formulations. However, to evade its application-oriented challenges, modification of retrograded starch is required. The study emphasizes influence of dry heating and the dual heat treatment by dry heating amalgamation with the vacuum heat treatment on quality parameters of retrograded starch. The starch was isolated by using two different extraction media (0.05 % w/v NaOH and 0.03 % citric acid) from Alocasia macrorrhizos and then retrograded separately. Further, retrograded starches were first modified by dry heating and afterwards modified with combination of dry and vacuum heating. Modification decreased moisture, ash content and increased solubility. Modified Samples from NaOH media had higher water holding capacity and amylose content. X-ray diffraction revealed type A and B crystals with increasing crystallinity of retrograded heat-modified samples from NaOH media. Thermogravimetric analysis, differential scanning calorimetry confirmed thermal stability. Shear tests showed shear-thinning behavior whereas dominant storage modulus (G/) over loss modulus (G//), depicting gel-like behavior. Storage, loss, and complex viscosity initially increased, then decreased with temperature. In-vitro release reflects, modified retrograded starches offers versatile drug release profiles, from controlled to rapid. Tailoring starch properties enables precise drug delivery, enhancing pharmaceutical formulation flexibility and efficacy.
Collapse
Affiliation(s)
- Rohit Kumar
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, Jharkhand, India
| | - Dipan Roy
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, Jharkhand, India
| | - N Damodharan
- SRM College of Pharmacy, SRMIST, SRM Nagar, Kattankulathur, 603203 Chengalpattu District, Tamil Nadu, India
| | - John F Kennedy
- Chembiotech Laboratories, Institute of Research and Development, Tenbury Wells WR15 8FF, UK
| | - K Jayaram Kumar
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, Jharkhand, India.
| |
Collapse
|
10
|
Wei X, Xie H, Hu Z, Zeng X, Dong H, Liu X, Bai W. Multiscale structure changes and mechanism of polyphenol-amylose complexes modulated by polyphenolic structures. Int J Biol Macromol 2024; 262:130086. [PMID: 38360224 DOI: 10.1016/j.ijbiomac.2024.130086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/26/2024] [Accepted: 02/08/2024] [Indexed: 02/17/2024]
Abstract
This study was designed to investigate the effect of polyphenolic structure on the interaction strength and process between polyphenols (gallic acid (GA), epigallocatechin gallate (EGCG) and tannic acid (TA)) and amylose (AM). The results of Fourier transform infrared spectroscopy, isothermal titration calorimetry, X-ray photoelectron spectroscopy and molecular dynamic simulation (MD) suggested that the interactions between the three polyphenols and AM were noncovalent, spontaneous, low-energy and driven by enthalpy, which would be enhanced with increasing amounts of pyrogallol groups in the polyphenols. The results of turbidity, particle size and appearance of the complex solution showed that the interaction process between polyphenols and AM could be divided into three steps and would be advanced by increasing the number of pyrogallol groups in the polyphenols. At the same time, MD was intuitively employed to exhibit the interaction process between amylose and polyphenols, and it revealed that the interaction induced the aggregation of amylose and that the agglomeration degree of amylose increased with increasing number of pyrogallol groups at polyphenols. Last, the SEM and TGA results showed that TA/AM complexes had the tightest structure and the highest thermal stability (TA/AM˃EGCG/AM˃GA/AM), which could be attributed to TA having five pyrogallol groups.
Collapse
Affiliation(s)
- Xianling Wei
- College of Light Industry and Food Science, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China; Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Guangzhou, Guangdong 510225, China; Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangzhou, Guangdong 510225, China; Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
| | - Huan Xie
- College of Light Industry and Food Science, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China; Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Guangzhou, Guangdong 510225, China; School of Food and Pharmacy, Shanghai Zhongqiao Vocational and Technology University, Shanghai 201514, China
| | - Ziqing Hu
- College of Light Industry and Food Science, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China; Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Guangzhou, Guangdong 510225, China
| | - Xiaofang Zeng
- College of Light Industry and Food Science, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China; Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Guangzhou, Guangdong 510225, China; Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangzhou, Guangdong 510225, China; Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
| | - Hao Dong
- College of Light Industry and Food Science, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China; Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Guangzhou, Guangdong 510225, China; Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangzhou, Guangdong 510225, China; Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
| | - Xiaoyan Liu
- College of Light Industry and Food Science, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China; Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangzhou, Guangdong 510225, China; Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China.
| | - Weidong Bai
- College of Light Industry and Food Science, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China; Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Guangzhou, Guangdong 510225, China; Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangzhou, Guangdong 510225, China; Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China.
| |
Collapse
|
11
|
Li Y, Niu L, Sun C, Tu J, Xiao J. Comparison of in vitro starch digestibility and structure of matcha-fortified starch vermicelli from different botanical sources. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:7775-7784. [PMID: 37483079 DOI: 10.1002/jsfa.12875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 02/12/2023] [Accepted: 07/22/2023] [Indexed: 07/25/2023]
Abstract
BACKGROUND In a study to explore the utilization of polyphenols in complex digestive systems, starch-based vermicelli was employed as the carrier and matcha (MT) was used as the source of polyphenols. Four percent MT was extruded with A-, B-, and C-type starch of rice, sweet potato, and mung bean to prepared starch vermicelli rice starch vermicelli (RSV), sweet potato starch vermicelli (SPSV), and mung bean starch vermicelli (MBSV), respectively. The multi-scale structure of starch, the digestive kinetics of starch, and the bioaccessibility of polyphenols during in vitro digestion were monitored. RESULTS Matcha did not change the crystal configuration of vermicelli, but increased the relative crystallinity of RSV. Vermicelli with MT possessed a more uniform structure, and the polydispersity index decreased from 3.85-4.89 to 2.56-3.69. However, these structural changes made only a limited contribution to delaying digestion. The detection of polyphenols during digestion revealed that the release of most polyphenols was accomplished in the first 20 min of digestion. The release amount was in the order RSV + MT > MBSV + MT > SPSV + MT, and reached 4.81-5.45 mg GAE g-1 . Correspondingly, the activity of digestive enzyme decreased in the order RSV + MT < MBSV + MT < SPSV + MT. Consequently, MT significantly (P < 0.05) reduced the digestive rate of vermicelli, and the rapidly digested starch and predicted glycemic index of RSV + MT decreased from 71.28% to 56.31% and from 74.68 to 62.86, respectively. The released polyphenols were also the main source of the strong antioxidant capacity of vermicelli with MT. CONCLUSIONS These results provided a theoretical basis for using polyphenols to pursue healthy starch-based food. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yun Li
- School of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, China
| | - Liya Niu
- School of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, China
| | - Chao Sun
- School of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, China
| | - Jin Tu
- School of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, China
| | - Jianhui Xiao
- School of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, China
- Jiangxi Province Key Laboratory of Tuberous Plant Biology, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
12
|
Niu Z, Li M, Hou X, Qiao D, Cheng Z, Zhang L, Zhang B. Shortening growth year improves functional features of kudzu starch by tailoring its multi-scale structure. Int J Biol Macromol 2023; 251:126362. [PMID: 37597637 DOI: 10.1016/j.ijbiomac.2023.126362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 07/01/2023] [Accepted: 08/14/2023] [Indexed: 08/21/2023]
Abstract
Kudzu is usually consumed at different growth years, yet the influences of growth years on its multi-scale structures and physicochemical features have not been fully disclosed. In this study, those influences occurred on kudzu starches (KS2, KS10, KS30 and KS50, isolated using precipitation method) were investigated. The granules size, crystallinity, short-range ordered structure, amylose content, intermediate and longer amylose chains reduced but the average thickness of crystalline lamella increased as the rise of growth years. KS2 had lower content of defective crystal structure and higher content of near-perfect crystal structure. Those signified that bulk density of molecules packing into starch substrate was higher for KS2, which was not beneficial for water molecules and enzymes entering into starch granules and thus elevated pasting temperature and reduced digestion rate. Besides, reduced proportions of defective ordered structures and enhanced lipid-amylose complex also reduced digestion rate. Both the peak and breakdown viscosity were in order of KS2 > KS10 > KS30 ≈ KS50. And KS2, KS10, and KS30 exhibited enhanced retrogradation tendency during cooling than KS50 as evidenced by the relative higher setback viscosity. Those results are favor for rational screen and usage of kudzu starch resources with different growth years for food applications.
Collapse
Affiliation(s)
- Zhiyong Niu
- Glyn O. Phillips Hydrocolloid Research Centre at HBUT, School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Mengying Li
- Glyn O. Phillips Hydrocolloid Research Centre at HBUT, School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Xinran Hou
- Glyn O. Phillips Hydrocolloid Research Centre at HBUT, School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Dongling Qiao
- Glyn O. Phillips Hydrocolloid Research Centre at HBUT, School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, College of Food Science, Southwest University, Chongqing 400715, China.
| | - Zihang Cheng
- Group for Cereals and Oils Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Liang Zhang
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Binjia Zhang
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, College of Food Science, Southwest University, Chongqing 400715, China.
| |
Collapse
|
13
|
Rostamabadi H, Bajer D, Demirkesen I, Kumar Y, Su C, Wang Y, Nowacka M, Singha P, Falsafi SR. Starch modification through its combination with other molecules: Gums, mucilages, polyphenols and salts. Carbohydr Polym 2023; 314:120905. [PMID: 37173042 DOI: 10.1016/j.carbpol.2023.120905] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/05/2023] [Accepted: 04/09/2023] [Indexed: 05/15/2023]
Abstract
Apart from its non-toxicity, biocompatibility and biodegradability, starch has demonstrated eminent functional characteristics, e.g., forming well-defined gels/films, stabilizing emulsions/foams, and thickening/texturizing foods, which make it a promising hydrocolloid for various food purposes. Nonetheless, because of the ever-increasing range of its applications, modification of starch via chemical and physical methods for expanding its capabilities is unavoidable. The probable detrimental impacts of chemical modification on human health have encouraged scientists to develop potent physical approaches for starch modification. In this category, in recent years, starch combination with other molecules (i.e., gums, mucilages, salts, polyphenols) has been an interesting platform for developing modified starches with unique attributes where the characteristics of the fabricated starch could be finely tuned via adjusting the reaction parameters, type of molecules reacting with starch and the concentration of the reactants. The modification of starch characteristics upon its complexation with gums, mucilages, salts, and polyphenols as common ingredients in food formulations is comprehensively overviewed in this study. Besides their potent impact on physicochemical, and techno-functional attributes, starch modification via complexation could also remarkably customize the digestibility of starch and provide new products with less digestibility.
Collapse
Affiliation(s)
- Hadis Rostamabadi
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Dagmara Bajer
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland
| | - Ilkem Demirkesen
- Department of Animal Health, Food and Feed Research, General Directorate of Agricultural Research and Policies, Ministry of Agriculture and Forestry, Ankara, Turkey
| | - Yogesh Kumar
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, Longowal, Punjab, India
| | - Chunyan Su
- College of Engineering, Beijing Advanced Innovation Center for Food Nutrition and Human Health, National Energy R & D Center for Non-food Biomass, China Agricultural University, P. O. Box 50, 17 Qinghua Donglu, Beijing, China
| | - Yong Wang
- School of Chemical Engineering, UNSW Sydney, NSW 2052, Australia
| | - Małgorzata Nowacka
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences - SGGW, 02-787 Warsaw, Poland
| | - Poonam Singha
- Department of Food Process Engineering, National Institute of Technology Rourkela, Odisha 769008, India
| | - Seid Reza Falsafi
- Isfahan Endocrine and Metabolism Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
14
|
Zuo Y, He Z, Yang W, Sun C, Ye X, Tian J, Kong X. Preparation of Neohesperidin-Taro Starch Complex as a Novel Approach to Modulate the Physicochemical Properties, Structure and In Vitro Digestibility. Molecules 2023; 28:molecules28093901. [PMID: 37175311 PMCID: PMC10179776 DOI: 10.3390/molecules28093901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 04/30/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023] Open
Abstract
Neohesperidin (NH), a natural flavonoid, exerts multiple actions, such as antioxidant, antiviral, antiallergic, vasoprotective, anticarcinogenic and anti-inflammatory effects, as well as inhibition of tumor progression. In this study, the NH-taro starch complex is prepared, and the effects of NH complexation on the physicochemical properties, structure and in vitro digestibility of taro starch (TS) are investigated. Results showed that NH complexation significantly affected starch gelatinization temperatures and reduced its enthalpy value (ΔH). The addition of NH increased the viscosity and thickening of taro starch, facilitating shearing and thinning. NH binds to TS via hydrogen bonds and promotes the formation of certain crystalline regions in taro starch. SEM images revealed that the surface of NH-TS complexes became looser with the increasing addition of NH. The digestibility results demonstrated that the increase in NH (from 0.1% to 1.1%, weight based on starch) could raise RS (resistant starch) from 21.66% to 27.75% and reduce RDS (rapidly digestible starch) from 33.51% to 26.76% in taro starch. Our work provided a theoretical reference for the NH-taro starch complex's modification of physicochemical properties and in vitro digestibility with potential in food and non-food applications.
Collapse
Affiliation(s)
- Youming Zuo
- Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Zirui He
- Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Weidong Yang
- Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Chongde Sun
- Institute of Fruit Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Xingqian Ye
- Institute of Food Processing Engineering, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Jinhu Tian
- Institute of Food Processing Engineering, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Xiangli Kong
- Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
15
|
Zhang Z, Zheng B, Du A, Chen J, Chen L. Insight into the retardation of retrogradation of chestnut starch by heat-moisture treatment with flavonoids. Food Chem 2023; 404:134587. [DOI: 10.1016/j.foodchem.2022.134587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 10/05/2022] [Accepted: 10/09/2022] [Indexed: 11/22/2022]
|
16
|
Waraczewski R, Muszyński S, Sołowiej BG. An Analysis of the Plant- and Animal-Based Hydrocolloids as Byproducts of the Food Industry. Molecules 2022; 27:8686. [PMID: 36557824 PMCID: PMC9782133 DOI: 10.3390/molecules27248686] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/01/2022] [Accepted: 12/03/2022] [Indexed: 12/13/2022] Open
Abstract
Hydrocolloids are naturally occurring polysaccharides or proteins, which are used to gelatinize, modify texture, and thicken food products, and are also utilized in edible films and drug capsule production. Moreover, several hydrocolloids are known to have a positive impact on human health, including prebiotics rich in bioactive compounds. In this paper, plant-derived hydrocolloids from arrowroot (Maranta arundinacea), kuzu (Pueraria montana var lobata), Sassafras tree (Sassafras albidum) leaves, sugarcane, acorn, and animal-derived gelatin have been reviewed. Hydrocolloid processing, utilization, physicochemical activities, composition, and health benefits have been described. The food industry generates waste such as plant parts, fibers, residue, scales, bones, fins, feathers, or skin, which are often discarded back into the environment, polluting it or into landfills, where they provide no use and generate transport and storage costs. Food industry waste frequently contains useful compounds, which can yield additional income if acquired, thus decreasing the environmental pollution. Despite conventional manufacturing, the aforementioned hydrocolloids can be recycled as byproducts, which not only minimizes waste, lowers transportation and storage expenses, and boosts revenue, but also enables the production of novel, functional, and healthy food additives for the food industry worldwide.
Collapse
Affiliation(s)
- Robert Waraczewski
- Department of Dairy Technology and Functional Foods, Faculty of Food Sciences and Biotechnology, University of Life Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland
| | - Siemowit Muszyński
- Department of Biophysics, Faculty of Environmental Biology, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland
| | - Bartosz G. Sołowiej
- Department of Dairy Technology and Functional Foods, Faculty of Food Sciences and Biotechnology, University of Life Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland
| |
Collapse
|
17
|
Dual complexation using heat moisture treatment and pre-gelatinization to enhance Starch–Phenolic complex and control digestibility. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
18
|
Ngo TV, Kusumawardani S, Kunyanee K, Luangsakul N. Polyphenol-Modified Starches and Their Applications in the Food Industry: Recent Updates and Future Directions. Foods 2022; 11:3384. [PMID: 36359996 PMCID: PMC9658643 DOI: 10.3390/foods11213384] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/19/2022] [Accepted: 10/24/2022] [Indexed: 07/25/2023] Open
Abstract
Health problems associated with excess calories, such as diabetes and obesity, have become serious public issues worldwide. Innovative methods are needed to reduce food caloric impact without negatively affecting sensory properties. The interaction between starch and phenolic compounds has presented a positive impact on health and has been applied to various aspects of food. In particular, an interaction between polyphenols and starch is widely found in food systems and may endow foods with several unique properties and functional effects. This review summarizes knowledge of the interaction between polyphenols and starch accumulated over the past decade. It discusses changes in the physicochemical properties, in vitro digestibility, prebiotic properties, and antioxidant activity of the starch-polyphenol complex. It also reviews innovative methods of obtaining the complexes and their applications in the food industry. For a brief description, phenolic compounds interact with starch through covalent or non-covalent bonds. The smoothness of starch granules disappears after complexation, while the crystalline structure either remains unchanged or forms a new structure and/or V-type complex. Polyphenols influence starch swelling power, solubility, pasting, and thermal properties; however, research remains limited regarding their effects on oil absorption and freeze-thaw stability. The interaction between starch and polyphenolic compounds could promote health and nutritional value by reducing starch digestion rate and enhancing bioavailability; as such, this review might provide a theoretical basis for the development of novel functional foods for the prevention and control of hyperglycemia. Further establishing a comprehensive understanding of starch-polyphenol complexes could improve their application in the food industry.
Collapse
Affiliation(s)
| | | | | | - Naphatrapi Luangsakul
- School of Food Industry, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| |
Collapse
|
19
|
Li J, Yuan Y, Zhang H, Zou F, Tao H, Wang N, Guo L, Cui B. Structural, physicochemical and long-term retrogradation properties of wheat starch treated using transglucosidase. Food Chem 2022; 380:132226. [PMID: 35093661 DOI: 10.1016/j.foodchem.2022.132226] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 12/27/2021] [Accepted: 01/20/2022] [Indexed: 11/04/2022]
Abstract
To reduce the wheat-flour-based food texture and flavor deterioration caused by starch retrogradation, herein wheat starch, the most ingredient in wheat flour, was modified by transglucosidase to delay long-term retrogradation of wheat starch. The study proposed promising data of transglucosidase-treated starch about structure, crystallinity and retrogradation kinetics. Structural properties showed that transglucosidase treatment shortened the average chain length from 19.49 to 16.10 and induced the dominance of amorphous state. Moreover, branching degree increased from 14.11% to 17.97% after transglucosidase treatment, resulting in higher water mobility. Amylose content increased from 25.33% to 59.00% due to the hydrolysis ability of transglucosidase. Relative crystallinity of the retrograded starches decreased from 24.33% to 14.50%. Furthermore, the Avrami parameters demonstrated that transglucosidase treatment significantly retarded the retrogradation rate of wheat starch due to the decrease of re-crystalline rate. The outcoming would supply a solid theory foundation for exploring the wheat staple foods with higher qualities.
Collapse
Affiliation(s)
- Jiahao Li
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Yuhan Yuan
- Life Science and Technology College, Xinjiang University, Urumchi, China
| | - Hongxia Zhang
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Feixue Zou
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Haiteng Tao
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Na Wang
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Li Guo
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China.
| | - Bo Cui
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China.
| |
Collapse
|
20
|
The physiochemical and nutritional properties of high endosperm lipids rice mutants under artificially accelerated ageing. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
21
|
|
22
|
Pan J, Lv Y, Jiang Y, Zhang H, Zhu Y, Zhang S, Han J. Effect of catechins on the quality properties of wheat flour and bread. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15381] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Junxian Pan
- School of Food Science and Biotechnology Zhejiang Gongshang University Hangzhou 310018 China
- Hangzhou Tea Research Institute CHINA COOP, Zhejiang Key Laboratory of Transboundary Applied Technology for Tea Resources Hangzhou 310016 China
| | - Yangjun Lv
- Hangzhou Tea Research Institute CHINA COOP, Zhejiang Key Laboratory of Transboundary Applied Technology for Tea Resources Hangzhou 310016 China
| | - Yulan Jiang
- Hangzhou Tea Research Institute CHINA COOP, Zhejiang Key Laboratory of Transboundary Applied Technology for Tea Resources Hangzhou 310016 China
| | - Haihua Zhang
- The College of Agricultural and Food Sciences Zhejiang A&F University Lin'an 311300 China
| | - Yuejin Zhu
- Hangzhou Tea Research Institute CHINA COOP, Zhejiang Key Laboratory of Transboundary Applied Technology for Tea Resources Hangzhou 310016 China
| | - Shikang Zhang
- Hangzhou Tea Research Institute CHINA COOP, Zhejiang Key Laboratory of Transboundary Applied Technology for Tea Resources Hangzhou 310016 China
| | - Jianzhong Han
- School of Food Science and Biotechnology Zhejiang Gongshang University Hangzhou 310018 China
| |
Collapse
|
23
|
Zhao Y, Zhu X, Fang Y. Structure, properties and applications of kudzu starch. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
24
|
Li Y, Xiao J, Tu J, Yu L, Niu L. Matcha-fortified rice noodles: Characteristics of in vitro starch digestibility, antioxidant and eating quality. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111852] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
25
|
Wu X, Liang X, Dong X, Li R, Jiang G, Wan Y, Fu G, Liu C. Physical modification on the in vitro digestibility of Tartary buckwheat starch: Repeated retrogradation under isothermal and non-isothermal conditions. Int J Biol Macromol 2021; 184:1026-1034. [PMID: 34166697 DOI: 10.1016/j.ijbiomac.2021.06.117] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/19/2021] [Accepted: 06/16/2021] [Indexed: 01/19/2023]
Abstract
The effects of repeated retrogradation (RR, range from 1 to 3 times) at different temperatures (4 °C; 4/25 °C, with a 24 h interval; 25 °C) on the in vitro digestibility and structures of Tartary buckwheat starch (TS) were investigated in this study. Results demonstrated that TS treated by RR for 1 time under 4/25 °C contained the maximum content of slowly digestible starch (SDS, 35.25%); TS treated by RR for 3 times under 25 °C contained the maximum content of resistant starch (RS, 54.92%). As the increase of RR cycle times, the value of relative crystallinity, the ratios of 1047/1022 cm-1 and 995/1022 cm-1 increased, the starch pore wall thickened, and more smooth fragments appeared (observed by scanning electron microscope), while the value of melting temperature range trended to decrease. The crystallization type of TS changed from type "A" to a mixture of "B + V" after retrogradation treatment. Pearson correlation analysis revealed that the content of rapidly digestible starch (RDS) was negatively correlated with the ratio of 995/1022 cm-1, transition temperatures, and enthalpy (P < 0.05). These results would supply a potential method for the preparation of starch with slow-digesting properties, also improve the utilization and expand the application of TS.
Collapse
Affiliation(s)
- Xiaojiang Wu
- State Key Laboratory of Food Science and Technology, College of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, PR China
| | - Xinmei Liang
- State Key Laboratory of Food Science and Technology, College of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, PR China
| | - Xianxian Dong
- State Key Laboratory of Food Science and Technology, College of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, PR China
| | - Ruyi Li
- State Key Laboratory of Food Science and Technology, College of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, PR China
| | - Guofu Jiang
- Jiangxi Chunsi Foods Co., Ltd., Zhangshu 331200, Jiangxi, PR China
| | - Yin Wan
- State Key Laboratory of Food Science and Technology, College of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, PR China
| | - Guiming Fu
- State Key Laboratory of Food Science and Technology, College of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, PR China.
| | - Chengmei Liu
- State Key Laboratory of Food Science and Technology, College of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, PR China.
| |
Collapse
|
26
|
Fu T, Niu L, Tu J, Xiao J. The effect of different tea products on flavor, texture, antioxidant and in vitro digestion properties of fresh instant rice after commercial sterilization at 121 °C. Food Chem 2021; 360:130004. [PMID: 33975072 DOI: 10.1016/j.foodchem.2021.130004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 04/05/2021] [Accepted: 05/02/2021] [Indexed: 11/18/2022]
Abstract
The conventional process of commercial sterilization at 121 °C resulted in undesirable flavor, injured texture and fast starch digestion of fresh instant rice (FIR) with non-dehydration. In this study, tea products, such as instant green tea (IGT), instant black tea (IBT) and matcha (Mat) were chosen as ingredients to improve the quality of FIR. The results showed thatadding tea products endowed FIR with subtle flavors and higher antioxidant capacity. And the data of XRD, FTIR and SEM indicated that the improved texture of FIR with suitable chewiness was attributed to the stability of non-crystal structure. Furthermore, compared with IBT and Mat, IGT increased the ability against digestion from 10.18% to 30.44% and delayed the retrogradation rate from 18.89% to 4.38% evidenced by T2 values after stored for 14 d. Therefore, adding tea products will be a new way to improve the quality of FIR.
Collapse
Affiliation(s)
- Tiantian Fu
- School of Food Science and Engineering, Jiangxi Agricultural University, 1101 Zhimin Road, Nanchang 330045, China
| | - Liya Niu
- School of Food Science and Engineering, Jiangxi Agricultural University, 1101 Zhimin Road, Nanchang 330045, China
| | - Jin Tu
- School of Food Science and Engineering, Jiangxi Agricultural University, 1101 Zhimin Road, Nanchang 330045, China
| | - Jianhui Xiao
- School of Food Science and Engineering, Jiangxi Agricultural University, 1101 Zhimin Road, Nanchang 330045, China; Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang 330045, China.
| |
Collapse
|
27
|
Xu T, Li X, Ji S, Zhong Y, Simal-Gandara J, Capanoglu E, Xiao J, Lu B. Starch modification with phenolics: methods, physicochemical property alteration, and mechanisms of glycaemic control. Trends Food Sci Technol 2021; 111:12-26. [DOI: 10.1016/j.tifs.2021.02.023] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
28
|
Aalim H, Luo Z. Insight into rice (Oryza sativa L.) cooking: Phenolic composition, inhibition of α-amylase and α-glucosidase, and starch physicochemical and functional properties. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.100917] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
29
|
Fu T, Niu L, Wu L, Xiao J. The improved rehydration property, flavor characteristics and nutritional quality of freeze-dried instant rice supplemented with tea powder products. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.110932] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
30
|
Wang M, Chen J, Chen S, Ye X, Liu D. Inhibition effect of three common proanthocyanidins from grape seeds, peanut skins and pine barks on maize starch retrogradation. Carbohydr Polym 2020; 252:117172. [PMID: 33183621 DOI: 10.1016/j.carbpol.2020.117172] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 09/22/2020] [Accepted: 09/25/2020] [Indexed: 12/15/2022]
Abstract
The inhibition effect of three common proanthocyanidins (PA) on the retrogradation properties of maize starch was investigated (including grape seed proanthocyanidins (GSPA), peanut skin proanthocyanidins (PSPA), and pine bark proanthocyanidins (PBPA)). Differential scanning calorimetry (DSC) and X-ray diffraction (XRD) analysis showed that PA could significantly decrease the values of melting enthalpy of retrogradation (ΔHr) and the degree of relative crystallinity, suggesting that the starch re-crystallization was retarded by PA. Scanning electron microscope (SEM) characterizations illustrated that retrograded PA-starch samples formed a looser matrix with less appearance of continuous flakes during storage. Overall, 0.5 %-2.0 % of three PAs exhibited suppression of starch retrogradation after 21-day cooling storage, mainly resulting from the PA-starch interaction. Among them, PSPA showed the most substantial inhibition effect on starch retrogradation, which might be attributed to its structural features. This study suggested that PA could be a new type of inhibitor to suppress starch retrogradation.
Collapse
Affiliation(s)
- Mengting Wang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Jianchu Chen
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang University, Hangzhou, 310058, People's Republic of China.
| | - Shiguo Chen
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Xingqian Ye
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Donghong Liu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang University, Hangzhou, 310058, People's Republic of China; Ningbo Research Institute, Zhejiang University, Ningbo, 315100, People's Republic of China
| |
Collapse
|
31
|
Iuga M, Mironeasa S. Potential of grape byproducts as functional ingredients in baked goods and pasta. Compr Rev Food Sci Food Saf 2020; 19:2473-2505. [PMID: 33336974 DOI: 10.1111/1541-4337.12597] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 05/14/2020] [Accepted: 06/10/2020] [Indexed: 12/23/2022]
Abstract
Wine making industry generates high quantities of valuable byproducts that can be used to enhance foods in order to diminish the environmental impact and to obtain more economic benefits. Grape byproducts are rich in phenolic compounds and dietary fiber, which make them suitable to improve the nutritional value of bakery, pastry, and pasta products. The viscoelastic behavior of dough and the textural and the sensory characteristics of baked goods and pasta containing grape byproducts depend on the addition level and particle size. Thus, an optimal dose of a finer grape byproducts flour must be found in order to minimize the negative effects such as low loaf volume and undesirable sensory and textural characteristics they may have on the final product quality. In the same time, an enrichment of the nutritional and functional value of the product by increasing the fiber and antioxidant compounds contents is desired. The aim of this review was to summarize the effects of the chemical components of grape byproducts on the nutritional, functional, rheological, textural, physical, and sensory characteristics of the baked goods and pasta. Further researches about the impact of foods enriched with grape byproducts on the human health, about molecular interactions between components, and about the effects of grape pomace compounds on the shelf life of baked goods and pasta are recommended.
Collapse
Affiliation(s)
- Mădălina Iuga
- Faculty of Food Engineering, Stefan cel Mare University of Suceava, Suceava, Romania
| | - Silvia Mironeasa
- Faculty of Food Engineering, Stefan cel Mare University of Suceava, Suceava, Romania
| |
Collapse
|