1
|
Xu Z, Amakye WK, Ren Z, Xu Y, Liu W, Gong C, Wong C, Gao L, Zhao Z, Wang M, Yan T, Ye Z, Zhong J, Hou C, Zhao M, Qiu C, Tan J, Xu X, Liu G, Yao M, Ren J. Soy Peptide Supplementation Mitigates Undernutrition through Reprogramming Hepatic Metabolism in a Novel Undernourished Non-Human Primate Model. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306890. [PMID: 38816931 PMCID: PMC11304262 DOI: 10.1002/advs.202306890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 04/23/2024] [Indexed: 06/01/2024]
Abstract
In spite of recent advances in the field of undernutrition, current dietary therapy relying on the supply of high protein high calorie formulas is still plagued with transient recovery of impaired organs resulting in significant relapse of cases. This is partly attributed to the inadequacy of current research models in recapitulating clinical undernutrition for mechanistic exploration. Using 1636 Macaca fascicularis monkeys, a human-relevant criterion for determining undernutrition weight-for-age z-score (WAZ), with a cutoff point of ≤ -1.83 is established as the benchmark for identifying undernourished nonhuman primates (U-NHPs). In U-NHPs, pathological anomalies in multi-organs are revealed. In particular, severe dysregulation of hepatic lipid metabolism characterized by impaired fatty acid oxidation due to mitochondria dysfunction, but unlikely peroxisome disorder, is identified as the anchor metabolic aberration in U-NHPs. Mitochondria dysfunction is typified by reduced mito-number, accumulated long-chain fatty acids, and disruption of OXPHOS complexes. Soy peptide-treated U-NHPs increase in WAZ scores, in addition to attenuated mitochondria dysfunction and restored OXPHOS complex levels. Herein, innovative criteria for identifying U-NHPs are developed, and unknown molecular mechanisms of undernutrition are revealed hitherto, and it is further proved that soypeptide supplementation reprogramed mitochondrial function to re-establish lipid metabolism balance and mitigated undernutrition.
Collapse
Affiliation(s)
- Zhenzhen Xu
- School of Food Science and EngineeringSouth China University of TechnologyGuangzhou510640China
| | - William Kwame Amakye
- School of Food Science and EngineeringSouth China University of TechnologyGuangzhou510640China
| | - Zhengyu Ren
- The First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou Institute of Respiratory Disease & China State Key Laboratory of Respiratory DiseaseGuangzhou510182China
- State Key Laboratory of Quality Research in Chinese MedicineInstitute of Chinese Medical Sciences (ICMS)University of MacauMacau999078China
| | - Yongzhao Xu
- School of Food Science and EngineeringSouth China University of TechnologyGuangzhou510640China
| | - Wei Liu
- School of Food Science and EngineeringSouth China University of TechnologyGuangzhou510640China
- Huazhen Laboratory Animal Breeding CenterGuangzhou510900China
| | - Congcong Gong
- School of Food Science and EngineeringSouth China University of TechnologyGuangzhou510640China
| | - Chiwai Wong
- Huazhen Laboratory Animal Breeding CenterGuangzhou510900China
| | - Li Gao
- School of Food Science and EngineeringSouth China University of TechnologyGuangzhou510640China
| | - Zikuan Zhao
- School of Food Science and EngineeringSouth China University of TechnologyGuangzhou510640China
| | - Min Wang
- School of Food Science and EngineeringSouth China University of TechnologyGuangzhou510640China
| | - Tao Yan
- School of Food Science and EngineeringSouth China University of TechnologyGuangzhou510640China
| | - Zhiming Ye
- The First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou Institute of Respiratory Disease & China State Key Laboratory of Respiratory DiseaseGuangzhou510182China
| | - Jun Zhong
- School of Food Science and EngineeringSouth China University of TechnologyGuangzhou510640China
| | - Chuanli Hou
- School of Food Science and EngineeringSouth China University of TechnologyGuangzhou510640China
| | - Miao Zhao
- Center for Medical Genetics and Hunan Key Laboratory of Medical GeneticsSchool of Life ScienceCentral South UniversityChangsha410013P. R. China
| | - Can Qiu
- Center for Medical Genetics and Hunan Key Laboratory of Medical GeneticsSchool of Life ScienceCentral South UniversityChangsha410013P. R. China
| | - Jieqiong Tan
- Center for Medical Genetics and Hunan Key Laboratory of Medical GeneticsSchool of Life ScienceCentral South UniversityChangsha410013P. R. China
| | - Xin Xu
- College of Food Science and EngineeringYangzhou UniversityYangzhou225127China
| | - Guoyan Liu
- College of Food Science and EngineeringYangzhou UniversityYangzhou225127China
| | - Maojin Yao
- The First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou Institute of Respiratory Disease & China State Key Laboratory of Respiratory DiseaseGuangzhou510182China
| | - Jiaoyan Ren
- School of Food Science and EngineeringSouth China University of TechnologyGuangzhou510640China
| |
Collapse
|
2
|
Wang X, Liu B, Liu Y, Wang Y, Wang Z, Song Y, Xu J, Xue C. Antioxidants ameliorate oxidative stress in alcoholic liver injury by modulating lipid metabolism and phospholipid homeostasis. Lipids 2023; 58:229-240. [PMID: 37547958 DOI: 10.1002/lipd.12377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/02/2023] [Accepted: 07/13/2023] [Indexed: 08/08/2023]
Abstract
Alcoholic liver disease (ALD) is a significant risk factor in the global disease burden. The antioxidants vitamin C (Vc) and N-acetyl cysteine (NAC) have shown hepatoprotective effects in preventing and treating ALD. However, the correlation between the improved effect of antioxidants and lipid metabolism is still unclear. In this study, AML12 cells and C57BL/6 mice stimulated with alcohol were used to investigate the protective effects and potential mechanisms of two antioxidants (Vc and NAC) on alcoholic liver injury. Results showed that Vc and NAC attenuated intracellular lipid accumulation and oxidative damage induced by excessive alcohol exposure in hepatic AML12 cells. The in vivo results indicated that antioxidants ameliorated alcohol-induced changes in histopathology, reducing the levels of alcohol metabolizing factors and aspartate aminotransferase (AST), alanine aminotransferase (ALT), triglyceride (TG), and total cholesterol (TC) contents, which demonstrated that antioxidants effectively mitigated liver injury in ALD mice. Further studies showed that antioxidants reversed the disruption of fatty acid (FA) synthesis and lipid transport induced by alcohol exposure, and restored phospholipid levels. Especially, Vc and NAC increased the endogenous antioxidant plasmenyl phosphatidylethanolamine (PlsEtn). Additionally, antioxidants ameliorated the alcohol-impaired mitochondrial function and inhibited excessive oxidative stress. In conclusion, antioxidants can regulate lipid metabolism and phospholipid homeostasis, which in turn inhibit oxidative stress and thereby exert protective effects against ALD.
Collapse
Affiliation(s)
- Xiaoxu Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province, China
- College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong Province, China
| | - Bin Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province, China
| | - Yanjun Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province, China
| | - Yuliu Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province, China
| | - Zhigao Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province, China
| | - Yu Song
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province, China
| | - Jie Xu
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province, China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province, China
- Laboratory of Marine Drugs and Biological Products, Pilot National Laboratory for Marine Science and Technology, Qingdao, Shandong Province, China
| |
Collapse
|
3
|
Xu Y, Nie S, Wang M, Zhao Z, Amakye WK, Yuan E, Ren J. Walnut-derived peptide PPKNW alleviate polystyrene microparticles-induced growth inhibition of Lactobacillus rhamnosus GG. FOOD BIOSCI 2023; 53:102528. [DOI: 10.1016/j.fbio.2023.102528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
4
|
Xu Y, Amakye WK, Xiao G, Liu X, Ren J, Wang M. Intestinal absorptivity-increasing effects of sodium N-[8-(2-hydroxybenzoyl)amino]-caprylate on food-derived bioactive peptide. Food Chem 2023; 401:134059. [PMID: 36095999 DOI: 10.1016/j.foodchem.2022.134059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/20/2022] [Accepted: 08/27/2022] [Indexed: 10/14/2022]
Abstract
Delivering bioactive peptides orally is hampered by poor absorption across the gastrointestinal barrier. Using the walnut-derived peptide PW5, PPKNW, we explored whether coformulation of peptides with absorption enhancer sodium N-[8-(2-hydroxybenzoyl)aminocaprylate] (SNAC) could improve the intestinal absorption of orally-administered bioactive peptides. Herein, the application of SNAC enhanced the absorption efficiency of PW5 in a non-everted gut sac model. Particle size distribution (1 027.8 ± 6.74 nm) and zeta potential (-2.89 ± 0.07 mV) of the PW5-SNAC complex were significantly greater than that of individual PW5 and SNAC. Scanning electron microscopy revealed that SNAC application could aggravate the surface roughness and reduce the compact structure of PW5. It further showed that PW5 and SNAC binds through an endothermic process underpinned by hydrogen bond and van der Waals forces and that SNAC could bound primarily to the internal calyx of PW5. These findings are helpful for the effective delivery of bioactive peptides.
Collapse
Affiliation(s)
- Yongzhao Xu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - William Kwame Amakye
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Ganhong Xiao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Xuebo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Jiaoyan Ren
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Research Institute for Food Nutrition and Human Health, Guangzhou, China.
| | - Min Wang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|